xref: /linux/arch/x86/net/bpf_jit_comp.c (revision 4cde72fead4cebb5b6b2fe9425904c2064739184)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 #include <asm/unwind.h>
20 #include <asm/cfi.h>
21 
22 static bool all_callee_regs_used[4] = {true, true, true, true};
23 
24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
25 {
26 	if (len == 1)
27 		*ptr = bytes;
28 	else if (len == 2)
29 		*(u16 *)ptr = bytes;
30 	else {
31 		*(u32 *)ptr = bytes;
32 		barrier();
33 	}
34 	return ptr + len;
35 }
36 
37 #define EMIT(bytes, len) \
38 	do { prog = emit_code(prog, bytes, len); } while (0)
39 
40 #define EMIT1(b1)		EMIT(b1, 1)
41 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
42 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
44 
45 #define EMIT1_off32(b1, off) \
46 	do { EMIT1(b1); EMIT(off, 4); } while (0)
47 #define EMIT2_off32(b1, b2, off) \
48 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
49 #define EMIT3_off32(b1, b2, b3, off) \
50 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
51 #define EMIT4_off32(b1, b2, b3, b4, off) \
52 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
53 
54 #ifdef CONFIG_X86_KERNEL_IBT
55 #define EMIT_ENDBR()		EMIT(gen_endbr(), 4)
56 #define EMIT_ENDBR_POISON()	EMIT(gen_endbr_poison(), 4)
57 #else
58 #define EMIT_ENDBR()
59 #define EMIT_ENDBR_POISON()
60 #endif
61 
62 static bool is_imm8(int value)
63 {
64 	return value <= 127 && value >= -128;
65 }
66 
67 static bool is_simm32(s64 value)
68 {
69 	return value == (s64)(s32)value;
70 }
71 
72 static bool is_uimm32(u64 value)
73 {
74 	return value == (u64)(u32)value;
75 }
76 
77 /* mov dst, src */
78 #define EMIT_mov(DST, SRC)								 \
79 	do {										 \
80 		if (DST != SRC)								 \
81 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
82 	} while (0)
83 
84 static int bpf_size_to_x86_bytes(int bpf_size)
85 {
86 	if (bpf_size == BPF_W)
87 		return 4;
88 	else if (bpf_size == BPF_H)
89 		return 2;
90 	else if (bpf_size == BPF_B)
91 		return 1;
92 	else if (bpf_size == BPF_DW)
93 		return 4; /* imm32 */
94 	else
95 		return 0;
96 }
97 
98 /*
99  * List of x86 cond jumps opcodes (. + s8)
100  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
101  */
102 #define X86_JB  0x72
103 #define X86_JAE 0x73
104 #define X86_JE  0x74
105 #define X86_JNE 0x75
106 #define X86_JBE 0x76
107 #define X86_JA  0x77
108 #define X86_JL  0x7C
109 #define X86_JGE 0x7D
110 #define X86_JLE 0x7E
111 #define X86_JG  0x7F
112 
113 /* Pick a register outside of BPF range for JIT internal work */
114 #define AUX_REG (MAX_BPF_JIT_REG + 1)
115 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
116 
117 /*
118  * The following table maps BPF registers to x86-64 registers.
119  *
120  * x86-64 register R12 is unused, since if used as base address
121  * register in load/store instructions, it always needs an
122  * extra byte of encoding and is callee saved.
123  *
124  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
125  * trampoline. x86-64 register R10 is used for blinding (if enabled).
126  */
127 static const int reg2hex[] = {
128 	[BPF_REG_0] = 0,  /* RAX */
129 	[BPF_REG_1] = 7,  /* RDI */
130 	[BPF_REG_2] = 6,  /* RSI */
131 	[BPF_REG_3] = 2,  /* RDX */
132 	[BPF_REG_4] = 1,  /* RCX */
133 	[BPF_REG_5] = 0,  /* R8  */
134 	[BPF_REG_6] = 3,  /* RBX callee saved */
135 	[BPF_REG_7] = 5,  /* R13 callee saved */
136 	[BPF_REG_8] = 6,  /* R14 callee saved */
137 	[BPF_REG_9] = 7,  /* R15 callee saved */
138 	[BPF_REG_FP] = 5, /* RBP readonly */
139 	[BPF_REG_AX] = 2, /* R10 temp register */
140 	[AUX_REG] = 3,    /* R11 temp register */
141 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
142 };
143 
144 static const int reg2pt_regs[] = {
145 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
146 	[BPF_REG_1] = offsetof(struct pt_regs, di),
147 	[BPF_REG_2] = offsetof(struct pt_regs, si),
148 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
149 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
150 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
151 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
152 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
153 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
154 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
155 };
156 
157 /*
158  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
159  * which need extra byte of encoding.
160  * rax,rcx,...,rbp have simpler encoding
161  */
162 static bool is_ereg(u32 reg)
163 {
164 	return (1 << reg) & (BIT(BPF_REG_5) |
165 			     BIT(AUX_REG) |
166 			     BIT(BPF_REG_7) |
167 			     BIT(BPF_REG_8) |
168 			     BIT(BPF_REG_9) |
169 			     BIT(X86_REG_R9) |
170 			     BIT(BPF_REG_AX));
171 }
172 
173 /*
174  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
175  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
176  * of encoding. al,cl,dl,bl have simpler encoding.
177  */
178 static bool is_ereg_8l(u32 reg)
179 {
180 	return is_ereg(reg) ||
181 	    (1 << reg) & (BIT(BPF_REG_1) |
182 			  BIT(BPF_REG_2) |
183 			  BIT(BPF_REG_FP));
184 }
185 
186 static bool is_axreg(u32 reg)
187 {
188 	return reg == BPF_REG_0;
189 }
190 
191 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
192 static u8 add_1mod(u8 byte, u32 reg)
193 {
194 	if (is_ereg(reg))
195 		byte |= 1;
196 	return byte;
197 }
198 
199 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
200 {
201 	if (is_ereg(r1))
202 		byte |= 1;
203 	if (is_ereg(r2))
204 		byte |= 4;
205 	return byte;
206 }
207 
208 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
209 static u8 add_1reg(u8 byte, u32 dst_reg)
210 {
211 	return byte + reg2hex[dst_reg];
212 }
213 
214 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
215 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
216 {
217 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
218 }
219 
220 /* Some 1-byte opcodes for binary ALU operations */
221 static u8 simple_alu_opcodes[] = {
222 	[BPF_ADD] = 0x01,
223 	[BPF_SUB] = 0x29,
224 	[BPF_AND] = 0x21,
225 	[BPF_OR] = 0x09,
226 	[BPF_XOR] = 0x31,
227 	[BPF_LSH] = 0xE0,
228 	[BPF_RSH] = 0xE8,
229 	[BPF_ARSH] = 0xF8,
230 };
231 
232 static void jit_fill_hole(void *area, unsigned int size)
233 {
234 	/* Fill whole space with INT3 instructions */
235 	memset(area, 0xcc, size);
236 }
237 
238 int bpf_arch_text_invalidate(void *dst, size_t len)
239 {
240 	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
241 }
242 
243 struct jit_context {
244 	int cleanup_addr; /* Epilogue code offset */
245 
246 	/*
247 	 * Program specific offsets of labels in the code; these rely on the
248 	 * JIT doing at least 2 passes, recording the position on the first
249 	 * pass, only to generate the correct offset on the second pass.
250 	 */
251 	int tail_call_direct_label;
252 	int tail_call_indirect_label;
253 };
254 
255 /* Maximum number of bytes emitted while JITing one eBPF insn */
256 #define BPF_MAX_INSN_SIZE	128
257 #define BPF_INSN_SAFETY		64
258 
259 /* Number of bytes emit_patch() needs to generate instructions */
260 #define X86_PATCH_SIZE		5
261 /* Number of bytes that will be skipped on tailcall */
262 #define X86_TAIL_CALL_OFFSET	(11 + ENDBR_INSN_SIZE)
263 
264 static void push_r12(u8 **pprog)
265 {
266 	u8 *prog = *pprog;
267 
268 	EMIT2(0x41, 0x54);   /* push r12 */
269 	*pprog = prog;
270 }
271 
272 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
273 {
274 	u8 *prog = *pprog;
275 
276 	if (callee_regs_used[0])
277 		EMIT1(0x53);         /* push rbx */
278 	if (callee_regs_used[1])
279 		EMIT2(0x41, 0x55);   /* push r13 */
280 	if (callee_regs_used[2])
281 		EMIT2(0x41, 0x56);   /* push r14 */
282 	if (callee_regs_used[3])
283 		EMIT2(0x41, 0x57);   /* push r15 */
284 	*pprog = prog;
285 }
286 
287 static void pop_r12(u8 **pprog)
288 {
289 	u8 *prog = *pprog;
290 
291 	EMIT2(0x41, 0x5C);   /* pop r12 */
292 	*pprog = prog;
293 }
294 
295 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
296 {
297 	u8 *prog = *pprog;
298 
299 	if (callee_regs_used[3])
300 		EMIT2(0x41, 0x5F);   /* pop r15 */
301 	if (callee_regs_used[2])
302 		EMIT2(0x41, 0x5E);   /* pop r14 */
303 	if (callee_regs_used[1])
304 		EMIT2(0x41, 0x5D);   /* pop r13 */
305 	if (callee_regs_used[0])
306 		EMIT1(0x5B);         /* pop rbx */
307 	*pprog = prog;
308 }
309 
310 /*
311  * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
312  * in arch/x86/kernel/alternative.c
313  */
314 
315 static void emit_fineibt(u8 **pprog, u32 hash)
316 {
317 	u8 *prog = *pprog;
318 
319 	EMIT_ENDBR();
320 	EMIT3_off32(0x41, 0x81, 0xea, hash);		/* subl $hash, %r10d	*/
321 	EMIT2(0x74, 0x07);				/* jz.d8 +7		*/
322 	EMIT2(0x0f, 0x0b);				/* ud2			*/
323 	EMIT1(0x90);					/* nop			*/
324 	EMIT_ENDBR_POISON();
325 
326 	*pprog = prog;
327 }
328 
329 static void emit_kcfi(u8 **pprog, u32 hash)
330 {
331 	u8 *prog = *pprog;
332 
333 	EMIT1_off32(0xb8, hash);			/* movl $hash, %eax	*/
334 #ifdef CONFIG_CALL_PADDING
335 	EMIT1(0x90);
336 	EMIT1(0x90);
337 	EMIT1(0x90);
338 	EMIT1(0x90);
339 	EMIT1(0x90);
340 	EMIT1(0x90);
341 	EMIT1(0x90);
342 	EMIT1(0x90);
343 	EMIT1(0x90);
344 	EMIT1(0x90);
345 	EMIT1(0x90);
346 #endif
347 	EMIT_ENDBR();
348 
349 	*pprog = prog;
350 }
351 
352 static void emit_cfi(u8 **pprog, u32 hash)
353 {
354 	u8 *prog = *pprog;
355 
356 	switch (cfi_mode) {
357 	case CFI_FINEIBT:
358 		emit_fineibt(&prog, hash);
359 		break;
360 
361 	case CFI_KCFI:
362 		emit_kcfi(&prog, hash);
363 		break;
364 
365 	default:
366 		EMIT_ENDBR();
367 		break;
368 	}
369 
370 	*pprog = prog;
371 }
372 
373 /*
374  * Emit x86-64 prologue code for BPF program.
375  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
376  * while jumping to another program
377  */
378 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
379 			  bool tail_call_reachable, bool is_subprog,
380 			  bool is_exception_cb)
381 {
382 	u8 *prog = *pprog;
383 
384 	emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash);
385 	/* BPF trampoline can be made to work without these nops,
386 	 * but let's waste 5 bytes for now and optimize later
387 	 */
388 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
389 	prog += X86_PATCH_SIZE;
390 	if (!ebpf_from_cbpf) {
391 		if (tail_call_reachable && !is_subprog)
392 			/* When it's the entry of the whole tailcall context,
393 			 * zeroing rax means initialising tail_call_cnt.
394 			 */
395 			EMIT2(0x31, 0xC0); /* xor eax, eax */
396 		else
397 			/* Keep the same instruction layout. */
398 			EMIT2(0x66, 0x90); /* nop2 */
399 	}
400 	/* Exception callback receives FP as third parameter */
401 	if (is_exception_cb) {
402 		EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
403 		EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
404 		/* The main frame must have exception_boundary as true, so we
405 		 * first restore those callee-saved regs from stack, before
406 		 * reusing the stack frame.
407 		 */
408 		pop_callee_regs(&prog, all_callee_regs_used);
409 		pop_r12(&prog);
410 		/* Reset the stack frame. */
411 		EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
412 	} else {
413 		EMIT1(0x55);             /* push rbp */
414 		EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
415 	}
416 
417 	/* X86_TAIL_CALL_OFFSET is here */
418 	EMIT_ENDBR();
419 
420 	/* sub rsp, rounded_stack_depth */
421 	if (stack_depth)
422 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
423 	if (tail_call_reachable)
424 		EMIT1(0x50);         /* push rax */
425 	*pprog = prog;
426 }
427 
428 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
429 {
430 	u8 *prog = *pprog;
431 	s64 offset;
432 
433 	offset = func - (ip + X86_PATCH_SIZE);
434 	if (!is_simm32(offset)) {
435 		pr_err("Target call %p is out of range\n", func);
436 		return -ERANGE;
437 	}
438 	EMIT1_off32(opcode, offset);
439 	*pprog = prog;
440 	return 0;
441 }
442 
443 static int emit_call(u8 **pprog, void *func, void *ip)
444 {
445 	return emit_patch(pprog, func, ip, 0xE8);
446 }
447 
448 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
449 {
450 	OPTIMIZER_HIDE_VAR(func);
451 	x86_call_depth_emit_accounting(pprog, func);
452 	return emit_patch(pprog, func, ip, 0xE8);
453 }
454 
455 static int emit_jump(u8 **pprog, void *func, void *ip)
456 {
457 	return emit_patch(pprog, func, ip, 0xE9);
458 }
459 
460 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
461 				void *old_addr, void *new_addr)
462 {
463 	const u8 *nop_insn = x86_nops[5];
464 	u8 old_insn[X86_PATCH_SIZE];
465 	u8 new_insn[X86_PATCH_SIZE];
466 	u8 *prog;
467 	int ret;
468 
469 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
470 	if (old_addr) {
471 		prog = old_insn;
472 		ret = t == BPF_MOD_CALL ?
473 		      emit_call(&prog, old_addr, ip) :
474 		      emit_jump(&prog, old_addr, ip);
475 		if (ret)
476 			return ret;
477 	}
478 
479 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
480 	if (new_addr) {
481 		prog = new_insn;
482 		ret = t == BPF_MOD_CALL ?
483 		      emit_call(&prog, new_addr, ip) :
484 		      emit_jump(&prog, new_addr, ip);
485 		if (ret)
486 			return ret;
487 	}
488 
489 	ret = -EBUSY;
490 	mutex_lock(&text_mutex);
491 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
492 		goto out;
493 	ret = 1;
494 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
495 		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
496 		ret = 0;
497 	}
498 out:
499 	mutex_unlock(&text_mutex);
500 	return ret;
501 }
502 
503 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
504 		       void *old_addr, void *new_addr)
505 {
506 	if (!is_kernel_text((long)ip) &&
507 	    !is_bpf_text_address((long)ip))
508 		/* BPF poking in modules is not supported */
509 		return -EINVAL;
510 
511 	/*
512 	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
513 	 * with an ENDBR instruction.
514 	 */
515 	if (is_endbr(*(u32 *)ip))
516 		ip += ENDBR_INSN_SIZE;
517 
518 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
519 }
520 
521 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
522 
523 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
524 {
525 	u8 *prog = *pprog;
526 
527 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
528 		EMIT_LFENCE();
529 		EMIT2(0xFF, 0xE0 + reg);
530 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
531 		OPTIMIZER_HIDE_VAR(reg);
532 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
533 			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
534 		else
535 			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
536 	} else {
537 		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
538 		if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
539 			EMIT1(0xCC);		/* int3 */
540 	}
541 
542 	*pprog = prog;
543 }
544 
545 static void emit_return(u8 **pprog, u8 *ip)
546 {
547 	u8 *prog = *pprog;
548 
549 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
550 		emit_jump(&prog, x86_return_thunk, ip);
551 	} else {
552 		EMIT1(0xC3);		/* ret */
553 		if (IS_ENABLED(CONFIG_SLS))
554 			EMIT1(0xCC);	/* int3 */
555 	}
556 
557 	*pprog = prog;
558 }
559 
560 /*
561  * Generate the following code:
562  *
563  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
564  *   if (index >= array->map.max_entries)
565  *     goto out;
566  *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
567  *     goto out;
568  *   prog = array->ptrs[index];
569  *   if (prog == NULL)
570  *     goto out;
571  *   goto *(prog->bpf_func + prologue_size);
572  * out:
573  */
574 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
575 					u8 **pprog, bool *callee_regs_used,
576 					u32 stack_depth, u8 *ip,
577 					struct jit_context *ctx)
578 {
579 	int tcc_off = -4 - round_up(stack_depth, 8);
580 	u8 *prog = *pprog, *start = *pprog;
581 	int offset;
582 
583 	/*
584 	 * rdi - pointer to ctx
585 	 * rsi - pointer to bpf_array
586 	 * rdx - index in bpf_array
587 	 */
588 
589 	/*
590 	 * if (index >= array->map.max_entries)
591 	 *	goto out;
592 	 */
593 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
594 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
595 	      offsetof(struct bpf_array, map.max_entries));
596 
597 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
598 	EMIT2(X86_JBE, offset);                   /* jbe out */
599 
600 	/*
601 	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
602 	 *	goto out;
603 	 */
604 	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
605 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
606 
607 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
608 	EMIT2(X86_JAE, offset);                   /* jae out */
609 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
610 	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
611 
612 	/* prog = array->ptrs[index]; */
613 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
614 		    offsetof(struct bpf_array, ptrs));
615 
616 	/*
617 	 * if (prog == NULL)
618 	 *	goto out;
619 	 */
620 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
621 
622 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
623 	EMIT2(X86_JE, offset);                    /* je out */
624 
625 	if (bpf_prog->aux->exception_boundary) {
626 		pop_callee_regs(&prog, all_callee_regs_used);
627 		pop_r12(&prog);
628 	} else {
629 		pop_callee_regs(&prog, callee_regs_used);
630 	}
631 
632 	EMIT1(0x58);                              /* pop rax */
633 	if (stack_depth)
634 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
635 			    round_up(stack_depth, 8));
636 
637 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
638 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
639 	      offsetof(struct bpf_prog, bpf_func));
640 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
641 	      X86_TAIL_CALL_OFFSET);
642 	/*
643 	 * Now we're ready to jump into next BPF program
644 	 * rdi == ctx (1st arg)
645 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
646 	 */
647 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
648 
649 	/* out: */
650 	ctx->tail_call_indirect_label = prog - start;
651 	*pprog = prog;
652 }
653 
654 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
655 				      struct bpf_jit_poke_descriptor *poke,
656 				      u8 **pprog, u8 *ip,
657 				      bool *callee_regs_used, u32 stack_depth,
658 				      struct jit_context *ctx)
659 {
660 	int tcc_off = -4 - round_up(stack_depth, 8);
661 	u8 *prog = *pprog, *start = *pprog;
662 	int offset;
663 
664 	/*
665 	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
666 	 *	goto out;
667 	 */
668 	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
669 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
670 
671 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
672 	EMIT2(X86_JAE, offset);                       /* jae out */
673 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
674 	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
675 
676 	poke->tailcall_bypass = ip + (prog - start);
677 	poke->adj_off = X86_TAIL_CALL_OFFSET;
678 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
679 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
680 
681 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
682 		  poke->tailcall_bypass);
683 
684 	if (bpf_prog->aux->exception_boundary) {
685 		pop_callee_regs(&prog, all_callee_regs_used);
686 		pop_r12(&prog);
687 	} else {
688 		pop_callee_regs(&prog, callee_regs_used);
689 	}
690 
691 	EMIT1(0x58);                                  /* pop rax */
692 	if (stack_depth)
693 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
694 
695 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
696 	prog += X86_PATCH_SIZE;
697 
698 	/* out: */
699 	ctx->tail_call_direct_label = prog - start;
700 
701 	*pprog = prog;
702 }
703 
704 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
705 {
706 	struct bpf_jit_poke_descriptor *poke;
707 	struct bpf_array *array;
708 	struct bpf_prog *target;
709 	int i, ret;
710 
711 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
712 		poke = &prog->aux->poke_tab[i];
713 		if (poke->aux && poke->aux != prog->aux)
714 			continue;
715 
716 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
717 
718 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
719 			continue;
720 
721 		array = container_of(poke->tail_call.map, struct bpf_array, map);
722 		mutex_lock(&array->aux->poke_mutex);
723 		target = array->ptrs[poke->tail_call.key];
724 		if (target) {
725 			ret = __bpf_arch_text_poke(poke->tailcall_target,
726 						   BPF_MOD_JUMP, NULL,
727 						   (u8 *)target->bpf_func +
728 						   poke->adj_off);
729 			BUG_ON(ret < 0);
730 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
731 						   BPF_MOD_JUMP,
732 						   (u8 *)poke->tailcall_target +
733 						   X86_PATCH_SIZE, NULL);
734 			BUG_ON(ret < 0);
735 		}
736 		WRITE_ONCE(poke->tailcall_target_stable, true);
737 		mutex_unlock(&array->aux->poke_mutex);
738 	}
739 }
740 
741 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
742 			   u32 dst_reg, const u32 imm32)
743 {
744 	u8 *prog = *pprog;
745 	u8 b1, b2, b3;
746 
747 	/*
748 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
749 	 * (which zero-extends imm32) to save 2 bytes.
750 	 */
751 	if (sign_propagate && (s32)imm32 < 0) {
752 		/* 'mov %rax, imm32' sign extends imm32 */
753 		b1 = add_1mod(0x48, dst_reg);
754 		b2 = 0xC7;
755 		b3 = 0xC0;
756 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
757 		goto done;
758 	}
759 
760 	/*
761 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
762 	 * to save 3 bytes.
763 	 */
764 	if (imm32 == 0) {
765 		if (is_ereg(dst_reg))
766 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
767 		b2 = 0x31; /* xor */
768 		b3 = 0xC0;
769 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
770 		goto done;
771 	}
772 
773 	/* mov %eax, imm32 */
774 	if (is_ereg(dst_reg))
775 		EMIT1(add_1mod(0x40, dst_reg));
776 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
777 done:
778 	*pprog = prog;
779 }
780 
781 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
782 			   const u32 imm32_hi, const u32 imm32_lo)
783 {
784 	u8 *prog = *pprog;
785 
786 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
787 		/*
788 		 * For emitting plain u32, where sign bit must not be
789 		 * propagated LLVM tends to load imm64 over mov32
790 		 * directly, so save couple of bytes by just doing
791 		 * 'mov %eax, imm32' instead.
792 		 */
793 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
794 	} else {
795 		/* movabsq rax, imm64 */
796 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
797 		EMIT(imm32_lo, 4);
798 		EMIT(imm32_hi, 4);
799 	}
800 
801 	*pprog = prog;
802 }
803 
804 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
805 {
806 	u8 *prog = *pprog;
807 
808 	if (is64) {
809 		/* mov dst, src */
810 		EMIT_mov(dst_reg, src_reg);
811 	} else {
812 		/* mov32 dst, src */
813 		if (is_ereg(dst_reg) || is_ereg(src_reg))
814 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
815 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
816 	}
817 
818 	*pprog = prog;
819 }
820 
821 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
822 			   u32 src_reg)
823 {
824 	u8 *prog = *pprog;
825 
826 	if (is64) {
827 		/* movs[b,w,l]q dst, src */
828 		if (num_bits == 8)
829 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
830 			      add_2reg(0xC0, src_reg, dst_reg));
831 		else if (num_bits == 16)
832 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
833 			      add_2reg(0xC0, src_reg, dst_reg));
834 		else if (num_bits == 32)
835 			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
836 			      add_2reg(0xC0, src_reg, dst_reg));
837 	} else {
838 		/* movs[b,w]l dst, src */
839 		if (num_bits == 8) {
840 			EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
841 			      add_2reg(0xC0, src_reg, dst_reg));
842 		} else if (num_bits == 16) {
843 			if (is_ereg(dst_reg) || is_ereg(src_reg))
844 				EMIT1(add_2mod(0x40, src_reg, dst_reg));
845 			EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
846 			      add_2reg(0xC0, src_reg, dst_reg));
847 		}
848 	}
849 
850 	*pprog = prog;
851 }
852 
853 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
854 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
855 {
856 	u8 *prog = *pprog;
857 
858 	if (is_imm8(off)) {
859 		/* 1-byte signed displacement.
860 		 *
861 		 * If off == 0 we could skip this and save one extra byte, but
862 		 * special case of x86 R13 which always needs an offset is not
863 		 * worth the hassle
864 		 */
865 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
866 	} else {
867 		/* 4-byte signed displacement */
868 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
869 	}
870 	*pprog = prog;
871 }
872 
873 /*
874  * Emit a REX byte if it will be necessary to address these registers
875  */
876 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
877 {
878 	u8 *prog = *pprog;
879 
880 	if (is64)
881 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
882 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
883 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
884 	*pprog = prog;
885 }
886 
887 /*
888  * Similar version of maybe_emit_mod() for a single register
889  */
890 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
891 {
892 	u8 *prog = *pprog;
893 
894 	if (is64)
895 		EMIT1(add_1mod(0x48, reg));
896 	else if (is_ereg(reg))
897 		EMIT1(add_1mod(0x40, reg));
898 	*pprog = prog;
899 }
900 
901 /* LDX: dst_reg = *(u8*)(src_reg + off) */
902 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
903 {
904 	u8 *prog = *pprog;
905 
906 	switch (size) {
907 	case BPF_B:
908 		/* Emit 'movzx rax, byte ptr [rax + off]' */
909 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
910 		break;
911 	case BPF_H:
912 		/* Emit 'movzx rax, word ptr [rax + off]' */
913 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
914 		break;
915 	case BPF_W:
916 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
917 		if (is_ereg(dst_reg) || is_ereg(src_reg))
918 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
919 		else
920 			EMIT1(0x8B);
921 		break;
922 	case BPF_DW:
923 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
924 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
925 		break;
926 	}
927 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
928 	*pprog = prog;
929 }
930 
931 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
932 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
933 {
934 	u8 *prog = *pprog;
935 
936 	switch (size) {
937 	case BPF_B:
938 		/* Emit 'movsx rax, byte ptr [rax + off]' */
939 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
940 		break;
941 	case BPF_H:
942 		/* Emit 'movsx rax, word ptr [rax + off]' */
943 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
944 		break;
945 	case BPF_W:
946 		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
947 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
948 		break;
949 	}
950 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
951 	*pprog = prog;
952 }
953 
954 /* STX: *(u8*)(dst_reg + off) = src_reg */
955 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
956 {
957 	u8 *prog = *pprog;
958 
959 	switch (size) {
960 	case BPF_B:
961 		/* Emit 'mov byte ptr [rax + off], al' */
962 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
963 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
964 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
965 		else
966 			EMIT1(0x88);
967 		break;
968 	case BPF_H:
969 		if (is_ereg(dst_reg) || is_ereg(src_reg))
970 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
971 		else
972 			EMIT2(0x66, 0x89);
973 		break;
974 	case BPF_W:
975 		if (is_ereg(dst_reg) || is_ereg(src_reg))
976 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
977 		else
978 			EMIT1(0x89);
979 		break;
980 	case BPF_DW:
981 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
982 		break;
983 	}
984 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
985 	*pprog = prog;
986 }
987 
988 static int emit_atomic(u8 **pprog, u8 atomic_op,
989 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
990 {
991 	u8 *prog = *pprog;
992 
993 	EMIT1(0xF0); /* lock prefix */
994 
995 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
996 
997 	/* emit opcode */
998 	switch (atomic_op) {
999 	case BPF_ADD:
1000 	case BPF_AND:
1001 	case BPF_OR:
1002 	case BPF_XOR:
1003 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1004 		EMIT1(simple_alu_opcodes[atomic_op]);
1005 		break;
1006 	case BPF_ADD | BPF_FETCH:
1007 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1008 		EMIT2(0x0F, 0xC1);
1009 		break;
1010 	case BPF_XCHG:
1011 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1012 		EMIT1(0x87);
1013 		break;
1014 	case BPF_CMPXCHG:
1015 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1016 		EMIT2(0x0F, 0xB1);
1017 		break;
1018 	default:
1019 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1020 		return -EFAULT;
1021 	}
1022 
1023 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1024 
1025 	*pprog = prog;
1026 	return 0;
1027 }
1028 
1029 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1030 {
1031 	u32 reg = x->fixup >> 8;
1032 
1033 	/* jump over faulting load and clear dest register */
1034 	*(unsigned long *)((void *)regs + reg) = 0;
1035 	regs->ip += x->fixup & 0xff;
1036 	return true;
1037 }
1038 
1039 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1040 			     bool *regs_used, bool *tail_call_seen)
1041 {
1042 	int i;
1043 
1044 	for (i = 1; i <= insn_cnt; i++, insn++) {
1045 		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
1046 			*tail_call_seen = true;
1047 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1048 			regs_used[0] = true;
1049 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1050 			regs_used[1] = true;
1051 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1052 			regs_used[2] = true;
1053 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1054 			regs_used[3] = true;
1055 	}
1056 }
1057 
1058 static void emit_nops(u8 **pprog, int len)
1059 {
1060 	u8 *prog = *pprog;
1061 	int i, noplen;
1062 
1063 	while (len > 0) {
1064 		noplen = len;
1065 
1066 		if (noplen > ASM_NOP_MAX)
1067 			noplen = ASM_NOP_MAX;
1068 
1069 		for (i = 0; i < noplen; i++)
1070 			EMIT1(x86_nops[noplen][i]);
1071 		len -= noplen;
1072 	}
1073 
1074 	*pprog = prog;
1075 }
1076 
1077 /* emit the 3-byte VEX prefix
1078  *
1079  * r: same as rex.r, extra bit for ModRM reg field
1080  * x: same as rex.x, extra bit for SIB index field
1081  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1082  * m: opcode map select, encoding escape bytes e.g. 0x0f38
1083  * w: same as rex.w (32 bit or 64 bit) or opcode specific
1084  * src_reg2: additional source reg (encoded as BPF reg)
1085  * l: vector length (128 bit or 256 bit) or reserved
1086  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1087  */
1088 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1089 		      bool w, u8 src_reg2, bool l, u8 pp)
1090 {
1091 	u8 *prog = *pprog;
1092 	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1093 	u8 b1, b2;
1094 	u8 vvvv = reg2hex[src_reg2];
1095 
1096 	/* reg2hex gives only the lower 3 bit of vvvv */
1097 	if (is_ereg(src_reg2))
1098 		vvvv |= 1 << 3;
1099 
1100 	/*
1101 	 * 2nd byte of 3-byte VEX prefix
1102 	 * ~ means bit inverted encoding
1103 	 *
1104 	 *    7                           0
1105 	 *  +---+---+---+---+---+---+---+---+
1106 	 *  |~R |~X |~B |         m         |
1107 	 *  +---+---+---+---+---+---+---+---+
1108 	 */
1109 	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1110 	/*
1111 	 * 3rd byte of 3-byte VEX prefix
1112 	 *
1113 	 *    7                           0
1114 	 *  +---+---+---+---+---+---+---+---+
1115 	 *  | W |     ~vvvv     | L |   pp  |
1116 	 *  +---+---+---+---+---+---+---+---+
1117 	 */
1118 	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1119 
1120 	EMIT3(b0, b1, b2);
1121 	*pprog = prog;
1122 }
1123 
1124 /* emit BMI2 shift instruction */
1125 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1126 {
1127 	u8 *prog = *pprog;
1128 	bool r = is_ereg(dst_reg);
1129 	u8 m = 2; /* escape code 0f38 */
1130 
1131 	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1132 	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1133 	*pprog = prog;
1134 }
1135 
1136 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1137 
1138 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1139 #define RESTORE_TAIL_CALL_CNT(stack)				\
1140 	EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8)
1141 
1142 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1143 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
1144 {
1145 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1146 	struct bpf_insn *insn = bpf_prog->insnsi;
1147 	bool callee_regs_used[4] = {};
1148 	int insn_cnt = bpf_prog->len;
1149 	bool tail_call_seen = false;
1150 	bool seen_exit = false;
1151 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1152 	int i, excnt = 0;
1153 	int ilen, proglen = 0;
1154 	u8 *prog = temp;
1155 	int err;
1156 
1157 	detect_reg_usage(insn, insn_cnt, callee_regs_used,
1158 			 &tail_call_seen);
1159 
1160 	/* tail call's presence in current prog implies it is reachable */
1161 	tail_call_reachable |= tail_call_seen;
1162 
1163 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
1164 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1165 		      bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1166 	/* Exception callback will clobber callee regs for its own use, and
1167 	 * restore the original callee regs from main prog's stack frame.
1168 	 */
1169 	if (bpf_prog->aux->exception_boundary) {
1170 		/* We also need to save r12, which is not mapped to any BPF
1171 		 * register, as we throw after entry into the kernel, which may
1172 		 * overwrite r12.
1173 		 */
1174 		push_r12(&prog);
1175 		push_callee_regs(&prog, all_callee_regs_used);
1176 	} else {
1177 		push_callee_regs(&prog, callee_regs_used);
1178 	}
1179 
1180 	ilen = prog - temp;
1181 	if (rw_image)
1182 		memcpy(rw_image + proglen, temp, ilen);
1183 	proglen += ilen;
1184 	addrs[0] = proglen;
1185 	prog = temp;
1186 
1187 	for (i = 1; i <= insn_cnt; i++, insn++) {
1188 		const s32 imm32 = insn->imm;
1189 		u32 dst_reg = insn->dst_reg;
1190 		u32 src_reg = insn->src_reg;
1191 		u8 b2 = 0, b3 = 0;
1192 		u8 *start_of_ldx;
1193 		s64 jmp_offset;
1194 		s16 insn_off;
1195 		u8 jmp_cond;
1196 		u8 *func;
1197 		int nops;
1198 
1199 		switch (insn->code) {
1200 			/* ALU */
1201 		case BPF_ALU | BPF_ADD | BPF_X:
1202 		case BPF_ALU | BPF_SUB | BPF_X:
1203 		case BPF_ALU | BPF_AND | BPF_X:
1204 		case BPF_ALU | BPF_OR | BPF_X:
1205 		case BPF_ALU | BPF_XOR | BPF_X:
1206 		case BPF_ALU64 | BPF_ADD | BPF_X:
1207 		case BPF_ALU64 | BPF_SUB | BPF_X:
1208 		case BPF_ALU64 | BPF_AND | BPF_X:
1209 		case BPF_ALU64 | BPF_OR | BPF_X:
1210 		case BPF_ALU64 | BPF_XOR | BPF_X:
1211 			maybe_emit_mod(&prog, dst_reg, src_reg,
1212 				       BPF_CLASS(insn->code) == BPF_ALU64);
1213 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1214 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1215 			break;
1216 
1217 		case BPF_ALU64 | BPF_MOV | BPF_X:
1218 		case BPF_ALU | BPF_MOV | BPF_X:
1219 			if (insn->off == 0)
1220 				emit_mov_reg(&prog,
1221 					     BPF_CLASS(insn->code) == BPF_ALU64,
1222 					     dst_reg, src_reg);
1223 			else
1224 				emit_movsx_reg(&prog, insn->off,
1225 					       BPF_CLASS(insn->code) == BPF_ALU64,
1226 					       dst_reg, src_reg);
1227 			break;
1228 
1229 			/* neg dst */
1230 		case BPF_ALU | BPF_NEG:
1231 		case BPF_ALU64 | BPF_NEG:
1232 			maybe_emit_1mod(&prog, dst_reg,
1233 					BPF_CLASS(insn->code) == BPF_ALU64);
1234 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1235 			break;
1236 
1237 		case BPF_ALU | BPF_ADD | BPF_K:
1238 		case BPF_ALU | BPF_SUB | BPF_K:
1239 		case BPF_ALU | BPF_AND | BPF_K:
1240 		case BPF_ALU | BPF_OR | BPF_K:
1241 		case BPF_ALU | BPF_XOR | BPF_K:
1242 		case BPF_ALU64 | BPF_ADD | BPF_K:
1243 		case BPF_ALU64 | BPF_SUB | BPF_K:
1244 		case BPF_ALU64 | BPF_AND | BPF_K:
1245 		case BPF_ALU64 | BPF_OR | BPF_K:
1246 		case BPF_ALU64 | BPF_XOR | BPF_K:
1247 			maybe_emit_1mod(&prog, dst_reg,
1248 					BPF_CLASS(insn->code) == BPF_ALU64);
1249 
1250 			/*
1251 			 * b3 holds 'normal' opcode, b2 short form only valid
1252 			 * in case dst is eax/rax.
1253 			 */
1254 			switch (BPF_OP(insn->code)) {
1255 			case BPF_ADD:
1256 				b3 = 0xC0;
1257 				b2 = 0x05;
1258 				break;
1259 			case BPF_SUB:
1260 				b3 = 0xE8;
1261 				b2 = 0x2D;
1262 				break;
1263 			case BPF_AND:
1264 				b3 = 0xE0;
1265 				b2 = 0x25;
1266 				break;
1267 			case BPF_OR:
1268 				b3 = 0xC8;
1269 				b2 = 0x0D;
1270 				break;
1271 			case BPF_XOR:
1272 				b3 = 0xF0;
1273 				b2 = 0x35;
1274 				break;
1275 			}
1276 
1277 			if (is_imm8(imm32))
1278 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1279 			else if (is_axreg(dst_reg))
1280 				EMIT1_off32(b2, imm32);
1281 			else
1282 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1283 			break;
1284 
1285 		case BPF_ALU64 | BPF_MOV | BPF_K:
1286 		case BPF_ALU | BPF_MOV | BPF_K:
1287 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1288 				       dst_reg, imm32);
1289 			break;
1290 
1291 		case BPF_LD | BPF_IMM | BPF_DW:
1292 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1293 			insn++;
1294 			i++;
1295 			break;
1296 
1297 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1298 		case BPF_ALU | BPF_MOD | BPF_X:
1299 		case BPF_ALU | BPF_DIV | BPF_X:
1300 		case BPF_ALU | BPF_MOD | BPF_K:
1301 		case BPF_ALU | BPF_DIV | BPF_K:
1302 		case BPF_ALU64 | BPF_MOD | BPF_X:
1303 		case BPF_ALU64 | BPF_DIV | BPF_X:
1304 		case BPF_ALU64 | BPF_MOD | BPF_K:
1305 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1306 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1307 
1308 			if (dst_reg != BPF_REG_0)
1309 				EMIT1(0x50); /* push rax */
1310 			if (dst_reg != BPF_REG_3)
1311 				EMIT1(0x52); /* push rdx */
1312 
1313 			if (BPF_SRC(insn->code) == BPF_X) {
1314 				if (src_reg == BPF_REG_0 ||
1315 				    src_reg == BPF_REG_3) {
1316 					/* mov r11, src_reg */
1317 					EMIT_mov(AUX_REG, src_reg);
1318 					src_reg = AUX_REG;
1319 				}
1320 			} else {
1321 				/* mov r11, imm32 */
1322 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1323 				src_reg = AUX_REG;
1324 			}
1325 
1326 			if (dst_reg != BPF_REG_0)
1327 				/* mov rax, dst_reg */
1328 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1329 
1330 			if (insn->off == 0) {
1331 				/*
1332 				 * xor edx, edx
1333 				 * equivalent to 'xor rdx, rdx', but one byte less
1334 				 */
1335 				EMIT2(0x31, 0xd2);
1336 
1337 				/* div src_reg */
1338 				maybe_emit_1mod(&prog, src_reg, is64);
1339 				EMIT2(0xF7, add_1reg(0xF0, src_reg));
1340 			} else {
1341 				if (BPF_CLASS(insn->code) == BPF_ALU)
1342 					EMIT1(0x99); /* cdq */
1343 				else
1344 					EMIT2(0x48, 0x99); /* cqo */
1345 
1346 				/* idiv src_reg */
1347 				maybe_emit_1mod(&prog, src_reg, is64);
1348 				EMIT2(0xF7, add_1reg(0xF8, src_reg));
1349 			}
1350 
1351 			if (BPF_OP(insn->code) == BPF_MOD &&
1352 			    dst_reg != BPF_REG_3)
1353 				/* mov dst_reg, rdx */
1354 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1355 			else if (BPF_OP(insn->code) == BPF_DIV &&
1356 				 dst_reg != BPF_REG_0)
1357 				/* mov dst_reg, rax */
1358 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1359 
1360 			if (dst_reg != BPF_REG_3)
1361 				EMIT1(0x5A); /* pop rdx */
1362 			if (dst_reg != BPF_REG_0)
1363 				EMIT1(0x58); /* pop rax */
1364 			break;
1365 		}
1366 
1367 		case BPF_ALU | BPF_MUL | BPF_K:
1368 		case BPF_ALU64 | BPF_MUL | BPF_K:
1369 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1370 				       BPF_CLASS(insn->code) == BPF_ALU64);
1371 
1372 			if (is_imm8(imm32))
1373 				/* imul dst_reg, dst_reg, imm8 */
1374 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1375 				      imm32);
1376 			else
1377 				/* imul dst_reg, dst_reg, imm32 */
1378 				EMIT2_off32(0x69,
1379 					    add_2reg(0xC0, dst_reg, dst_reg),
1380 					    imm32);
1381 			break;
1382 
1383 		case BPF_ALU | BPF_MUL | BPF_X:
1384 		case BPF_ALU64 | BPF_MUL | BPF_X:
1385 			maybe_emit_mod(&prog, src_reg, dst_reg,
1386 				       BPF_CLASS(insn->code) == BPF_ALU64);
1387 
1388 			/* imul dst_reg, src_reg */
1389 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1390 			break;
1391 
1392 			/* Shifts */
1393 		case BPF_ALU | BPF_LSH | BPF_K:
1394 		case BPF_ALU | BPF_RSH | BPF_K:
1395 		case BPF_ALU | BPF_ARSH | BPF_K:
1396 		case BPF_ALU64 | BPF_LSH | BPF_K:
1397 		case BPF_ALU64 | BPF_RSH | BPF_K:
1398 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1399 			maybe_emit_1mod(&prog, dst_reg,
1400 					BPF_CLASS(insn->code) == BPF_ALU64);
1401 
1402 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1403 			if (imm32 == 1)
1404 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1405 			else
1406 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1407 			break;
1408 
1409 		case BPF_ALU | BPF_LSH | BPF_X:
1410 		case BPF_ALU | BPF_RSH | BPF_X:
1411 		case BPF_ALU | BPF_ARSH | BPF_X:
1412 		case BPF_ALU64 | BPF_LSH | BPF_X:
1413 		case BPF_ALU64 | BPF_RSH | BPF_X:
1414 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1415 			/* BMI2 shifts aren't better when shift count is already in rcx */
1416 			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1417 				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1418 				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1419 				u8 op;
1420 
1421 				switch (BPF_OP(insn->code)) {
1422 				case BPF_LSH:
1423 					op = 1; /* prefix 0x66 */
1424 					break;
1425 				case BPF_RSH:
1426 					op = 3; /* prefix 0xf2 */
1427 					break;
1428 				case BPF_ARSH:
1429 					op = 2; /* prefix 0xf3 */
1430 					break;
1431 				}
1432 
1433 				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1434 
1435 				break;
1436 			}
1437 
1438 			if (src_reg != BPF_REG_4) { /* common case */
1439 				/* Check for bad case when dst_reg == rcx */
1440 				if (dst_reg == BPF_REG_4) {
1441 					/* mov r11, dst_reg */
1442 					EMIT_mov(AUX_REG, dst_reg);
1443 					dst_reg = AUX_REG;
1444 				} else {
1445 					EMIT1(0x51); /* push rcx */
1446 				}
1447 				/* mov rcx, src_reg */
1448 				EMIT_mov(BPF_REG_4, src_reg);
1449 			}
1450 
1451 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1452 			maybe_emit_1mod(&prog, dst_reg,
1453 					BPF_CLASS(insn->code) == BPF_ALU64);
1454 
1455 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1456 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1457 
1458 			if (src_reg != BPF_REG_4) {
1459 				if (insn->dst_reg == BPF_REG_4)
1460 					/* mov dst_reg, r11 */
1461 					EMIT_mov(insn->dst_reg, AUX_REG);
1462 				else
1463 					EMIT1(0x59); /* pop rcx */
1464 			}
1465 
1466 			break;
1467 
1468 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1469 		case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1470 			switch (imm32) {
1471 			case 16:
1472 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1473 				EMIT1(0x66);
1474 				if (is_ereg(dst_reg))
1475 					EMIT1(0x41);
1476 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1477 
1478 				/* Emit 'movzwl eax, ax' */
1479 				if (is_ereg(dst_reg))
1480 					EMIT3(0x45, 0x0F, 0xB7);
1481 				else
1482 					EMIT2(0x0F, 0xB7);
1483 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1484 				break;
1485 			case 32:
1486 				/* Emit 'bswap eax' to swap lower 4 bytes */
1487 				if (is_ereg(dst_reg))
1488 					EMIT2(0x41, 0x0F);
1489 				else
1490 					EMIT1(0x0F);
1491 				EMIT1(add_1reg(0xC8, dst_reg));
1492 				break;
1493 			case 64:
1494 				/* Emit 'bswap rax' to swap 8 bytes */
1495 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1496 				      add_1reg(0xC8, dst_reg));
1497 				break;
1498 			}
1499 			break;
1500 
1501 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1502 			switch (imm32) {
1503 			case 16:
1504 				/*
1505 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1506 				 * into 64 bit
1507 				 */
1508 				if (is_ereg(dst_reg))
1509 					EMIT3(0x45, 0x0F, 0xB7);
1510 				else
1511 					EMIT2(0x0F, 0xB7);
1512 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1513 				break;
1514 			case 32:
1515 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1516 				if (is_ereg(dst_reg))
1517 					EMIT1(0x45);
1518 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1519 				break;
1520 			case 64:
1521 				/* nop */
1522 				break;
1523 			}
1524 			break;
1525 
1526 			/* speculation barrier */
1527 		case BPF_ST | BPF_NOSPEC:
1528 			EMIT_LFENCE();
1529 			break;
1530 
1531 			/* ST: *(u8*)(dst_reg + off) = imm */
1532 		case BPF_ST | BPF_MEM | BPF_B:
1533 			if (is_ereg(dst_reg))
1534 				EMIT2(0x41, 0xC6);
1535 			else
1536 				EMIT1(0xC6);
1537 			goto st;
1538 		case BPF_ST | BPF_MEM | BPF_H:
1539 			if (is_ereg(dst_reg))
1540 				EMIT3(0x66, 0x41, 0xC7);
1541 			else
1542 				EMIT2(0x66, 0xC7);
1543 			goto st;
1544 		case BPF_ST | BPF_MEM | BPF_W:
1545 			if (is_ereg(dst_reg))
1546 				EMIT2(0x41, 0xC7);
1547 			else
1548 				EMIT1(0xC7);
1549 			goto st;
1550 		case BPF_ST | BPF_MEM | BPF_DW:
1551 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1552 
1553 st:			if (is_imm8(insn->off))
1554 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1555 			else
1556 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1557 
1558 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1559 			break;
1560 
1561 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1562 		case BPF_STX | BPF_MEM | BPF_B:
1563 		case BPF_STX | BPF_MEM | BPF_H:
1564 		case BPF_STX | BPF_MEM | BPF_W:
1565 		case BPF_STX | BPF_MEM | BPF_DW:
1566 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1567 			break;
1568 
1569 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1570 		case BPF_LDX | BPF_MEM | BPF_B:
1571 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1572 		case BPF_LDX | BPF_MEM | BPF_H:
1573 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1574 		case BPF_LDX | BPF_MEM | BPF_W:
1575 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1576 		case BPF_LDX | BPF_MEM | BPF_DW:
1577 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1578 			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
1579 		case BPF_LDX | BPF_MEMSX | BPF_B:
1580 		case BPF_LDX | BPF_MEMSX | BPF_H:
1581 		case BPF_LDX | BPF_MEMSX | BPF_W:
1582 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1583 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1584 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1585 			insn_off = insn->off;
1586 
1587 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1588 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1589 				/* Conservatively check that src_reg + insn->off is a kernel address:
1590 				 *   src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
1591 				 * src_reg is used as scratch for src_reg += insn->off and restored
1592 				 * after emit_ldx if necessary
1593 				 */
1594 
1595 				u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
1596 				u8 *end_of_jmp;
1597 
1598 				/* At end of these emitted checks, insn->off will have been added
1599 				 * to src_reg, so no need to do relative load with insn->off offset
1600 				 */
1601 				insn_off = 0;
1602 
1603 				/* movabsq r11, limit */
1604 				EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1605 				EMIT((u32)limit, 4);
1606 				EMIT(limit >> 32, 4);
1607 
1608 				if (insn->off) {
1609 					/* add src_reg, insn->off */
1610 					maybe_emit_1mod(&prog, src_reg, true);
1611 					EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
1612 				}
1613 
1614 				/* cmp src_reg, r11 */
1615 				maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1616 				EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1617 
1618 				/* if unsigned '>=', goto load */
1619 				EMIT2(X86_JAE, 0);
1620 				end_of_jmp = prog;
1621 
1622 				/* xor dst_reg, dst_reg */
1623 				emit_mov_imm32(&prog, false, dst_reg, 0);
1624 				/* jmp byte_after_ldx */
1625 				EMIT2(0xEB, 0);
1626 
1627 				/* populate jmp_offset for JAE above to jump to start_of_ldx */
1628 				start_of_ldx = prog;
1629 				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1630 			}
1631 			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1632 			    BPF_MODE(insn->code) == BPF_MEMSX)
1633 				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1634 			else
1635 				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1636 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1637 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1638 				struct exception_table_entry *ex;
1639 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1640 				s64 delta;
1641 
1642 				/* populate jmp_offset for JMP above */
1643 				start_of_ldx[-1] = prog - start_of_ldx;
1644 
1645 				if (insn->off && src_reg != dst_reg) {
1646 					/* sub src_reg, insn->off
1647 					 * Restore src_reg after "add src_reg, insn->off" in prev
1648 					 * if statement. But if src_reg == dst_reg, emit_ldx
1649 					 * above already clobbered src_reg, so no need to restore.
1650 					 * If add src_reg, insn->off was unnecessary, no need to
1651 					 * restore either.
1652 					 */
1653 					maybe_emit_1mod(&prog, src_reg, true);
1654 					EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
1655 				}
1656 
1657 				if (!bpf_prog->aux->extable)
1658 					break;
1659 
1660 				if (excnt >= bpf_prog->aux->num_exentries) {
1661 					pr_err("ex gen bug\n");
1662 					return -EFAULT;
1663 				}
1664 				ex = &bpf_prog->aux->extable[excnt++];
1665 
1666 				delta = _insn - (u8 *)&ex->insn;
1667 				if (!is_simm32(delta)) {
1668 					pr_err("extable->insn doesn't fit into 32-bit\n");
1669 					return -EFAULT;
1670 				}
1671 				/* switch ex to rw buffer for writes */
1672 				ex = (void *)rw_image + ((void *)ex - (void *)image);
1673 
1674 				ex->insn = delta;
1675 
1676 				ex->data = EX_TYPE_BPF;
1677 
1678 				if (dst_reg > BPF_REG_9) {
1679 					pr_err("verifier error\n");
1680 					return -EFAULT;
1681 				}
1682 				/*
1683 				 * Compute size of x86 insn and its target dest x86 register.
1684 				 * ex_handler_bpf() will use lower 8 bits to adjust
1685 				 * pt_regs->ip to jump over this x86 instruction
1686 				 * and upper bits to figure out which pt_regs to zero out.
1687 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1688 				 * of 4 bytes will be ignored and rbx will be zero inited.
1689 				 */
1690 				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1691 			}
1692 			break;
1693 
1694 		case BPF_STX | BPF_ATOMIC | BPF_W:
1695 		case BPF_STX | BPF_ATOMIC | BPF_DW:
1696 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1697 			    insn->imm == (BPF_OR | BPF_FETCH) ||
1698 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1699 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1700 				u32 real_src_reg = src_reg;
1701 				u32 real_dst_reg = dst_reg;
1702 				u8 *branch_target;
1703 
1704 				/*
1705 				 * Can't be implemented with a single x86 insn.
1706 				 * Need to do a CMPXCHG loop.
1707 				 */
1708 
1709 				/* Will need RAX as a CMPXCHG operand so save R0 */
1710 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1711 				if (src_reg == BPF_REG_0)
1712 					real_src_reg = BPF_REG_AX;
1713 				if (dst_reg == BPF_REG_0)
1714 					real_dst_reg = BPF_REG_AX;
1715 
1716 				branch_target = prog;
1717 				/* Load old value */
1718 				emit_ldx(&prog, BPF_SIZE(insn->code),
1719 					 BPF_REG_0, real_dst_reg, insn->off);
1720 				/*
1721 				 * Perform the (commutative) operation locally,
1722 				 * put the result in the AUX_REG.
1723 				 */
1724 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1725 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1726 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1727 				      add_2reg(0xC0, AUX_REG, real_src_reg));
1728 				/* Attempt to swap in new value */
1729 				err = emit_atomic(&prog, BPF_CMPXCHG,
1730 						  real_dst_reg, AUX_REG,
1731 						  insn->off,
1732 						  BPF_SIZE(insn->code));
1733 				if (WARN_ON(err))
1734 					return err;
1735 				/*
1736 				 * ZF tells us whether we won the race. If it's
1737 				 * cleared we need to try again.
1738 				 */
1739 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1740 				/* Return the pre-modification value */
1741 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1742 				/* Restore R0 after clobbering RAX */
1743 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1744 				break;
1745 			}
1746 
1747 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1748 					  insn->off, BPF_SIZE(insn->code));
1749 			if (err)
1750 				return err;
1751 			break;
1752 
1753 			/* call */
1754 		case BPF_JMP | BPF_CALL: {
1755 			int offs;
1756 
1757 			func = (u8 *) __bpf_call_base + imm32;
1758 			if (tail_call_reachable) {
1759 				RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth);
1760 				if (!imm32)
1761 					return -EINVAL;
1762 				offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1763 			} else {
1764 				if (!imm32)
1765 					return -EINVAL;
1766 				offs = x86_call_depth_emit_accounting(&prog, func);
1767 			}
1768 			if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1769 				return -EINVAL;
1770 			break;
1771 		}
1772 
1773 		case BPF_JMP | BPF_TAIL_CALL:
1774 			if (imm32)
1775 				emit_bpf_tail_call_direct(bpf_prog,
1776 							  &bpf_prog->aux->poke_tab[imm32 - 1],
1777 							  &prog, image + addrs[i - 1],
1778 							  callee_regs_used,
1779 							  bpf_prog->aux->stack_depth,
1780 							  ctx);
1781 			else
1782 				emit_bpf_tail_call_indirect(bpf_prog,
1783 							    &prog,
1784 							    callee_regs_used,
1785 							    bpf_prog->aux->stack_depth,
1786 							    image + addrs[i - 1],
1787 							    ctx);
1788 			break;
1789 
1790 			/* cond jump */
1791 		case BPF_JMP | BPF_JEQ | BPF_X:
1792 		case BPF_JMP | BPF_JNE | BPF_X:
1793 		case BPF_JMP | BPF_JGT | BPF_X:
1794 		case BPF_JMP | BPF_JLT | BPF_X:
1795 		case BPF_JMP | BPF_JGE | BPF_X:
1796 		case BPF_JMP | BPF_JLE | BPF_X:
1797 		case BPF_JMP | BPF_JSGT | BPF_X:
1798 		case BPF_JMP | BPF_JSLT | BPF_X:
1799 		case BPF_JMP | BPF_JSGE | BPF_X:
1800 		case BPF_JMP | BPF_JSLE | BPF_X:
1801 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1802 		case BPF_JMP32 | BPF_JNE | BPF_X:
1803 		case BPF_JMP32 | BPF_JGT | BPF_X:
1804 		case BPF_JMP32 | BPF_JLT | BPF_X:
1805 		case BPF_JMP32 | BPF_JGE | BPF_X:
1806 		case BPF_JMP32 | BPF_JLE | BPF_X:
1807 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1808 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1809 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1810 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1811 			/* cmp dst_reg, src_reg */
1812 			maybe_emit_mod(&prog, dst_reg, src_reg,
1813 				       BPF_CLASS(insn->code) == BPF_JMP);
1814 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1815 			goto emit_cond_jmp;
1816 
1817 		case BPF_JMP | BPF_JSET | BPF_X:
1818 		case BPF_JMP32 | BPF_JSET | BPF_X:
1819 			/* test dst_reg, src_reg */
1820 			maybe_emit_mod(&prog, dst_reg, src_reg,
1821 				       BPF_CLASS(insn->code) == BPF_JMP);
1822 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1823 			goto emit_cond_jmp;
1824 
1825 		case BPF_JMP | BPF_JSET | BPF_K:
1826 		case BPF_JMP32 | BPF_JSET | BPF_K:
1827 			/* test dst_reg, imm32 */
1828 			maybe_emit_1mod(&prog, dst_reg,
1829 					BPF_CLASS(insn->code) == BPF_JMP);
1830 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1831 			goto emit_cond_jmp;
1832 
1833 		case BPF_JMP | BPF_JEQ | BPF_K:
1834 		case BPF_JMP | BPF_JNE | BPF_K:
1835 		case BPF_JMP | BPF_JGT | BPF_K:
1836 		case BPF_JMP | BPF_JLT | BPF_K:
1837 		case BPF_JMP | BPF_JGE | BPF_K:
1838 		case BPF_JMP | BPF_JLE | BPF_K:
1839 		case BPF_JMP | BPF_JSGT | BPF_K:
1840 		case BPF_JMP | BPF_JSLT | BPF_K:
1841 		case BPF_JMP | BPF_JSGE | BPF_K:
1842 		case BPF_JMP | BPF_JSLE | BPF_K:
1843 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1844 		case BPF_JMP32 | BPF_JNE | BPF_K:
1845 		case BPF_JMP32 | BPF_JGT | BPF_K:
1846 		case BPF_JMP32 | BPF_JLT | BPF_K:
1847 		case BPF_JMP32 | BPF_JGE | BPF_K:
1848 		case BPF_JMP32 | BPF_JLE | BPF_K:
1849 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1850 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1851 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1852 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1853 			/* test dst_reg, dst_reg to save one extra byte */
1854 			if (imm32 == 0) {
1855 				maybe_emit_mod(&prog, dst_reg, dst_reg,
1856 					       BPF_CLASS(insn->code) == BPF_JMP);
1857 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1858 				goto emit_cond_jmp;
1859 			}
1860 
1861 			/* cmp dst_reg, imm8/32 */
1862 			maybe_emit_1mod(&prog, dst_reg,
1863 					BPF_CLASS(insn->code) == BPF_JMP);
1864 
1865 			if (is_imm8(imm32))
1866 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1867 			else
1868 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1869 
1870 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1871 			switch (BPF_OP(insn->code)) {
1872 			case BPF_JEQ:
1873 				jmp_cond = X86_JE;
1874 				break;
1875 			case BPF_JSET:
1876 			case BPF_JNE:
1877 				jmp_cond = X86_JNE;
1878 				break;
1879 			case BPF_JGT:
1880 				/* GT is unsigned '>', JA in x86 */
1881 				jmp_cond = X86_JA;
1882 				break;
1883 			case BPF_JLT:
1884 				/* LT is unsigned '<', JB in x86 */
1885 				jmp_cond = X86_JB;
1886 				break;
1887 			case BPF_JGE:
1888 				/* GE is unsigned '>=', JAE in x86 */
1889 				jmp_cond = X86_JAE;
1890 				break;
1891 			case BPF_JLE:
1892 				/* LE is unsigned '<=', JBE in x86 */
1893 				jmp_cond = X86_JBE;
1894 				break;
1895 			case BPF_JSGT:
1896 				/* Signed '>', GT in x86 */
1897 				jmp_cond = X86_JG;
1898 				break;
1899 			case BPF_JSLT:
1900 				/* Signed '<', LT in x86 */
1901 				jmp_cond = X86_JL;
1902 				break;
1903 			case BPF_JSGE:
1904 				/* Signed '>=', GE in x86 */
1905 				jmp_cond = X86_JGE;
1906 				break;
1907 			case BPF_JSLE:
1908 				/* Signed '<=', LE in x86 */
1909 				jmp_cond = X86_JLE;
1910 				break;
1911 			default: /* to silence GCC warning */
1912 				return -EFAULT;
1913 			}
1914 			jmp_offset = addrs[i + insn->off] - addrs[i];
1915 			if (is_imm8(jmp_offset)) {
1916 				if (jmp_padding) {
1917 					/* To keep the jmp_offset valid, the extra bytes are
1918 					 * padded before the jump insn, so we subtract the
1919 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1920 					 *
1921 					 * If the previous pass already emits an imm8
1922 					 * jmp_cond, then this BPF insn won't shrink, so
1923 					 * "nops" is 0.
1924 					 *
1925 					 * On the other hand, if the previous pass emits an
1926 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1927 					 * keep the image from shrinking further.
1928 					 *
1929 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1930 					 *     is 2 bytes, so the size difference is 4 bytes.
1931 					 */
1932 					nops = INSN_SZ_DIFF - 2;
1933 					if (nops != 0 && nops != 4) {
1934 						pr_err("unexpected jmp_cond padding: %d bytes\n",
1935 						       nops);
1936 						return -EFAULT;
1937 					}
1938 					emit_nops(&prog, nops);
1939 				}
1940 				EMIT2(jmp_cond, jmp_offset);
1941 			} else if (is_simm32(jmp_offset)) {
1942 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1943 			} else {
1944 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1945 				return -EFAULT;
1946 			}
1947 
1948 			break;
1949 
1950 		case BPF_JMP | BPF_JA:
1951 		case BPF_JMP32 | BPF_JA:
1952 			if (BPF_CLASS(insn->code) == BPF_JMP) {
1953 				if (insn->off == -1)
1954 					/* -1 jmp instructions will always jump
1955 					 * backwards two bytes. Explicitly handling
1956 					 * this case avoids wasting too many passes
1957 					 * when there are long sequences of replaced
1958 					 * dead code.
1959 					 */
1960 					jmp_offset = -2;
1961 				else
1962 					jmp_offset = addrs[i + insn->off] - addrs[i];
1963 			} else {
1964 				if (insn->imm == -1)
1965 					jmp_offset = -2;
1966 				else
1967 					jmp_offset = addrs[i + insn->imm] - addrs[i];
1968 			}
1969 
1970 			if (!jmp_offset) {
1971 				/*
1972 				 * If jmp_padding is enabled, the extra nops will
1973 				 * be inserted. Otherwise, optimize out nop jumps.
1974 				 */
1975 				if (jmp_padding) {
1976 					/* There are 3 possible conditions.
1977 					 * (1) This BPF_JA is already optimized out in
1978 					 *     the previous run, so there is no need
1979 					 *     to pad any extra byte (0 byte).
1980 					 * (2) The previous pass emits an imm8 jmp,
1981 					 *     so we pad 2 bytes to match the previous
1982 					 *     insn size.
1983 					 * (3) Similarly, the previous pass emits an
1984 					 *     imm32 jmp, and 5 bytes is padded.
1985 					 */
1986 					nops = INSN_SZ_DIFF;
1987 					if (nops != 0 && nops != 2 && nops != 5) {
1988 						pr_err("unexpected nop jump padding: %d bytes\n",
1989 						       nops);
1990 						return -EFAULT;
1991 					}
1992 					emit_nops(&prog, nops);
1993 				}
1994 				break;
1995 			}
1996 emit_jmp:
1997 			if (is_imm8(jmp_offset)) {
1998 				if (jmp_padding) {
1999 					/* To avoid breaking jmp_offset, the extra bytes
2000 					 * are padded before the actual jmp insn, so
2001 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
2002 					 *
2003 					 * If the previous pass already emits an imm8
2004 					 * jmp, there is nothing to pad (0 byte).
2005 					 *
2006 					 * If it emits an imm32 jmp (5 bytes) previously
2007 					 * and now an imm8 jmp (2 bytes), then we pad
2008 					 * (5 - 2 = 3) bytes to stop the image from
2009 					 * shrinking further.
2010 					 */
2011 					nops = INSN_SZ_DIFF - 2;
2012 					if (nops != 0 && nops != 3) {
2013 						pr_err("unexpected jump padding: %d bytes\n",
2014 						       nops);
2015 						return -EFAULT;
2016 					}
2017 					emit_nops(&prog, INSN_SZ_DIFF - 2);
2018 				}
2019 				EMIT2(0xEB, jmp_offset);
2020 			} else if (is_simm32(jmp_offset)) {
2021 				EMIT1_off32(0xE9, jmp_offset);
2022 			} else {
2023 				pr_err("jmp gen bug %llx\n", jmp_offset);
2024 				return -EFAULT;
2025 			}
2026 			break;
2027 
2028 		case BPF_JMP | BPF_EXIT:
2029 			if (seen_exit) {
2030 				jmp_offset = ctx->cleanup_addr - addrs[i];
2031 				goto emit_jmp;
2032 			}
2033 			seen_exit = true;
2034 			/* Update cleanup_addr */
2035 			ctx->cleanup_addr = proglen;
2036 			if (bpf_prog->aux->exception_boundary) {
2037 				pop_callee_regs(&prog, all_callee_regs_used);
2038 				pop_r12(&prog);
2039 			} else {
2040 				pop_callee_regs(&prog, callee_regs_used);
2041 			}
2042 			EMIT1(0xC9);         /* leave */
2043 			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2044 			break;
2045 
2046 		default:
2047 			/*
2048 			 * By design x86-64 JIT should support all BPF instructions.
2049 			 * This error will be seen if new instruction was added
2050 			 * to the interpreter, but not to the JIT, or if there is
2051 			 * junk in bpf_prog.
2052 			 */
2053 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2054 			return -EINVAL;
2055 		}
2056 
2057 		ilen = prog - temp;
2058 		if (ilen > BPF_MAX_INSN_SIZE) {
2059 			pr_err("bpf_jit: fatal insn size error\n");
2060 			return -EFAULT;
2061 		}
2062 
2063 		if (image) {
2064 			/*
2065 			 * When populating the image, assert that:
2066 			 *
2067 			 *  i) We do not write beyond the allocated space, and
2068 			 * ii) addrs[i] did not change from the prior run, in order
2069 			 *     to validate assumptions made for computing branch
2070 			 *     displacements.
2071 			 */
2072 			if (unlikely(proglen + ilen > oldproglen ||
2073 				     proglen + ilen != addrs[i])) {
2074 				pr_err("bpf_jit: fatal error\n");
2075 				return -EFAULT;
2076 			}
2077 			memcpy(rw_image + proglen, temp, ilen);
2078 		}
2079 		proglen += ilen;
2080 		addrs[i] = proglen;
2081 		prog = temp;
2082 	}
2083 
2084 	if (image && excnt != bpf_prog->aux->num_exentries) {
2085 		pr_err("extable is not populated\n");
2086 		return -EFAULT;
2087 	}
2088 	return proglen;
2089 }
2090 
2091 static void clean_stack_garbage(const struct btf_func_model *m,
2092 				u8 **pprog, int nr_stack_slots,
2093 				int stack_size)
2094 {
2095 	int arg_size, off;
2096 	u8 *prog;
2097 
2098 	/* Generally speaking, the compiler will pass the arguments
2099 	 * on-stack with "push" instruction, which will take 8-byte
2100 	 * on the stack. In this case, there won't be garbage values
2101 	 * while we copy the arguments from origin stack frame to current
2102 	 * in BPF_DW.
2103 	 *
2104 	 * However, sometimes the compiler will only allocate 4-byte on
2105 	 * the stack for the arguments. For now, this case will only
2106 	 * happen if there is only one argument on-stack and its size
2107 	 * not more than 4 byte. In this case, there will be garbage
2108 	 * values on the upper 4-byte where we store the argument on
2109 	 * current stack frame.
2110 	 *
2111 	 * arguments on origin stack:
2112 	 *
2113 	 * stack_arg_1(4-byte) xxx(4-byte)
2114 	 *
2115 	 * what we copy:
2116 	 *
2117 	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2118 	 *
2119 	 * and the xxx is the garbage values which we should clean here.
2120 	 */
2121 	if (nr_stack_slots != 1)
2122 		return;
2123 
2124 	/* the size of the last argument */
2125 	arg_size = m->arg_size[m->nr_args - 1];
2126 	if (arg_size <= 4) {
2127 		off = -(stack_size - 4);
2128 		prog = *pprog;
2129 		/* mov DWORD PTR [rbp + off], 0 */
2130 		if (!is_imm8(off))
2131 			EMIT2_off32(0xC7, 0x85, off);
2132 		else
2133 			EMIT3(0xC7, 0x45, off);
2134 		EMIT(0, 4);
2135 		*pprog = prog;
2136 	}
2137 }
2138 
2139 /* get the count of the regs that are used to pass arguments */
2140 static int get_nr_used_regs(const struct btf_func_model *m)
2141 {
2142 	int i, arg_regs, nr_used_regs = 0;
2143 
2144 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2145 		arg_regs = (m->arg_size[i] + 7) / 8;
2146 		if (nr_used_regs + arg_regs <= 6)
2147 			nr_used_regs += arg_regs;
2148 
2149 		if (nr_used_regs >= 6)
2150 			break;
2151 	}
2152 
2153 	return nr_used_regs;
2154 }
2155 
2156 static void save_args(const struct btf_func_model *m, u8 **prog,
2157 		      int stack_size, bool for_call_origin)
2158 {
2159 	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2160 	int i, j;
2161 
2162 	/* Store function arguments to stack.
2163 	 * For a function that accepts two pointers the sequence will be:
2164 	 * mov QWORD PTR [rbp-0x10],rdi
2165 	 * mov QWORD PTR [rbp-0x8],rsi
2166 	 */
2167 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2168 		arg_regs = (m->arg_size[i] + 7) / 8;
2169 
2170 		/* According to the research of Yonghong, struct members
2171 		 * should be all in register or all on the stack.
2172 		 * Meanwhile, the compiler will pass the argument on regs
2173 		 * if the remaining regs can hold the argument.
2174 		 *
2175 		 * Disorder of the args can happen. For example:
2176 		 *
2177 		 * struct foo_struct {
2178 		 *     long a;
2179 		 *     int b;
2180 		 * };
2181 		 * int foo(char, char, char, char, char, struct foo_struct,
2182 		 *         char);
2183 		 *
2184 		 * the arg1-5,arg7 will be passed by regs, and arg6 will
2185 		 * by stack.
2186 		 */
2187 		if (nr_regs + arg_regs > 6) {
2188 			/* copy function arguments from origin stack frame
2189 			 * into current stack frame.
2190 			 *
2191 			 * The starting address of the arguments on-stack
2192 			 * is:
2193 			 *   rbp + 8(push rbp) +
2194 			 *   8(return addr of origin call) +
2195 			 *   8(return addr of the caller)
2196 			 * which means: rbp + 24
2197 			 */
2198 			for (j = 0; j < arg_regs; j++) {
2199 				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2200 					 nr_stack_slots * 8 + 0x18);
2201 				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2202 					 -stack_size);
2203 
2204 				if (!nr_stack_slots)
2205 					first_off = stack_size;
2206 				stack_size -= 8;
2207 				nr_stack_slots++;
2208 			}
2209 		} else {
2210 			/* Only copy the arguments on-stack to current
2211 			 * 'stack_size' and ignore the regs, used to
2212 			 * prepare the arguments on-stack for orign call.
2213 			 */
2214 			if (for_call_origin) {
2215 				nr_regs += arg_regs;
2216 				continue;
2217 			}
2218 
2219 			/* copy the arguments from regs into stack */
2220 			for (j = 0; j < arg_regs; j++) {
2221 				emit_stx(prog, BPF_DW, BPF_REG_FP,
2222 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2223 					 -stack_size);
2224 				stack_size -= 8;
2225 				nr_regs++;
2226 			}
2227 		}
2228 	}
2229 
2230 	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2231 }
2232 
2233 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2234 			 int stack_size)
2235 {
2236 	int i, j, arg_regs, nr_regs = 0;
2237 
2238 	/* Restore function arguments from stack.
2239 	 * For a function that accepts two pointers the sequence will be:
2240 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2241 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2242 	 *
2243 	 * The logic here is similar to what we do in save_args()
2244 	 */
2245 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2246 		arg_regs = (m->arg_size[i] + 7) / 8;
2247 		if (nr_regs + arg_regs <= 6) {
2248 			for (j = 0; j < arg_regs; j++) {
2249 				emit_ldx(prog, BPF_DW,
2250 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2251 					 BPF_REG_FP,
2252 					 -stack_size);
2253 				stack_size -= 8;
2254 				nr_regs++;
2255 			}
2256 		} else {
2257 			stack_size -= 8 * arg_regs;
2258 		}
2259 
2260 		if (nr_regs >= 6)
2261 			break;
2262 	}
2263 }
2264 
2265 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2266 			   struct bpf_tramp_link *l, int stack_size,
2267 			   int run_ctx_off, bool save_ret,
2268 			   void *image, void *rw_image)
2269 {
2270 	u8 *prog = *pprog;
2271 	u8 *jmp_insn;
2272 	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2273 	struct bpf_prog *p = l->link.prog;
2274 	u64 cookie = l->cookie;
2275 
2276 	/* mov rdi, cookie */
2277 	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2278 
2279 	/* Prepare struct bpf_tramp_run_ctx.
2280 	 *
2281 	 * bpf_tramp_run_ctx is already preserved by
2282 	 * arch_prepare_bpf_trampoline().
2283 	 *
2284 	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2285 	 */
2286 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2287 
2288 	/* arg1: mov rdi, progs[i] */
2289 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2290 	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2291 	if (!is_imm8(-run_ctx_off))
2292 		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2293 	else
2294 		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2295 
2296 	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2297 		return -EINVAL;
2298 	/* remember prog start time returned by __bpf_prog_enter */
2299 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2300 
2301 	/* if (__bpf_prog_enter*(prog) == 0)
2302 	 *	goto skip_exec_of_prog;
2303 	 */
2304 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2305 	/* emit 2 nops that will be replaced with JE insn */
2306 	jmp_insn = prog;
2307 	emit_nops(&prog, 2);
2308 
2309 	/* arg1: lea rdi, [rbp - stack_size] */
2310 	if (!is_imm8(-stack_size))
2311 		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2312 	else
2313 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2314 	/* arg2: progs[i]->insnsi for interpreter */
2315 	if (!p->jited)
2316 		emit_mov_imm64(&prog, BPF_REG_2,
2317 			       (long) p->insnsi >> 32,
2318 			       (u32) (long) p->insnsi);
2319 	/* call JITed bpf program or interpreter */
2320 	if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2321 		return -EINVAL;
2322 
2323 	/*
2324 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2325 	 * of the previous call which is then passed on the stack to
2326 	 * the next BPF program.
2327 	 *
2328 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
2329 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2330 	 */
2331 	if (save_ret)
2332 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2333 
2334 	/* replace 2 nops with JE insn, since jmp target is known */
2335 	jmp_insn[0] = X86_JE;
2336 	jmp_insn[1] = prog - jmp_insn - 2;
2337 
2338 	/* arg1: mov rdi, progs[i] */
2339 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2340 	/* arg2: mov rsi, rbx <- start time in nsec */
2341 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2342 	/* arg3: lea rdx, [rbp - run_ctx_off] */
2343 	if (!is_imm8(-run_ctx_off))
2344 		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2345 	else
2346 		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2347 	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2348 		return -EINVAL;
2349 
2350 	*pprog = prog;
2351 	return 0;
2352 }
2353 
2354 static void emit_align(u8 **pprog, u32 align)
2355 {
2356 	u8 *target, *prog = *pprog;
2357 
2358 	target = PTR_ALIGN(prog, align);
2359 	if (target != prog)
2360 		emit_nops(&prog, target - prog);
2361 
2362 	*pprog = prog;
2363 }
2364 
2365 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2366 {
2367 	u8 *prog = *pprog;
2368 	s64 offset;
2369 
2370 	offset = func - (ip + 2 + 4);
2371 	if (!is_simm32(offset)) {
2372 		pr_err("Target %p is out of range\n", func);
2373 		return -EINVAL;
2374 	}
2375 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2376 	*pprog = prog;
2377 	return 0;
2378 }
2379 
2380 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2381 		      struct bpf_tramp_links *tl, int stack_size,
2382 		      int run_ctx_off, bool save_ret,
2383 		      void *image, void *rw_image)
2384 {
2385 	int i;
2386 	u8 *prog = *pprog;
2387 
2388 	for (i = 0; i < tl->nr_links; i++) {
2389 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2390 				    run_ctx_off, save_ret, image, rw_image))
2391 			return -EINVAL;
2392 	}
2393 	*pprog = prog;
2394 	return 0;
2395 }
2396 
2397 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2398 			      struct bpf_tramp_links *tl, int stack_size,
2399 			      int run_ctx_off, u8 **branches,
2400 			      void *image, void *rw_image)
2401 {
2402 	u8 *prog = *pprog;
2403 	int i;
2404 
2405 	/* The first fmod_ret program will receive a garbage return value.
2406 	 * Set this to 0 to avoid confusing the program.
2407 	 */
2408 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2409 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2410 	for (i = 0; i < tl->nr_links; i++) {
2411 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2412 				    image, rw_image))
2413 			return -EINVAL;
2414 
2415 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2416 		 * if (*(u64 *)(rbp - 8) !=  0)
2417 		 *	goto do_fexit;
2418 		 */
2419 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2420 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2421 
2422 		/* Save the location of the branch and Generate 6 nops
2423 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2424 		 * are replaced with a conditional jump once do_fexit (i.e. the
2425 		 * start of the fexit invocation) is finalized.
2426 		 */
2427 		branches[i] = prog;
2428 		emit_nops(&prog, 4 + 2);
2429 	}
2430 
2431 	*pprog = prog;
2432 	return 0;
2433 }
2434 
2435 /* Example:
2436  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2437  * its 'struct btf_func_model' will be nr_args=2
2438  * The assembly code when eth_type_trans is executing after trampoline:
2439  *
2440  * push rbp
2441  * mov rbp, rsp
2442  * sub rsp, 16                     // space for skb and dev
2443  * push rbx                        // temp regs to pass start time
2444  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2445  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2446  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2447  * mov rbx, rax                    // remember start time in bpf stats are enabled
2448  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2449  * call addr_of_jited_FENTRY_prog
2450  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2451  * mov rsi, rbx                    // prog start time
2452  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2453  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2454  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2455  * pop rbx
2456  * leave
2457  * ret
2458  *
2459  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2460  * replaced with 'call generated_bpf_trampoline'. When it returns
2461  * eth_type_trans will continue executing with original skb and dev pointers.
2462  *
2463  * The assembly code when eth_type_trans is called from trampoline:
2464  *
2465  * push rbp
2466  * mov rbp, rsp
2467  * sub rsp, 24                     // space for skb, dev, return value
2468  * push rbx                        // temp regs to pass start time
2469  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2470  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2471  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2472  * mov rbx, rax                    // remember start time if bpf stats are enabled
2473  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2474  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2475  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2476  * mov rsi, rbx                    // prog start time
2477  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2478  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2479  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2480  * call eth_type_trans+5           // execute body of eth_type_trans
2481  * mov qword ptr [rbp - 8], rax    // save return value
2482  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2483  * mov rbx, rax                    // remember start time in bpf stats are enabled
2484  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2485  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2486  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2487  * mov rsi, rbx                    // prog start time
2488  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2489  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2490  * pop rbx
2491  * leave
2492  * add rsp, 8                      // skip eth_type_trans's frame
2493  * ret                             // return to its caller
2494  */
2495 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
2496 					 void *rw_image_end, void *image,
2497 					 const struct btf_func_model *m, u32 flags,
2498 					 struct bpf_tramp_links *tlinks,
2499 					 void *func_addr)
2500 {
2501 	int i, ret, nr_regs = m->nr_args, stack_size = 0;
2502 	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2503 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2504 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2505 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2506 	void *orig_call = func_addr;
2507 	u8 **branches = NULL;
2508 	u8 *prog;
2509 	bool save_ret;
2510 
2511 	/*
2512 	 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
2513 	 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
2514 	 * because @func_addr.
2515 	 */
2516 	WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
2517 		     (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
2518 
2519 	/* extra registers for struct arguments */
2520 	for (i = 0; i < m->nr_args; i++) {
2521 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2522 			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2523 	}
2524 
2525 	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2526 	 * are passed through regs, the remains are through stack.
2527 	 */
2528 	if (nr_regs > MAX_BPF_FUNC_ARGS)
2529 		return -ENOTSUPP;
2530 
2531 	/* Generated trampoline stack layout:
2532 	 *
2533 	 * RBP + 8         [ return address  ]
2534 	 * RBP + 0         [ RBP             ]
2535 	 *
2536 	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2537 	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2538 	 *
2539 	 *                 [ reg_argN        ]  always
2540 	 *                 [ ...             ]
2541 	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2542 	 *
2543 	 * RBP - nregs_off [ regs count	     ]  always
2544 	 *
2545 	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2546 	 *
2547 	 * RBP - rbx_off   [ rbx value       ]  always
2548 	 *
2549 	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2550 	 *
2551 	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
2552 	 *                     [ ...        ]
2553 	 *                     [ stack_arg2 ]
2554 	 * RBP - arg_stack_off [ stack_arg1 ]
2555 	 * RSP                 [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX
2556 	 */
2557 
2558 	/* room for return value of orig_call or fentry prog */
2559 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2560 	if (save_ret)
2561 		stack_size += 8;
2562 
2563 	stack_size += nr_regs * 8;
2564 	regs_off = stack_size;
2565 
2566 	/* regs count  */
2567 	stack_size += 8;
2568 	nregs_off = stack_size;
2569 
2570 	if (flags & BPF_TRAMP_F_IP_ARG)
2571 		stack_size += 8; /* room for IP address argument */
2572 
2573 	ip_off = stack_size;
2574 
2575 	stack_size += 8;
2576 	rbx_off = stack_size;
2577 
2578 	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2579 	run_ctx_off = stack_size;
2580 
2581 	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2582 		/* the space that used to pass arguments on-stack */
2583 		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2584 		/* make sure the stack pointer is 16-byte aligned if we
2585 		 * need pass arguments on stack, which means
2586 		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2587 		 * should be 16-byte aligned. Following code depend on
2588 		 * that stack_size is already 8-byte aligned.
2589 		 */
2590 		stack_size += (stack_size % 16) ? 0 : 8;
2591 	}
2592 
2593 	arg_stack_off = stack_size;
2594 
2595 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2596 		/* skip patched call instruction and point orig_call to actual
2597 		 * body of the kernel function.
2598 		 */
2599 		if (is_endbr(*(u32 *)orig_call))
2600 			orig_call += ENDBR_INSN_SIZE;
2601 		orig_call += X86_PATCH_SIZE;
2602 	}
2603 
2604 	prog = rw_image;
2605 
2606 	if (flags & BPF_TRAMP_F_INDIRECT) {
2607 		/*
2608 		 * Indirect call for bpf_struct_ops
2609 		 */
2610 		emit_cfi(&prog, cfi_get_func_hash(func_addr));
2611 	} else {
2612 		/*
2613 		 * Direct-call fentry stub, as such it needs accounting for the
2614 		 * __fentry__ call.
2615 		 */
2616 		x86_call_depth_emit_accounting(&prog, NULL);
2617 	}
2618 	EMIT1(0x55);		 /* push rbp */
2619 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2620 	if (!is_imm8(stack_size)) {
2621 		/* sub rsp, stack_size */
2622 		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2623 	} else {
2624 		/* sub rsp, stack_size */
2625 		EMIT4(0x48, 0x83, 0xEC, stack_size);
2626 	}
2627 	if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2628 		EMIT1(0x50);		/* push rax */
2629 	/* mov QWORD PTR [rbp - rbx_off], rbx */
2630 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2631 
2632 	/* Store number of argument registers of the traced function:
2633 	 *   mov rax, nr_regs
2634 	 *   mov QWORD PTR [rbp - nregs_off], rax
2635 	 */
2636 	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2637 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2638 
2639 	if (flags & BPF_TRAMP_F_IP_ARG) {
2640 		/* Store IP address of the traced function:
2641 		 * movabsq rax, func_addr
2642 		 * mov QWORD PTR [rbp - ip_off], rax
2643 		 */
2644 		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2645 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2646 	}
2647 
2648 	save_args(m, &prog, regs_off, false);
2649 
2650 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2651 		/* arg1: mov rdi, im */
2652 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2653 		if (emit_rsb_call(&prog, __bpf_tramp_enter,
2654 				  image + (prog - (u8 *)rw_image))) {
2655 			ret = -EINVAL;
2656 			goto cleanup;
2657 		}
2658 	}
2659 
2660 	if (fentry->nr_links) {
2661 		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2662 			       flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
2663 			return -EINVAL;
2664 	}
2665 
2666 	if (fmod_ret->nr_links) {
2667 		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2668 				   GFP_KERNEL);
2669 		if (!branches)
2670 			return -ENOMEM;
2671 
2672 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2673 				       run_ctx_off, branches, image, rw_image)) {
2674 			ret = -EINVAL;
2675 			goto cleanup;
2676 		}
2677 	}
2678 
2679 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2680 		restore_regs(m, &prog, regs_off);
2681 		save_args(m, &prog, arg_stack_off, true);
2682 
2683 		if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
2684 			/* Before calling the original function, restore the
2685 			 * tail_call_cnt from stack to rax.
2686 			 */
2687 			RESTORE_TAIL_CALL_CNT(stack_size);
2688 		}
2689 
2690 		if (flags & BPF_TRAMP_F_ORIG_STACK) {
2691 			emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
2692 			EMIT2(0xff, 0xd3); /* call *rbx */
2693 		} else {
2694 			/* call original function */
2695 			if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
2696 				ret = -EINVAL;
2697 				goto cleanup;
2698 			}
2699 		}
2700 		/* remember return value in a stack for bpf prog to access */
2701 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2702 		im->ip_after_call = image + (prog - (u8 *)rw_image);
2703 		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2704 		prog += X86_PATCH_SIZE;
2705 	}
2706 
2707 	if (fmod_ret->nr_links) {
2708 		/* From Intel 64 and IA-32 Architectures Optimization
2709 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2710 		 * Coding Rule 11: All branch targets should be 16-byte
2711 		 * aligned.
2712 		 */
2713 		emit_align(&prog, 16);
2714 		/* Update the branches saved in invoke_bpf_mod_ret with the
2715 		 * aligned address of do_fexit.
2716 		 */
2717 		for (i = 0; i < fmod_ret->nr_links; i++) {
2718 			emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
2719 					    image + (branches[i] - (u8 *)rw_image), X86_JNE);
2720 		}
2721 	}
2722 
2723 	if (fexit->nr_links) {
2724 		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
2725 			       false, image, rw_image)) {
2726 			ret = -EINVAL;
2727 			goto cleanup;
2728 		}
2729 	}
2730 
2731 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2732 		restore_regs(m, &prog, regs_off);
2733 
2734 	/* This needs to be done regardless. If there were fmod_ret programs,
2735 	 * the return value is only updated on the stack and still needs to be
2736 	 * restored to R0.
2737 	 */
2738 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2739 		im->ip_epilogue = image + (prog - (u8 *)rw_image);
2740 		/* arg1: mov rdi, im */
2741 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2742 		if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
2743 			ret = -EINVAL;
2744 			goto cleanup;
2745 		}
2746 	} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
2747 		/* Before running the original function, restore the
2748 		 * tail_call_cnt from stack to rax.
2749 		 */
2750 		RESTORE_TAIL_CALL_CNT(stack_size);
2751 	}
2752 
2753 	/* restore return value of orig_call or fentry prog back into RAX */
2754 	if (save_ret)
2755 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2756 
2757 	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
2758 	EMIT1(0xC9); /* leave */
2759 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2760 		/* skip our return address and return to parent */
2761 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2762 	}
2763 	emit_return(&prog, image + (prog - (u8 *)rw_image));
2764 	/* Make sure the trampoline generation logic doesn't overflow */
2765 	if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
2766 		ret = -EFAULT;
2767 		goto cleanup;
2768 	}
2769 	ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
2770 
2771 cleanup:
2772 	kfree(branches);
2773 	return ret;
2774 }
2775 
2776 void *arch_alloc_bpf_trampoline(unsigned int size)
2777 {
2778 	return bpf_prog_pack_alloc(size, jit_fill_hole);
2779 }
2780 
2781 void arch_free_bpf_trampoline(void *image, unsigned int size)
2782 {
2783 	bpf_prog_pack_free(image, size);
2784 }
2785 
2786 void arch_protect_bpf_trampoline(void *image, unsigned int size)
2787 {
2788 }
2789 
2790 void arch_unprotect_bpf_trampoline(void *image, unsigned int size)
2791 {
2792 }
2793 
2794 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2795 				const struct btf_func_model *m, u32 flags,
2796 				struct bpf_tramp_links *tlinks,
2797 				void *func_addr)
2798 {
2799 	void *rw_image, *tmp;
2800 	int ret;
2801 	u32 size = image_end - image;
2802 
2803 	/* rw_image doesn't need to be in module memory range, so we can
2804 	 * use kvmalloc.
2805 	 */
2806 	rw_image = kvmalloc(size, GFP_KERNEL);
2807 	if (!rw_image)
2808 		return -ENOMEM;
2809 
2810 	ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
2811 					    flags, tlinks, func_addr);
2812 	if (ret < 0)
2813 		goto out;
2814 
2815 	tmp = bpf_arch_text_copy(image, rw_image, size);
2816 	if (IS_ERR(tmp))
2817 		ret = PTR_ERR(tmp);
2818 out:
2819 	kvfree(rw_image);
2820 	return ret;
2821 }
2822 
2823 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2824 			     struct bpf_tramp_links *tlinks, void *func_addr)
2825 {
2826 	struct bpf_tramp_image im;
2827 	void *image;
2828 	int ret;
2829 
2830 	/* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
2831 	 * This will NOT cause fragmentation in direct map, as we do not
2832 	 * call set_memory_*() on this buffer.
2833 	 *
2834 	 * We cannot use kvmalloc here, because we need image to be in
2835 	 * module memory range.
2836 	 */
2837 	image = bpf_jit_alloc_exec(PAGE_SIZE);
2838 	if (!image)
2839 		return -ENOMEM;
2840 
2841 	ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
2842 					    m, flags, tlinks, func_addr);
2843 	bpf_jit_free_exec(image);
2844 	return ret;
2845 }
2846 
2847 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2848 {
2849 	u8 *jg_reloc, *prog = *pprog;
2850 	int pivot, err, jg_bytes = 1;
2851 	s64 jg_offset;
2852 
2853 	if (a == b) {
2854 		/* Leaf node of recursion, i.e. not a range of indices
2855 		 * anymore.
2856 		 */
2857 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2858 		if (!is_simm32(progs[a]))
2859 			return -1;
2860 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2861 			    progs[a]);
2862 		err = emit_cond_near_jump(&prog,	/* je func */
2863 					  (void *)progs[a], image + (prog - buf),
2864 					  X86_JE);
2865 		if (err)
2866 			return err;
2867 
2868 		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2869 
2870 		*pprog = prog;
2871 		return 0;
2872 	}
2873 
2874 	/* Not a leaf node, so we pivot, and recursively descend into
2875 	 * the lower and upper ranges.
2876 	 */
2877 	pivot = (b - a) / 2;
2878 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2879 	if (!is_simm32(progs[a + pivot]))
2880 		return -1;
2881 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2882 
2883 	if (pivot > 2) {				/* jg upper_part */
2884 		/* Require near jump. */
2885 		jg_bytes = 4;
2886 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2887 	} else {
2888 		EMIT2(X86_JG, 0);
2889 	}
2890 	jg_reloc = prog;
2891 
2892 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2893 				  progs, image, buf);
2894 	if (err)
2895 		return err;
2896 
2897 	/* From Intel 64 and IA-32 Architectures Optimization
2898 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2899 	 * Coding Rule 11: All branch targets should be 16-byte
2900 	 * aligned.
2901 	 */
2902 	emit_align(&prog, 16);
2903 	jg_offset = prog - jg_reloc;
2904 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2905 
2906 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2907 				  b, progs, image, buf);
2908 	if (err)
2909 		return err;
2910 
2911 	*pprog = prog;
2912 	return 0;
2913 }
2914 
2915 static int cmp_ips(const void *a, const void *b)
2916 {
2917 	const s64 *ipa = a;
2918 	const s64 *ipb = b;
2919 
2920 	if (*ipa > *ipb)
2921 		return 1;
2922 	if (*ipa < *ipb)
2923 		return -1;
2924 	return 0;
2925 }
2926 
2927 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2928 {
2929 	u8 *prog = buf;
2930 
2931 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2932 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2933 }
2934 
2935 struct x64_jit_data {
2936 	struct bpf_binary_header *rw_header;
2937 	struct bpf_binary_header *header;
2938 	int *addrs;
2939 	u8 *image;
2940 	int proglen;
2941 	struct jit_context ctx;
2942 };
2943 
2944 #define MAX_PASSES 20
2945 #define PADDING_PASSES (MAX_PASSES - 5)
2946 
2947 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2948 {
2949 	struct bpf_binary_header *rw_header = NULL;
2950 	struct bpf_binary_header *header = NULL;
2951 	struct bpf_prog *tmp, *orig_prog = prog;
2952 	struct x64_jit_data *jit_data;
2953 	int proglen, oldproglen = 0;
2954 	struct jit_context ctx = {};
2955 	bool tmp_blinded = false;
2956 	bool extra_pass = false;
2957 	bool padding = false;
2958 	u8 *rw_image = NULL;
2959 	u8 *image = NULL;
2960 	int *addrs;
2961 	int pass;
2962 	int i;
2963 
2964 	if (!prog->jit_requested)
2965 		return orig_prog;
2966 
2967 	tmp = bpf_jit_blind_constants(prog);
2968 	/*
2969 	 * If blinding was requested and we failed during blinding,
2970 	 * we must fall back to the interpreter.
2971 	 */
2972 	if (IS_ERR(tmp))
2973 		return orig_prog;
2974 	if (tmp != prog) {
2975 		tmp_blinded = true;
2976 		prog = tmp;
2977 	}
2978 
2979 	jit_data = prog->aux->jit_data;
2980 	if (!jit_data) {
2981 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2982 		if (!jit_data) {
2983 			prog = orig_prog;
2984 			goto out;
2985 		}
2986 		prog->aux->jit_data = jit_data;
2987 	}
2988 	addrs = jit_data->addrs;
2989 	if (addrs) {
2990 		ctx = jit_data->ctx;
2991 		oldproglen = jit_data->proglen;
2992 		image = jit_data->image;
2993 		header = jit_data->header;
2994 		rw_header = jit_data->rw_header;
2995 		rw_image = (void *)rw_header + ((void *)image - (void *)header);
2996 		extra_pass = true;
2997 		padding = true;
2998 		goto skip_init_addrs;
2999 	}
3000 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3001 	if (!addrs) {
3002 		prog = orig_prog;
3003 		goto out_addrs;
3004 	}
3005 
3006 	/*
3007 	 * Before first pass, make a rough estimation of addrs[]
3008 	 * each BPF instruction is translated to less than 64 bytes
3009 	 */
3010 	for (proglen = 0, i = 0; i <= prog->len; i++) {
3011 		proglen += 64;
3012 		addrs[i] = proglen;
3013 	}
3014 	ctx.cleanup_addr = proglen;
3015 skip_init_addrs:
3016 
3017 	/*
3018 	 * JITed image shrinks with every pass and the loop iterates
3019 	 * until the image stops shrinking. Very large BPF programs
3020 	 * may converge on the last pass. In such case do one more
3021 	 * pass to emit the final image.
3022 	 */
3023 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
3024 		if (!padding && pass >= PADDING_PASSES)
3025 			padding = true;
3026 		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3027 		if (proglen <= 0) {
3028 out_image:
3029 			image = NULL;
3030 			if (header) {
3031 				bpf_arch_text_copy(&header->size, &rw_header->size,
3032 						   sizeof(rw_header->size));
3033 				bpf_jit_binary_pack_free(header, rw_header);
3034 			}
3035 			/* Fall back to interpreter mode */
3036 			prog = orig_prog;
3037 			if (extra_pass) {
3038 				prog->bpf_func = NULL;
3039 				prog->jited = 0;
3040 				prog->jited_len = 0;
3041 			}
3042 			goto out_addrs;
3043 		}
3044 		if (image) {
3045 			if (proglen != oldproglen) {
3046 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3047 				       proglen, oldproglen);
3048 				goto out_image;
3049 			}
3050 			break;
3051 		}
3052 		if (proglen == oldproglen) {
3053 			/*
3054 			 * The number of entries in extable is the number of BPF_LDX
3055 			 * insns that access kernel memory via "pointer to BTF type".
3056 			 * The verifier changed their opcode from LDX|MEM|size
3057 			 * to LDX|PROBE_MEM|size to make JITing easier.
3058 			 */
3059 			u32 align = __alignof__(struct exception_table_entry);
3060 			u32 extable_size = prog->aux->num_exentries *
3061 				sizeof(struct exception_table_entry);
3062 
3063 			/* allocate module memory for x86 insns and extable */
3064 			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3065 							   &image, align, &rw_header, &rw_image,
3066 							   jit_fill_hole);
3067 			if (!header) {
3068 				prog = orig_prog;
3069 				goto out_addrs;
3070 			}
3071 			prog->aux->extable = (void *) image + roundup(proglen, align);
3072 		}
3073 		oldproglen = proglen;
3074 		cond_resched();
3075 	}
3076 
3077 	if (bpf_jit_enable > 1)
3078 		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3079 
3080 	if (image) {
3081 		if (!prog->is_func || extra_pass) {
3082 			/*
3083 			 * bpf_jit_binary_pack_finalize fails in two scenarios:
3084 			 *   1) header is not pointing to proper module memory;
3085 			 *   2) the arch doesn't support bpf_arch_text_copy().
3086 			 *
3087 			 * Both cases are serious bugs and justify WARN_ON.
3088 			 */
3089 			if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
3090 				/* header has been freed */
3091 				header = NULL;
3092 				goto out_image;
3093 			}
3094 
3095 			bpf_tail_call_direct_fixup(prog);
3096 		} else {
3097 			jit_data->addrs = addrs;
3098 			jit_data->ctx = ctx;
3099 			jit_data->proglen = proglen;
3100 			jit_data->image = image;
3101 			jit_data->header = header;
3102 			jit_data->rw_header = rw_header;
3103 		}
3104 		/*
3105 		 * ctx.prog_offset is used when CFI preambles put code *before*
3106 		 * the function. See emit_cfi(). For FineIBT specifically this code
3107 		 * can also be executed and bpf_prog_kallsyms_add() will
3108 		 * generate an additional symbol to cover this, hence also
3109 		 * decrement proglen.
3110 		 */
3111 		prog->bpf_func = (void *)image + cfi_get_offset();
3112 		prog->jited = 1;
3113 		prog->jited_len = proglen - cfi_get_offset();
3114 	} else {
3115 		prog = orig_prog;
3116 	}
3117 
3118 	if (!image || !prog->is_func || extra_pass) {
3119 		if (image)
3120 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
3121 out_addrs:
3122 		kvfree(addrs);
3123 		kfree(jit_data);
3124 		prog->aux->jit_data = NULL;
3125 	}
3126 out:
3127 	if (tmp_blinded)
3128 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
3129 					   tmp : orig_prog);
3130 	return prog;
3131 }
3132 
3133 bool bpf_jit_supports_kfunc_call(void)
3134 {
3135 	return true;
3136 }
3137 
3138 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3139 {
3140 	if (text_poke_copy(dst, src, len) == NULL)
3141 		return ERR_PTR(-EINVAL);
3142 	return dst;
3143 }
3144 
3145 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3146 bool bpf_jit_supports_subprog_tailcalls(void)
3147 {
3148 	return true;
3149 }
3150 
3151 void bpf_jit_free(struct bpf_prog *prog)
3152 {
3153 	if (prog->jited) {
3154 		struct x64_jit_data *jit_data = prog->aux->jit_data;
3155 		struct bpf_binary_header *hdr;
3156 
3157 		/*
3158 		 * If we fail the final pass of JIT (from jit_subprogs),
3159 		 * the program may not be finalized yet. Call finalize here
3160 		 * before freeing it.
3161 		 */
3162 		if (jit_data) {
3163 			bpf_jit_binary_pack_finalize(prog, jit_data->header,
3164 						     jit_data->rw_header);
3165 			kvfree(jit_data->addrs);
3166 			kfree(jit_data);
3167 		}
3168 		prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3169 		hdr = bpf_jit_binary_pack_hdr(prog);
3170 		bpf_jit_binary_pack_free(hdr, NULL);
3171 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3172 	}
3173 
3174 	bpf_prog_unlock_free(prog);
3175 }
3176 
3177 bool bpf_jit_supports_exceptions(void)
3178 {
3179 	/* We unwind through both kernel frames (starting from within bpf_throw
3180 	 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3181 	 * to walk kernel frames and reach BPF frames in the stack trace.
3182 	 */
3183 	return IS_ENABLED(CONFIG_UNWINDER_ORC);
3184 }
3185 
3186 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3187 {
3188 #if defined(CONFIG_UNWINDER_ORC)
3189 	struct unwind_state state;
3190 	unsigned long addr;
3191 
3192 	for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3193 	     unwind_next_frame(&state)) {
3194 		addr = unwind_get_return_address(&state);
3195 		if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3196 			break;
3197 	}
3198 	return;
3199 #endif
3200 	WARN(1, "verification of programs using bpf_throw should have failed\n");
3201 }
3202 
3203 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3204 			       struct bpf_prog *new, struct bpf_prog *old)
3205 {
3206 	u8 *old_addr, *new_addr, *old_bypass_addr;
3207 	int ret;
3208 
3209 	old_bypass_addr = old ? NULL : poke->bypass_addr;
3210 	old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3211 	new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3212 
3213 	/*
3214 	 * On program loading or teardown, the program's kallsym entry
3215 	 * might not be in place, so we use __bpf_arch_text_poke to skip
3216 	 * the kallsyms check.
3217 	 */
3218 	if (new) {
3219 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3220 					   BPF_MOD_JUMP,
3221 					   old_addr, new_addr);
3222 		BUG_ON(ret < 0);
3223 		if (!old) {
3224 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3225 						   BPF_MOD_JUMP,
3226 						   poke->bypass_addr,
3227 						   NULL);
3228 			BUG_ON(ret < 0);
3229 		}
3230 	} else {
3231 		ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3232 					   BPF_MOD_JUMP,
3233 					   old_bypass_addr,
3234 					   poke->bypass_addr);
3235 		BUG_ON(ret < 0);
3236 		/* let other CPUs finish the execution of program
3237 		 * so that it will not possible to expose them
3238 		 * to invalid nop, stack unwind, nop state
3239 		 */
3240 		if (!ret)
3241 			synchronize_rcu();
3242 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3243 					   BPF_MOD_JUMP,
3244 					   old_addr, NULL);
3245 		BUG_ON(ret < 0);
3246 	}
3247 }
3248