xref: /linux/arch/x86/net/bpf_jit_comp.c (revision 4c30f5ce4f7af4f639af99e0bdeada8b268b7361)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 #include <asm/unwind.h>
20 #include <asm/cfi.h>
21 
22 static bool all_callee_regs_used[4] = {true, true, true, true};
23 
24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
25 {
26 	if (len == 1)
27 		*ptr = bytes;
28 	else if (len == 2)
29 		*(u16 *)ptr = bytes;
30 	else {
31 		*(u32 *)ptr = bytes;
32 		barrier();
33 	}
34 	return ptr + len;
35 }
36 
37 #define EMIT(bytes, len) \
38 	do { prog = emit_code(prog, bytes, len); } while (0)
39 
40 #define EMIT1(b1)		EMIT(b1, 1)
41 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
42 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
44 
45 #define EMIT1_off32(b1, off) \
46 	do { EMIT1(b1); EMIT(off, 4); } while (0)
47 #define EMIT2_off32(b1, b2, off) \
48 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
49 #define EMIT3_off32(b1, b2, b3, off) \
50 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
51 #define EMIT4_off32(b1, b2, b3, b4, off) \
52 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
53 
54 #ifdef CONFIG_X86_KERNEL_IBT
55 #define EMIT_ENDBR()		EMIT(gen_endbr(), 4)
56 #define EMIT_ENDBR_POISON()	EMIT(gen_endbr_poison(), 4)
57 #else
58 #define EMIT_ENDBR()
59 #define EMIT_ENDBR_POISON()
60 #endif
61 
62 static bool is_imm8(int value)
63 {
64 	return value <= 127 && value >= -128;
65 }
66 
67 static bool is_simm32(s64 value)
68 {
69 	return value == (s64)(s32)value;
70 }
71 
72 static bool is_uimm32(u64 value)
73 {
74 	return value == (u64)(u32)value;
75 }
76 
77 /* mov dst, src */
78 #define EMIT_mov(DST, SRC)								 \
79 	do {										 \
80 		if (DST != SRC)								 \
81 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
82 	} while (0)
83 
84 static int bpf_size_to_x86_bytes(int bpf_size)
85 {
86 	if (bpf_size == BPF_W)
87 		return 4;
88 	else if (bpf_size == BPF_H)
89 		return 2;
90 	else if (bpf_size == BPF_B)
91 		return 1;
92 	else if (bpf_size == BPF_DW)
93 		return 4; /* imm32 */
94 	else
95 		return 0;
96 }
97 
98 /*
99  * List of x86 cond jumps opcodes (. + s8)
100  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
101  */
102 #define X86_JB  0x72
103 #define X86_JAE 0x73
104 #define X86_JE  0x74
105 #define X86_JNE 0x75
106 #define X86_JBE 0x76
107 #define X86_JA  0x77
108 #define X86_JL  0x7C
109 #define X86_JGE 0x7D
110 #define X86_JLE 0x7E
111 #define X86_JG  0x7F
112 
113 /* Pick a register outside of BPF range for JIT internal work */
114 #define AUX_REG (MAX_BPF_JIT_REG + 1)
115 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
116 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
117 
118 /*
119  * The following table maps BPF registers to x86-64 registers.
120  *
121  * x86-64 register R12 is unused, since if used as base address
122  * register in load/store instructions, it always needs an
123  * extra byte of encoding and is callee saved.
124  *
125  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
126  * trampoline. x86-64 register R10 is used for blinding (if enabled).
127  */
128 static const int reg2hex[] = {
129 	[BPF_REG_0] = 0,  /* RAX */
130 	[BPF_REG_1] = 7,  /* RDI */
131 	[BPF_REG_2] = 6,  /* RSI */
132 	[BPF_REG_3] = 2,  /* RDX */
133 	[BPF_REG_4] = 1,  /* RCX */
134 	[BPF_REG_5] = 0,  /* R8  */
135 	[BPF_REG_6] = 3,  /* RBX callee saved */
136 	[BPF_REG_7] = 5,  /* R13 callee saved */
137 	[BPF_REG_8] = 6,  /* R14 callee saved */
138 	[BPF_REG_9] = 7,  /* R15 callee saved */
139 	[BPF_REG_FP] = 5, /* RBP readonly */
140 	[BPF_REG_AX] = 2, /* R10 temp register */
141 	[AUX_REG] = 3,    /* R11 temp register */
142 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
143 	[X86_REG_R12] = 4, /* R12 callee saved */
144 };
145 
146 static const int reg2pt_regs[] = {
147 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
148 	[BPF_REG_1] = offsetof(struct pt_regs, di),
149 	[BPF_REG_2] = offsetof(struct pt_regs, si),
150 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
151 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
152 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
153 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
154 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
155 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
156 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
157 };
158 
159 /*
160  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
161  * which need extra byte of encoding.
162  * rax,rcx,...,rbp have simpler encoding
163  */
164 static bool is_ereg(u32 reg)
165 {
166 	return (1 << reg) & (BIT(BPF_REG_5) |
167 			     BIT(AUX_REG) |
168 			     BIT(BPF_REG_7) |
169 			     BIT(BPF_REG_8) |
170 			     BIT(BPF_REG_9) |
171 			     BIT(X86_REG_R9) |
172 			     BIT(X86_REG_R12) |
173 			     BIT(BPF_REG_AX));
174 }
175 
176 /*
177  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
178  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
179  * of encoding. al,cl,dl,bl have simpler encoding.
180  */
181 static bool is_ereg_8l(u32 reg)
182 {
183 	return is_ereg(reg) ||
184 	    (1 << reg) & (BIT(BPF_REG_1) |
185 			  BIT(BPF_REG_2) |
186 			  BIT(BPF_REG_FP));
187 }
188 
189 static bool is_axreg(u32 reg)
190 {
191 	return reg == BPF_REG_0;
192 }
193 
194 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
195 static u8 add_1mod(u8 byte, u32 reg)
196 {
197 	if (is_ereg(reg))
198 		byte |= 1;
199 	return byte;
200 }
201 
202 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
203 {
204 	if (is_ereg(r1))
205 		byte |= 1;
206 	if (is_ereg(r2))
207 		byte |= 4;
208 	return byte;
209 }
210 
211 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
212 {
213 	if (is_ereg(r1))
214 		byte |= 1;
215 	if (is_ereg(index))
216 		byte |= 2;
217 	if (is_ereg(r2))
218 		byte |= 4;
219 	return byte;
220 }
221 
222 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
223 static u8 add_1reg(u8 byte, u32 dst_reg)
224 {
225 	return byte + reg2hex[dst_reg];
226 }
227 
228 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
229 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
230 {
231 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
232 }
233 
234 /* Some 1-byte opcodes for binary ALU operations */
235 static u8 simple_alu_opcodes[] = {
236 	[BPF_ADD] = 0x01,
237 	[BPF_SUB] = 0x29,
238 	[BPF_AND] = 0x21,
239 	[BPF_OR] = 0x09,
240 	[BPF_XOR] = 0x31,
241 	[BPF_LSH] = 0xE0,
242 	[BPF_RSH] = 0xE8,
243 	[BPF_ARSH] = 0xF8,
244 };
245 
246 static void jit_fill_hole(void *area, unsigned int size)
247 {
248 	/* Fill whole space with INT3 instructions */
249 	memset(area, 0xcc, size);
250 }
251 
252 int bpf_arch_text_invalidate(void *dst, size_t len)
253 {
254 	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
255 }
256 
257 struct jit_context {
258 	int cleanup_addr; /* Epilogue code offset */
259 
260 	/*
261 	 * Program specific offsets of labels in the code; these rely on the
262 	 * JIT doing at least 2 passes, recording the position on the first
263 	 * pass, only to generate the correct offset on the second pass.
264 	 */
265 	int tail_call_direct_label;
266 	int tail_call_indirect_label;
267 };
268 
269 /* Maximum number of bytes emitted while JITing one eBPF insn */
270 #define BPF_MAX_INSN_SIZE	128
271 #define BPF_INSN_SAFETY		64
272 
273 /* Number of bytes emit_patch() needs to generate instructions */
274 #define X86_PATCH_SIZE		5
275 /* Number of bytes that will be skipped on tailcall */
276 #define X86_TAIL_CALL_OFFSET	(12 + ENDBR_INSN_SIZE)
277 
278 static void push_r12(u8 **pprog)
279 {
280 	u8 *prog = *pprog;
281 
282 	EMIT2(0x41, 0x54);   /* push r12 */
283 	*pprog = prog;
284 }
285 
286 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
287 {
288 	u8 *prog = *pprog;
289 
290 	if (callee_regs_used[0])
291 		EMIT1(0x53);         /* push rbx */
292 	if (callee_regs_used[1])
293 		EMIT2(0x41, 0x55);   /* push r13 */
294 	if (callee_regs_used[2])
295 		EMIT2(0x41, 0x56);   /* push r14 */
296 	if (callee_regs_used[3])
297 		EMIT2(0x41, 0x57);   /* push r15 */
298 	*pprog = prog;
299 }
300 
301 static void pop_r12(u8 **pprog)
302 {
303 	u8 *prog = *pprog;
304 
305 	EMIT2(0x41, 0x5C);   /* pop r12 */
306 	*pprog = prog;
307 }
308 
309 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
310 {
311 	u8 *prog = *pprog;
312 
313 	if (callee_regs_used[3])
314 		EMIT2(0x41, 0x5F);   /* pop r15 */
315 	if (callee_regs_used[2])
316 		EMIT2(0x41, 0x5E);   /* pop r14 */
317 	if (callee_regs_used[1])
318 		EMIT2(0x41, 0x5D);   /* pop r13 */
319 	if (callee_regs_used[0])
320 		EMIT1(0x5B);         /* pop rbx */
321 	*pprog = prog;
322 }
323 
324 static void emit_nops(u8 **pprog, int len)
325 {
326 	u8 *prog = *pprog;
327 	int i, noplen;
328 
329 	while (len > 0) {
330 		noplen = len;
331 
332 		if (noplen > ASM_NOP_MAX)
333 			noplen = ASM_NOP_MAX;
334 
335 		for (i = 0; i < noplen; i++)
336 			EMIT1(x86_nops[noplen][i]);
337 		len -= noplen;
338 	}
339 
340 	*pprog = prog;
341 }
342 
343 /*
344  * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
345  * in arch/x86/kernel/alternative.c
346  */
347 
348 static void emit_fineibt(u8 **pprog, u32 hash)
349 {
350 	u8 *prog = *pprog;
351 
352 	EMIT_ENDBR();
353 	EMIT3_off32(0x41, 0x81, 0xea, hash);		/* subl $hash, %r10d	*/
354 	EMIT2(0x74, 0x07);				/* jz.d8 +7		*/
355 	EMIT2(0x0f, 0x0b);				/* ud2			*/
356 	EMIT1(0x90);					/* nop			*/
357 	EMIT_ENDBR_POISON();
358 
359 	*pprog = prog;
360 }
361 
362 static void emit_kcfi(u8 **pprog, u32 hash)
363 {
364 	u8 *prog = *pprog;
365 
366 	EMIT1_off32(0xb8, hash);			/* movl $hash, %eax	*/
367 #ifdef CONFIG_CALL_PADDING
368 	EMIT1(0x90);
369 	EMIT1(0x90);
370 	EMIT1(0x90);
371 	EMIT1(0x90);
372 	EMIT1(0x90);
373 	EMIT1(0x90);
374 	EMIT1(0x90);
375 	EMIT1(0x90);
376 	EMIT1(0x90);
377 	EMIT1(0x90);
378 	EMIT1(0x90);
379 #endif
380 	EMIT_ENDBR();
381 
382 	*pprog = prog;
383 }
384 
385 static void emit_cfi(u8 **pprog, u32 hash)
386 {
387 	u8 *prog = *pprog;
388 
389 	switch (cfi_mode) {
390 	case CFI_FINEIBT:
391 		emit_fineibt(&prog, hash);
392 		break;
393 
394 	case CFI_KCFI:
395 		emit_kcfi(&prog, hash);
396 		break;
397 
398 	default:
399 		EMIT_ENDBR();
400 		break;
401 	}
402 
403 	*pprog = prog;
404 }
405 
406 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
407 {
408 	u8 *prog = *pprog;
409 
410 	if (!is_subprog) {
411 		/* cmp rax, MAX_TAIL_CALL_CNT */
412 		EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
413 		EMIT2(X86_JA, 6);        /* ja 6 */
414 		/* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
415 		 * case1: entry of main prog.
416 		 * case2: tail callee of main prog.
417 		 */
418 		EMIT1(0x50);             /* push rax */
419 		/* Make rax as tail_call_cnt_ptr. */
420 		EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
421 		EMIT2(0xEB, 1);          /* jmp 1 */
422 		/* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
423 		 * case: tail callee of subprog.
424 		 */
425 		EMIT1(0x50);             /* push rax */
426 		/* push tail_call_cnt_ptr */
427 		EMIT1(0x50);             /* push rax */
428 	} else { /* is_subprog */
429 		/* rax is tail_call_cnt_ptr. */
430 		EMIT1(0x50);             /* push rax */
431 		EMIT1(0x50);             /* push rax */
432 	}
433 
434 	*pprog = prog;
435 }
436 
437 /*
438  * Emit x86-64 prologue code for BPF program.
439  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
440  * while jumping to another program
441  */
442 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
443 			  bool tail_call_reachable, bool is_subprog,
444 			  bool is_exception_cb)
445 {
446 	u8 *prog = *pprog;
447 
448 	emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash);
449 	/* BPF trampoline can be made to work without these nops,
450 	 * but let's waste 5 bytes for now and optimize later
451 	 */
452 	emit_nops(&prog, X86_PATCH_SIZE);
453 	if (!ebpf_from_cbpf) {
454 		if (tail_call_reachable && !is_subprog)
455 			/* When it's the entry of the whole tailcall context,
456 			 * zeroing rax means initialising tail_call_cnt.
457 			 */
458 			EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
459 		else
460 			/* Keep the same instruction layout. */
461 			emit_nops(&prog, 3);     /* nop3 */
462 	}
463 	/* Exception callback receives FP as third parameter */
464 	if (is_exception_cb) {
465 		EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
466 		EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
467 		/* The main frame must have exception_boundary as true, so we
468 		 * first restore those callee-saved regs from stack, before
469 		 * reusing the stack frame.
470 		 */
471 		pop_callee_regs(&prog, all_callee_regs_used);
472 		pop_r12(&prog);
473 		/* Reset the stack frame. */
474 		EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
475 	} else {
476 		EMIT1(0x55);             /* push rbp */
477 		EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
478 	}
479 
480 	/* X86_TAIL_CALL_OFFSET is here */
481 	EMIT_ENDBR();
482 
483 	/* sub rsp, rounded_stack_depth */
484 	if (stack_depth)
485 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
486 	if (tail_call_reachable)
487 		emit_prologue_tail_call(&prog, is_subprog);
488 	*pprog = prog;
489 }
490 
491 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
492 {
493 	u8 *prog = *pprog;
494 	s64 offset;
495 
496 	offset = func - (ip + X86_PATCH_SIZE);
497 	if (!is_simm32(offset)) {
498 		pr_err("Target call %p is out of range\n", func);
499 		return -ERANGE;
500 	}
501 	EMIT1_off32(opcode, offset);
502 	*pprog = prog;
503 	return 0;
504 }
505 
506 static int emit_call(u8 **pprog, void *func, void *ip)
507 {
508 	return emit_patch(pprog, func, ip, 0xE8);
509 }
510 
511 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
512 {
513 	OPTIMIZER_HIDE_VAR(func);
514 	ip += x86_call_depth_emit_accounting(pprog, func, ip);
515 	return emit_patch(pprog, func, ip, 0xE8);
516 }
517 
518 static int emit_jump(u8 **pprog, void *func, void *ip)
519 {
520 	return emit_patch(pprog, func, ip, 0xE9);
521 }
522 
523 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
524 				void *old_addr, void *new_addr)
525 {
526 	const u8 *nop_insn = x86_nops[5];
527 	u8 old_insn[X86_PATCH_SIZE];
528 	u8 new_insn[X86_PATCH_SIZE];
529 	u8 *prog;
530 	int ret;
531 
532 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
533 	if (old_addr) {
534 		prog = old_insn;
535 		ret = t == BPF_MOD_CALL ?
536 		      emit_call(&prog, old_addr, ip) :
537 		      emit_jump(&prog, old_addr, ip);
538 		if (ret)
539 			return ret;
540 	}
541 
542 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
543 	if (new_addr) {
544 		prog = new_insn;
545 		ret = t == BPF_MOD_CALL ?
546 		      emit_call(&prog, new_addr, ip) :
547 		      emit_jump(&prog, new_addr, ip);
548 		if (ret)
549 			return ret;
550 	}
551 
552 	ret = -EBUSY;
553 	mutex_lock(&text_mutex);
554 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
555 		goto out;
556 	ret = 1;
557 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
558 		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
559 		ret = 0;
560 	}
561 out:
562 	mutex_unlock(&text_mutex);
563 	return ret;
564 }
565 
566 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
567 		       void *old_addr, void *new_addr)
568 {
569 	if (!is_kernel_text((long)ip) &&
570 	    !is_bpf_text_address((long)ip))
571 		/* BPF poking in modules is not supported */
572 		return -EINVAL;
573 
574 	/*
575 	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
576 	 * with an ENDBR instruction.
577 	 */
578 	if (is_endbr(*(u32 *)ip))
579 		ip += ENDBR_INSN_SIZE;
580 
581 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
582 }
583 
584 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
585 
586 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
587 {
588 	u8 *prog = *pprog;
589 
590 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
591 		EMIT_LFENCE();
592 		EMIT2(0xFF, 0xE0 + reg);
593 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
594 		OPTIMIZER_HIDE_VAR(reg);
595 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
596 			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
597 		else
598 			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
599 	} else {
600 		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
601 		if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
602 			EMIT1(0xCC);		/* int3 */
603 	}
604 
605 	*pprog = prog;
606 }
607 
608 static void emit_return(u8 **pprog, u8 *ip)
609 {
610 	u8 *prog = *pprog;
611 
612 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
613 		emit_jump(&prog, x86_return_thunk, ip);
614 	} else {
615 		EMIT1(0xC3);		/* ret */
616 		if (IS_ENABLED(CONFIG_MITIGATION_SLS))
617 			EMIT1(0xCC);	/* int3 */
618 	}
619 
620 	*pprog = prog;
621 }
622 
623 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack)	(-16 - round_up(stack, 8))
624 
625 /*
626  * Generate the following code:
627  *
628  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
629  *   if (index >= array->map.max_entries)
630  *     goto out;
631  *   if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
632  *     goto out;
633  *   prog = array->ptrs[index];
634  *   if (prog == NULL)
635  *     goto out;
636  *   goto *(prog->bpf_func + prologue_size);
637  * out:
638  */
639 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
640 					u8 **pprog, bool *callee_regs_used,
641 					u32 stack_depth, u8 *ip,
642 					struct jit_context *ctx)
643 {
644 	int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
645 	u8 *prog = *pprog, *start = *pprog;
646 	int offset;
647 
648 	/*
649 	 * rdi - pointer to ctx
650 	 * rsi - pointer to bpf_array
651 	 * rdx - index in bpf_array
652 	 */
653 
654 	/*
655 	 * if (index >= array->map.max_entries)
656 	 *	goto out;
657 	 */
658 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
659 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
660 	      offsetof(struct bpf_array, map.max_entries));
661 
662 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
663 	EMIT2(X86_JBE, offset);                   /* jbe out */
664 
665 	/*
666 	 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
667 	 *	goto out;
668 	 */
669 	EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
670 	EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
671 
672 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
673 	EMIT2(X86_JAE, offset);                   /* jae out */
674 
675 	/* prog = array->ptrs[index]; */
676 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
677 		    offsetof(struct bpf_array, ptrs));
678 
679 	/*
680 	 * if (prog == NULL)
681 	 *	goto out;
682 	 */
683 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
684 
685 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
686 	EMIT2(X86_JE, offset);                    /* je out */
687 
688 	/* Inc tail_call_cnt if the slot is populated. */
689 	EMIT4(0x48, 0x83, 0x00, 0x01);            /* add qword ptr [rax], 1 */
690 
691 	if (bpf_prog->aux->exception_boundary) {
692 		pop_callee_regs(&prog, all_callee_regs_used);
693 		pop_r12(&prog);
694 	} else {
695 		pop_callee_regs(&prog, callee_regs_used);
696 		if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
697 			pop_r12(&prog);
698 	}
699 
700 	/* Pop tail_call_cnt_ptr. */
701 	EMIT1(0x58);                              /* pop rax */
702 	/* Pop tail_call_cnt, if it's main prog.
703 	 * Pop tail_call_cnt_ptr, if it's subprog.
704 	 */
705 	EMIT1(0x58);                              /* pop rax */
706 	if (stack_depth)
707 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
708 			    round_up(stack_depth, 8));
709 
710 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
711 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
712 	      offsetof(struct bpf_prog, bpf_func));
713 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
714 	      X86_TAIL_CALL_OFFSET);
715 	/*
716 	 * Now we're ready to jump into next BPF program
717 	 * rdi == ctx (1st arg)
718 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
719 	 */
720 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
721 
722 	/* out: */
723 	ctx->tail_call_indirect_label = prog - start;
724 	*pprog = prog;
725 }
726 
727 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
728 				      struct bpf_jit_poke_descriptor *poke,
729 				      u8 **pprog, u8 *ip,
730 				      bool *callee_regs_used, u32 stack_depth,
731 				      struct jit_context *ctx)
732 {
733 	int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
734 	u8 *prog = *pprog, *start = *pprog;
735 	int offset;
736 
737 	/*
738 	 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
739 	 *	goto out;
740 	 */
741 	EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off);   /* mov rax, qword ptr [rbp - tcc_ptr_off] */
742 	EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT);   /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
743 
744 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
745 	EMIT2(X86_JAE, offset);                       /* jae out */
746 
747 	poke->tailcall_bypass = ip + (prog - start);
748 	poke->adj_off = X86_TAIL_CALL_OFFSET;
749 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
750 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
751 
752 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
753 		  poke->tailcall_bypass);
754 
755 	/* Inc tail_call_cnt if the slot is populated. */
756 	EMIT4(0x48, 0x83, 0x00, 0x01);                /* add qword ptr [rax], 1 */
757 
758 	if (bpf_prog->aux->exception_boundary) {
759 		pop_callee_regs(&prog, all_callee_regs_used);
760 		pop_r12(&prog);
761 	} else {
762 		pop_callee_regs(&prog, callee_regs_used);
763 		if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
764 			pop_r12(&prog);
765 	}
766 
767 	/* Pop tail_call_cnt_ptr. */
768 	EMIT1(0x58);                                  /* pop rax */
769 	/* Pop tail_call_cnt, if it's main prog.
770 	 * Pop tail_call_cnt_ptr, if it's subprog.
771 	 */
772 	EMIT1(0x58);                                  /* pop rax */
773 	if (stack_depth)
774 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
775 
776 	emit_nops(&prog, X86_PATCH_SIZE);
777 
778 	/* out: */
779 	ctx->tail_call_direct_label = prog - start;
780 
781 	*pprog = prog;
782 }
783 
784 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
785 {
786 	struct bpf_jit_poke_descriptor *poke;
787 	struct bpf_array *array;
788 	struct bpf_prog *target;
789 	int i, ret;
790 
791 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
792 		poke = &prog->aux->poke_tab[i];
793 		if (poke->aux && poke->aux != prog->aux)
794 			continue;
795 
796 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
797 
798 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
799 			continue;
800 
801 		array = container_of(poke->tail_call.map, struct bpf_array, map);
802 		mutex_lock(&array->aux->poke_mutex);
803 		target = array->ptrs[poke->tail_call.key];
804 		if (target) {
805 			ret = __bpf_arch_text_poke(poke->tailcall_target,
806 						   BPF_MOD_JUMP, NULL,
807 						   (u8 *)target->bpf_func +
808 						   poke->adj_off);
809 			BUG_ON(ret < 0);
810 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
811 						   BPF_MOD_JUMP,
812 						   (u8 *)poke->tailcall_target +
813 						   X86_PATCH_SIZE, NULL);
814 			BUG_ON(ret < 0);
815 		}
816 		WRITE_ONCE(poke->tailcall_target_stable, true);
817 		mutex_unlock(&array->aux->poke_mutex);
818 	}
819 }
820 
821 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
822 			   u32 dst_reg, const u32 imm32)
823 {
824 	u8 *prog = *pprog;
825 	u8 b1, b2, b3;
826 
827 	/*
828 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
829 	 * (which zero-extends imm32) to save 2 bytes.
830 	 */
831 	if (sign_propagate && (s32)imm32 < 0) {
832 		/* 'mov %rax, imm32' sign extends imm32 */
833 		b1 = add_1mod(0x48, dst_reg);
834 		b2 = 0xC7;
835 		b3 = 0xC0;
836 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
837 		goto done;
838 	}
839 
840 	/*
841 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
842 	 * to save 3 bytes.
843 	 */
844 	if (imm32 == 0) {
845 		if (is_ereg(dst_reg))
846 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
847 		b2 = 0x31; /* xor */
848 		b3 = 0xC0;
849 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
850 		goto done;
851 	}
852 
853 	/* mov %eax, imm32 */
854 	if (is_ereg(dst_reg))
855 		EMIT1(add_1mod(0x40, dst_reg));
856 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
857 done:
858 	*pprog = prog;
859 }
860 
861 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
862 			   const u32 imm32_hi, const u32 imm32_lo)
863 {
864 	u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
865 	u8 *prog = *pprog;
866 
867 	if (is_uimm32(imm64)) {
868 		/*
869 		 * For emitting plain u32, where sign bit must not be
870 		 * propagated LLVM tends to load imm64 over mov32
871 		 * directly, so save couple of bytes by just doing
872 		 * 'mov %eax, imm32' instead.
873 		 */
874 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
875 	} else if (is_simm32(imm64)) {
876 		emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
877 	} else {
878 		/* movabsq rax, imm64 */
879 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
880 		EMIT(imm32_lo, 4);
881 		EMIT(imm32_hi, 4);
882 	}
883 
884 	*pprog = prog;
885 }
886 
887 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
888 {
889 	u8 *prog = *pprog;
890 
891 	if (is64) {
892 		/* mov dst, src */
893 		EMIT_mov(dst_reg, src_reg);
894 	} else {
895 		/* mov32 dst, src */
896 		if (is_ereg(dst_reg) || is_ereg(src_reg))
897 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
898 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
899 	}
900 
901 	*pprog = prog;
902 }
903 
904 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
905 			   u32 src_reg)
906 {
907 	u8 *prog = *pprog;
908 
909 	if (is64) {
910 		/* movs[b,w,l]q dst, src */
911 		if (num_bits == 8)
912 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
913 			      add_2reg(0xC0, src_reg, dst_reg));
914 		else if (num_bits == 16)
915 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
916 			      add_2reg(0xC0, src_reg, dst_reg));
917 		else if (num_bits == 32)
918 			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
919 			      add_2reg(0xC0, src_reg, dst_reg));
920 	} else {
921 		/* movs[b,w]l dst, src */
922 		if (num_bits == 8) {
923 			EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
924 			      add_2reg(0xC0, src_reg, dst_reg));
925 		} else if (num_bits == 16) {
926 			if (is_ereg(dst_reg) || is_ereg(src_reg))
927 				EMIT1(add_2mod(0x40, src_reg, dst_reg));
928 			EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
929 			      add_2reg(0xC0, src_reg, dst_reg));
930 		}
931 	}
932 
933 	*pprog = prog;
934 }
935 
936 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
937 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
938 {
939 	u8 *prog = *pprog;
940 
941 	if (is_imm8(off)) {
942 		/* 1-byte signed displacement.
943 		 *
944 		 * If off == 0 we could skip this and save one extra byte, but
945 		 * special case of x86 R13 which always needs an offset is not
946 		 * worth the hassle
947 		 */
948 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
949 	} else {
950 		/* 4-byte signed displacement */
951 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
952 	}
953 	*pprog = prog;
954 }
955 
956 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
957 {
958 	u8 *prog = *pprog;
959 
960 	if (is_imm8(off)) {
961 		EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
962 	} else {
963 		EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
964 	}
965 	*pprog = prog;
966 }
967 
968 /*
969  * Emit a REX byte if it will be necessary to address these registers
970  */
971 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
972 {
973 	u8 *prog = *pprog;
974 
975 	if (is64)
976 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
977 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
978 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
979 	*pprog = prog;
980 }
981 
982 /*
983  * Similar version of maybe_emit_mod() for a single register
984  */
985 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
986 {
987 	u8 *prog = *pprog;
988 
989 	if (is64)
990 		EMIT1(add_1mod(0x48, reg));
991 	else if (is_ereg(reg))
992 		EMIT1(add_1mod(0x40, reg));
993 	*pprog = prog;
994 }
995 
996 /* LDX: dst_reg = *(u8*)(src_reg + off) */
997 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
998 {
999 	u8 *prog = *pprog;
1000 
1001 	switch (size) {
1002 	case BPF_B:
1003 		/* Emit 'movzx rax, byte ptr [rax + off]' */
1004 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1005 		break;
1006 	case BPF_H:
1007 		/* Emit 'movzx rax, word ptr [rax + off]' */
1008 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1009 		break;
1010 	case BPF_W:
1011 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
1012 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1013 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1014 		else
1015 			EMIT1(0x8B);
1016 		break;
1017 	case BPF_DW:
1018 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
1019 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1020 		break;
1021 	}
1022 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
1023 	*pprog = prog;
1024 }
1025 
1026 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
1027 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1028 {
1029 	u8 *prog = *pprog;
1030 
1031 	switch (size) {
1032 	case BPF_B:
1033 		/* Emit 'movsx rax, byte ptr [rax + off]' */
1034 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1035 		break;
1036 	case BPF_H:
1037 		/* Emit 'movsx rax, word ptr [rax + off]' */
1038 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1039 		break;
1040 	case BPF_W:
1041 		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
1042 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1043 		break;
1044 	}
1045 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
1046 	*pprog = prog;
1047 }
1048 
1049 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1050 {
1051 	u8 *prog = *pprog;
1052 
1053 	switch (size) {
1054 	case BPF_B:
1055 		/* movzx rax, byte ptr [rax + r12 + off] */
1056 		EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1057 		break;
1058 	case BPF_H:
1059 		/* movzx rax, word ptr [rax + r12 + off] */
1060 		EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1061 		break;
1062 	case BPF_W:
1063 		/* mov eax, dword ptr [rax + r12 + off] */
1064 		EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1065 		break;
1066 	case BPF_DW:
1067 		/* mov rax, qword ptr [rax + r12 + off] */
1068 		EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1069 		break;
1070 	}
1071 	emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1072 	*pprog = prog;
1073 }
1074 
1075 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1076 {
1077 	emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1078 }
1079 
1080 /* STX: *(u8*)(dst_reg + off) = src_reg */
1081 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1082 {
1083 	u8 *prog = *pprog;
1084 
1085 	switch (size) {
1086 	case BPF_B:
1087 		/* Emit 'mov byte ptr [rax + off], al' */
1088 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1089 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1090 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1091 		else
1092 			EMIT1(0x88);
1093 		break;
1094 	case BPF_H:
1095 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1096 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1097 		else
1098 			EMIT2(0x66, 0x89);
1099 		break;
1100 	case BPF_W:
1101 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1102 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1103 		else
1104 			EMIT1(0x89);
1105 		break;
1106 	case BPF_DW:
1107 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1108 		break;
1109 	}
1110 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1111 	*pprog = prog;
1112 }
1113 
1114 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
1115 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1116 {
1117 	u8 *prog = *pprog;
1118 
1119 	switch (size) {
1120 	case BPF_B:
1121 		/* mov byte ptr [rax + r12 + off], al */
1122 		EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1123 		break;
1124 	case BPF_H:
1125 		/* mov word ptr [rax + r12 + off], ax */
1126 		EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1127 		break;
1128 	case BPF_W:
1129 		/* mov dword ptr [rax + r12 + 1], eax */
1130 		EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1131 		break;
1132 	case BPF_DW:
1133 		/* mov qword ptr [rax + r12 + 1], rax */
1134 		EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1135 		break;
1136 	}
1137 	emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1138 	*pprog = prog;
1139 }
1140 
1141 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1142 {
1143 	emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1144 }
1145 
1146 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
1147 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1148 {
1149 	u8 *prog = *pprog;
1150 
1151 	switch (size) {
1152 	case BPF_B:
1153 		/* mov byte ptr [rax + r12 + off], imm8 */
1154 		EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1155 		break;
1156 	case BPF_H:
1157 		/* mov word ptr [rax + r12 + off], imm16 */
1158 		EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1159 		break;
1160 	case BPF_W:
1161 		/* mov dword ptr [rax + r12 + 1], imm32 */
1162 		EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1163 		break;
1164 	case BPF_DW:
1165 		/* mov qword ptr [rax + r12 + 1], imm32 */
1166 		EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1167 		break;
1168 	}
1169 	emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1170 	EMIT(imm, bpf_size_to_x86_bytes(size));
1171 	*pprog = prog;
1172 }
1173 
1174 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1175 {
1176 	emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1177 }
1178 
1179 static int emit_atomic(u8 **pprog, u8 atomic_op,
1180 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1181 {
1182 	u8 *prog = *pprog;
1183 
1184 	EMIT1(0xF0); /* lock prefix */
1185 
1186 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1187 
1188 	/* emit opcode */
1189 	switch (atomic_op) {
1190 	case BPF_ADD:
1191 	case BPF_AND:
1192 	case BPF_OR:
1193 	case BPF_XOR:
1194 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1195 		EMIT1(simple_alu_opcodes[atomic_op]);
1196 		break;
1197 	case BPF_ADD | BPF_FETCH:
1198 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1199 		EMIT2(0x0F, 0xC1);
1200 		break;
1201 	case BPF_XCHG:
1202 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1203 		EMIT1(0x87);
1204 		break;
1205 	case BPF_CMPXCHG:
1206 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1207 		EMIT2(0x0F, 0xB1);
1208 		break;
1209 	default:
1210 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1211 		return -EFAULT;
1212 	}
1213 
1214 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1215 
1216 	*pprog = prog;
1217 	return 0;
1218 }
1219 
1220 static int emit_atomic_index(u8 **pprog, u8 atomic_op, u32 size,
1221 			     u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1222 {
1223 	u8 *prog = *pprog;
1224 
1225 	EMIT1(0xF0); /* lock prefix */
1226 	switch (size) {
1227 	case BPF_W:
1228 		EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1229 		break;
1230 	case BPF_DW:
1231 		EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1232 		break;
1233 	default:
1234 		pr_err("bpf_jit: 1 and 2 byte atomics are not supported\n");
1235 		return -EFAULT;
1236 	}
1237 
1238 	/* emit opcode */
1239 	switch (atomic_op) {
1240 	case BPF_ADD:
1241 	case BPF_AND:
1242 	case BPF_OR:
1243 	case BPF_XOR:
1244 		/* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1245 		EMIT1(simple_alu_opcodes[atomic_op]);
1246 		break;
1247 	case BPF_ADD | BPF_FETCH:
1248 		/* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1249 		EMIT2(0x0F, 0xC1);
1250 		break;
1251 	case BPF_XCHG:
1252 		/* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1253 		EMIT1(0x87);
1254 		break;
1255 	case BPF_CMPXCHG:
1256 		/* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1257 		EMIT2(0x0F, 0xB1);
1258 		break;
1259 	default:
1260 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1261 		return -EFAULT;
1262 	}
1263 	emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1264 	*pprog = prog;
1265 	return 0;
1266 }
1267 
1268 #define DONT_CLEAR 1
1269 
1270 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1271 {
1272 	u32 reg = x->fixup >> 8;
1273 
1274 	/* jump over faulting load and clear dest register */
1275 	if (reg != DONT_CLEAR)
1276 		*(unsigned long *)((void *)regs + reg) = 0;
1277 	regs->ip += x->fixup & 0xff;
1278 	return true;
1279 }
1280 
1281 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1282 			     bool *regs_used)
1283 {
1284 	int i;
1285 
1286 	for (i = 1; i <= insn_cnt; i++, insn++) {
1287 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1288 			regs_used[0] = true;
1289 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1290 			regs_used[1] = true;
1291 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1292 			regs_used[2] = true;
1293 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1294 			regs_used[3] = true;
1295 	}
1296 }
1297 
1298 /* emit the 3-byte VEX prefix
1299  *
1300  * r: same as rex.r, extra bit for ModRM reg field
1301  * x: same as rex.x, extra bit for SIB index field
1302  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1303  * m: opcode map select, encoding escape bytes e.g. 0x0f38
1304  * w: same as rex.w (32 bit or 64 bit) or opcode specific
1305  * src_reg2: additional source reg (encoded as BPF reg)
1306  * l: vector length (128 bit or 256 bit) or reserved
1307  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1308  */
1309 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1310 		      bool w, u8 src_reg2, bool l, u8 pp)
1311 {
1312 	u8 *prog = *pprog;
1313 	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1314 	u8 b1, b2;
1315 	u8 vvvv = reg2hex[src_reg2];
1316 
1317 	/* reg2hex gives only the lower 3 bit of vvvv */
1318 	if (is_ereg(src_reg2))
1319 		vvvv |= 1 << 3;
1320 
1321 	/*
1322 	 * 2nd byte of 3-byte VEX prefix
1323 	 * ~ means bit inverted encoding
1324 	 *
1325 	 *    7                           0
1326 	 *  +---+---+---+---+---+---+---+---+
1327 	 *  |~R |~X |~B |         m         |
1328 	 *  +---+---+---+---+---+---+---+---+
1329 	 */
1330 	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1331 	/*
1332 	 * 3rd byte of 3-byte VEX prefix
1333 	 *
1334 	 *    7                           0
1335 	 *  +---+---+---+---+---+---+---+---+
1336 	 *  | W |     ~vvvv     | L |   pp  |
1337 	 *  +---+---+---+---+---+---+---+---+
1338 	 */
1339 	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1340 
1341 	EMIT3(b0, b1, b2);
1342 	*pprog = prog;
1343 }
1344 
1345 /* emit BMI2 shift instruction */
1346 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1347 {
1348 	u8 *prog = *pprog;
1349 	bool r = is_ereg(dst_reg);
1350 	u8 m = 2; /* escape code 0f38 */
1351 
1352 	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1353 	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1354 	*pprog = prog;
1355 }
1356 
1357 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1358 
1359 #define __LOAD_TCC_PTR(off)			\
1360 	EMIT3_off32(0x48, 0x8B, 0x85, off)
1361 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1362 #define LOAD_TAIL_CALL_CNT_PTR(stack)				\
1363 	__LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1364 
1365 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1366 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
1367 {
1368 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1369 	struct bpf_insn *insn = bpf_prog->insnsi;
1370 	bool callee_regs_used[4] = {};
1371 	int insn_cnt = bpf_prog->len;
1372 	bool seen_exit = false;
1373 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1374 	u64 arena_vm_start, user_vm_start;
1375 	int i, excnt = 0;
1376 	int ilen, proglen = 0;
1377 	u8 *prog = temp;
1378 	int err;
1379 
1380 	arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1381 	user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1382 
1383 	detect_reg_usage(insn, insn_cnt, callee_regs_used);
1384 
1385 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
1386 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1387 		      bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1388 	/* Exception callback will clobber callee regs for its own use, and
1389 	 * restore the original callee regs from main prog's stack frame.
1390 	 */
1391 	if (bpf_prog->aux->exception_boundary) {
1392 		/* We also need to save r12, which is not mapped to any BPF
1393 		 * register, as we throw after entry into the kernel, which may
1394 		 * overwrite r12.
1395 		 */
1396 		push_r12(&prog);
1397 		push_callee_regs(&prog, all_callee_regs_used);
1398 	} else {
1399 		if (arena_vm_start)
1400 			push_r12(&prog);
1401 		push_callee_regs(&prog, callee_regs_used);
1402 	}
1403 	if (arena_vm_start)
1404 		emit_mov_imm64(&prog, X86_REG_R12,
1405 			       arena_vm_start >> 32, (u32) arena_vm_start);
1406 
1407 	ilen = prog - temp;
1408 	if (rw_image)
1409 		memcpy(rw_image + proglen, temp, ilen);
1410 	proglen += ilen;
1411 	addrs[0] = proglen;
1412 	prog = temp;
1413 
1414 	for (i = 1; i <= insn_cnt; i++, insn++) {
1415 		const s32 imm32 = insn->imm;
1416 		u32 dst_reg = insn->dst_reg;
1417 		u32 src_reg = insn->src_reg;
1418 		u8 b2 = 0, b3 = 0;
1419 		u8 *start_of_ldx;
1420 		s64 jmp_offset;
1421 		s16 insn_off;
1422 		u8 jmp_cond;
1423 		u8 *func;
1424 		int nops;
1425 
1426 		switch (insn->code) {
1427 			/* ALU */
1428 		case BPF_ALU | BPF_ADD | BPF_X:
1429 		case BPF_ALU | BPF_SUB | BPF_X:
1430 		case BPF_ALU | BPF_AND | BPF_X:
1431 		case BPF_ALU | BPF_OR | BPF_X:
1432 		case BPF_ALU | BPF_XOR | BPF_X:
1433 		case BPF_ALU64 | BPF_ADD | BPF_X:
1434 		case BPF_ALU64 | BPF_SUB | BPF_X:
1435 		case BPF_ALU64 | BPF_AND | BPF_X:
1436 		case BPF_ALU64 | BPF_OR | BPF_X:
1437 		case BPF_ALU64 | BPF_XOR | BPF_X:
1438 			maybe_emit_mod(&prog, dst_reg, src_reg,
1439 				       BPF_CLASS(insn->code) == BPF_ALU64);
1440 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1441 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1442 			break;
1443 
1444 		case BPF_ALU64 | BPF_MOV | BPF_X:
1445 			if (insn_is_cast_user(insn)) {
1446 				if (dst_reg != src_reg)
1447 					/* 32-bit mov */
1448 					emit_mov_reg(&prog, false, dst_reg, src_reg);
1449 				/* shl dst_reg, 32 */
1450 				maybe_emit_1mod(&prog, dst_reg, true);
1451 				EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1452 
1453 				/* or dst_reg, user_vm_start */
1454 				maybe_emit_1mod(&prog, dst_reg, true);
1455 				if (is_axreg(dst_reg))
1456 					EMIT1_off32(0x0D,  user_vm_start >> 32);
1457 				else
1458 					EMIT2_off32(0x81, add_1reg(0xC8, dst_reg),  user_vm_start >> 32);
1459 
1460 				/* rol dst_reg, 32 */
1461 				maybe_emit_1mod(&prog, dst_reg, true);
1462 				EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1463 
1464 				/* xor r11, r11 */
1465 				EMIT3(0x4D, 0x31, 0xDB);
1466 
1467 				/* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1468 				maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1469 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1470 
1471 				/* cmove r11, dst_reg; if so, set dst_reg to zero */
1472 				/* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1473 				maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1474 				EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1475 				break;
1476 			} else if (insn_is_mov_percpu_addr(insn)) {
1477 				/* mov <dst>, <src> (if necessary) */
1478 				EMIT_mov(dst_reg, src_reg);
1479 #ifdef CONFIG_SMP
1480 				/* add <dst>, gs:[<off>] */
1481 				EMIT2(0x65, add_1mod(0x48, dst_reg));
1482 				EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1483 				EMIT((u32)(unsigned long)&this_cpu_off, 4);
1484 #endif
1485 				break;
1486 			}
1487 			fallthrough;
1488 		case BPF_ALU | BPF_MOV | BPF_X:
1489 			if (insn->off == 0)
1490 				emit_mov_reg(&prog,
1491 					     BPF_CLASS(insn->code) == BPF_ALU64,
1492 					     dst_reg, src_reg);
1493 			else
1494 				emit_movsx_reg(&prog, insn->off,
1495 					       BPF_CLASS(insn->code) == BPF_ALU64,
1496 					       dst_reg, src_reg);
1497 			break;
1498 
1499 			/* neg dst */
1500 		case BPF_ALU | BPF_NEG:
1501 		case BPF_ALU64 | BPF_NEG:
1502 			maybe_emit_1mod(&prog, dst_reg,
1503 					BPF_CLASS(insn->code) == BPF_ALU64);
1504 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1505 			break;
1506 
1507 		case BPF_ALU | BPF_ADD | BPF_K:
1508 		case BPF_ALU | BPF_SUB | BPF_K:
1509 		case BPF_ALU | BPF_AND | BPF_K:
1510 		case BPF_ALU | BPF_OR | BPF_K:
1511 		case BPF_ALU | BPF_XOR | BPF_K:
1512 		case BPF_ALU64 | BPF_ADD | BPF_K:
1513 		case BPF_ALU64 | BPF_SUB | BPF_K:
1514 		case BPF_ALU64 | BPF_AND | BPF_K:
1515 		case BPF_ALU64 | BPF_OR | BPF_K:
1516 		case BPF_ALU64 | BPF_XOR | BPF_K:
1517 			maybe_emit_1mod(&prog, dst_reg,
1518 					BPF_CLASS(insn->code) == BPF_ALU64);
1519 
1520 			/*
1521 			 * b3 holds 'normal' opcode, b2 short form only valid
1522 			 * in case dst is eax/rax.
1523 			 */
1524 			switch (BPF_OP(insn->code)) {
1525 			case BPF_ADD:
1526 				b3 = 0xC0;
1527 				b2 = 0x05;
1528 				break;
1529 			case BPF_SUB:
1530 				b3 = 0xE8;
1531 				b2 = 0x2D;
1532 				break;
1533 			case BPF_AND:
1534 				b3 = 0xE0;
1535 				b2 = 0x25;
1536 				break;
1537 			case BPF_OR:
1538 				b3 = 0xC8;
1539 				b2 = 0x0D;
1540 				break;
1541 			case BPF_XOR:
1542 				b3 = 0xF0;
1543 				b2 = 0x35;
1544 				break;
1545 			}
1546 
1547 			if (is_imm8(imm32))
1548 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1549 			else if (is_axreg(dst_reg))
1550 				EMIT1_off32(b2, imm32);
1551 			else
1552 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1553 			break;
1554 
1555 		case BPF_ALU64 | BPF_MOV | BPF_K:
1556 		case BPF_ALU | BPF_MOV | BPF_K:
1557 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1558 				       dst_reg, imm32);
1559 			break;
1560 
1561 		case BPF_LD | BPF_IMM | BPF_DW:
1562 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1563 			insn++;
1564 			i++;
1565 			break;
1566 
1567 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1568 		case BPF_ALU | BPF_MOD | BPF_X:
1569 		case BPF_ALU | BPF_DIV | BPF_X:
1570 		case BPF_ALU | BPF_MOD | BPF_K:
1571 		case BPF_ALU | BPF_DIV | BPF_K:
1572 		case BPF_ALU64 | BPF_MOD | BPF_X:
1573 		case BPF_ALU64 | BPF_DIV | BPF_X:
1574 		case BPF_ALU64 | BPF_MOD | BPF_K:
1575 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1576 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1577 
1578 			if (dst_reg != BPF_REG_0)
1579 				EMIT1(0x50); /* push rax */
1580 			if (dst_reg != BPF_REG_3)
1581 				EMIT1(0x52); /* push rdx */
1582 
1583 			if (BPF_SRC(insn->code) == BPF_X) {
1584 				if (src_reg == BPF_REG_0 ||
1585 				    src_reg == BPF_REG_3) {
1586 					/* mov r11, src_reg */
1587 					EMIT_mov(AUX_REG, src_reg);
1588 					src_reg = AUX_REG;
1589 				}
1590 			} else {
1591 				/* mov r11, imm32 */
1592 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1593 				src_reg = AUX_REG;
1594 			}
1595 
1596 			if (dst_reg != BPF_REG_0)
1597 				/* mov rax, dst_reg */
1598 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1599 
1600 			if (insn->off == 0) {
1601 				/*
1602 				 * xor edx, edx
1603 				 * equivalent to 'xor rdx, rdx', but one byte less
1604 				 */
1605 				EMIT2(0x31, 0xd2);
1606 
1607 				/* div src_reg */
1608 				maybe_emit_1mod(&prog, src_reg, is64);
1609 				EMIT2(0xF7, add_1reg(0xF0, src_reg));
1610 			} else {
1611 				if (BPF_CLASS(insn->code) == BPF_ALU)
1612 					EMIT1(0x99); /* cdq */
1613 				else
1614 					EMIT2(0x48, 0x99); /* cqo */
1615 
1616 				/* idiv src_reg */
1617 				maybe_emit_1mod(&prog, src_reg, is64);
1618 				EMIT2(0xF7, add_1reg(0xF8, src_reg));
1619 			}
1620 
1621 			if (BPF_OP(insn->code) == BPF_MOD &&
1622 			    dst_reg != BPF_REG_3)
1623 				/* mov dst_reg, rdx */
1624 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1625 			else if (BPF_OP(insn->code) == BPF_DIV &&
1626 				 dst_reg != BPF_REG_0)
1627 				/* mov dst_reg, rax */
1628 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1629 
1630 			if (dst_reg != BPF_REG_3)
1631 				EMIT1(0x5A); /* pop rdx */
1632 			if (dst_reg != BPF_REG_0)
1633 				EMIT1(0x58); /* pop rax */
1634 			break;
1635 		}
1636 
1637 		case BPF_ALU | BPF_MUL | BPF_K:
1638 		case BPF_ALU64 | BPF_MUL | BPF_K:
1639 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1640 				       BPF_CLASS(insn->code) == BPF_ALU64);
1641 
1642 			if (is_imm8(imm32))
1643 				/* imul dst_reg, dst_reg, imm8 */
1644 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1645 				      imm32);
1646 			else
1647 				/* imul dst_reg, dst_reg, imm32 */
1648 				EMIT2_off32(0x69,
1649 					    add_2reg(0xC0, dst_reg, dst_reg),
1650 					    imm32);
1651 			break;
1652 
1653 		case BPF_ALU | BPF_MUL | BPF_X:
1654 		case BPF_ALU64 | BPF_MUL | BPF_X:
1655 			maybe_emit_mod(&prog, src_reg, dst_reg,
1656 				       BPF_CLASS(insn->code) == BPF_ALU64);
1657 
1658 			/* imul dst_reg, src_reg */
1659 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1660 			break;
1661 
1662 			/* Shifts */
1663 		case BPF_ALU | BPF_LSH | BPF_K:
1664 		case BPF_ALU | BPF_RSH | BPF_K:
1665 		case BPF_ALU | BPF_ARSH | BPF_K:
1666 		case BPF_ALU64 | BPF_LSH | BPF_K:
1667 		case BPF_ALU64 | BPF_RSH | BPF_K:
1668 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1669 			maybe_emit_1mod(&prog, dst_reg,
1670 					BPF_CLASS(insn->code) == BPF_ALU64);
1671 
1672 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1673 			if (imm32 == 1)
1674 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1675 			else
1676 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1677 			break;
1678 
1679 		case BPF_ALU | BPF_LSH | BPF_X:
1680 		case BPF_ALU | BPF_RSH | BPF_X:
1681 		case BPF_ALU | BPF_ARSH | BPF_X:
1682 		case BPF_ALU64 | BPF_LSH | BPF_X:
1683 		case BPF_ALU64 | BPF_RSH | BPF_X:
1684 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1685 			/* BMI2 shifts aren't better when shift count is already in rcx */
1686 			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1687 				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1688 				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1689 				u8 op;
1690 
1691 				switch (BPF_OP(insn->code)) {
1692 				case BPF_LSH:
1693 					op = 1; /* prefix 0x66 */
1694 					break;
1695 				case BPF_RSH:
1696 					op = 3; /* prefix 0xf2 */
1697 					break;
1698 				case BPF_ARSH:
1699 					op = 2; /* prefix 0xf3 */
1700 					break;
1701 				}
1702 
1703 				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1704 
1705 				break;
1706 			}
1707 
1708 			if (src_reg != BPF_REG_4) { /* common case */
1709 				/* Check for bad case when dst_reg == rcx */
1710 				if (dst_reg == BPF_REG_4) {
1711 					/* mov r11, dst_reg */
1712 					EMIT_mov(AUX_REG, dst_reg);
1713 					dst_reg = AUX_REG;
1714 				} else {
1715 					EMIT1(0x51); /* push rcx */
1716 				}
1717 				/* mov rcx, src_reg */
1718 				EMIT_mov(BPF_REG_4, src_reg);
1719 			}
1720 
1721 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1722 			maybe_emit_1mod(&prog, dst_reg,
1723 					BPF_CLASS(insn->code) == BPF_ALU64);
1724 
1725 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1726 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1727 
1728 			if (src_reg != BPF_REG_4) {
1729 				if (insn->dst_reg == BPF_REG_4)
1730 					/* mov dst_reg, r11 */
1731 					EMIT_mov(insn->dst_reg, AUX_REG);
1732 				else
1733 					EMIT1(0x59); /* pop rcx */
1734 			}
1735 
1736 			break;
1737 
1738 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1739 		case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1740 			switch (imm32) {
1741 			case 16:
1742 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1743 				EMIT1(0x66);
1744 				if (is_ereg(dst_reg))
1745 					EMIT1(0x41);
1746 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1747 
1748 				/* Emit 'movzwl eax, ax' */
1749 				if (is_ereg(dst_reg))
1750 					EMIT3(0x45, 0x0F, 0xB7);
1751 				else
1752 					EMIT2(0x0F, 0xB7);
1753 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1754 				break;
1755 			case 32:
1756 				/* Emit 'bswap eax' to swap lower 4 bytes */
1757 				if (is_ereg(dst_reg))
1758 					EMIT2(0x41, 0x0F);
1759 				else
1760 					EMIT1(0x0F);
1761 				EMIT1(add_1reg(0xC8, dst_reg));
1762 				break;
1763 			case 64:
1764 				/* Emit 'bswap rax' to swap 8 bytes */
1765 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1766 				      add_1reg(0xC8, dst_reg));
1767 				break;
1768 			}
1769 			break;
1770 
1771 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1772 			switch (imm32) {
1773 			case 16:
1774 				/*
1775 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1776 				 * into 64 bit
1777 				 */
1778 				if (is_ereg(dst_reg))
1779 					EMIT3(0x45, 0x0F, 0xB7);
1780 				else
1781 					EMIT2(0x0F, 0xB7);
1782 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1783 				break;
1784 			case 32:
1785 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1786 				if (is_ereg(dst_reg))
1787 					EMIT1(0x45);
1788 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1789 				break;
1790 			case 64:
1791 				/* nop */
1792 				break;
1793 			}
1794 			break;
1795 
1796 			/* speculation barrier */
1797 		case BPF_ST | BPF_NOSPEC:
1798 			EMIT_LFENCE();
1799 			break;
1800 
1801 			/* ST: *(u8*)(dst_reg + off) = imm */
1802 		case BPF_ST | BPF_MEM | BPF_B:
1803 			if (is_ereg(dst_reg))
1804 				EMIT2(0x41, 0xC6);
1805 			else
1806 				EMIT1(0xC6);
1807 			goto st;
1808 		case BPF_ST | BPF_MEM | BPF_H:
1809 			if (is_ereg(dst_reg))
1810 				EMIT3(0x66, 0x41, 0xC7);
1811 			else
1812 				EMIT2(0x66, 0xC7);
1813 			goto st;
1814 		case BPF_ST | BPF_MEM | BPF_W:
1815 			if (is_ereg(dst_reg))
1816 				EMIT2(0x41, 0xC7);
1817 			else
1818 				EMIT1(0xC7);
1819 			goto st;
1820 		case BPF_ST | BPF_MEM | BPF_DW:
1821 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1822 
1823 st:			if (is_imm8(insn->off))
1824 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1825 			else
1826 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1827 
1828 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1829 			break;
1830 
1831 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1832 		case BPF_STX | BPF_MEM | BPF_B:
1833 		case BPF_STX | BPF_MEM | BPF_H:
1834 		case BPF_STX | BPF_MEM | BPF_W:
1835 		case BPF_STX | BPF_MEM | BPF_DW:
1836 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1837 			break;
1838 
1839 		case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1840 		case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1841 		case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1842 		case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1843 			start_of_ldx = prog;
1844 			emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
1845 			goto populate_extable;
1846 
1847 			/* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
1848 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1849 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1850 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1851 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1852 		case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1853 		case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1854 		case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1855 		case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1856 			start_of_ldx = prog;
1857 			if (BPF_CLASS(insn->code) == BPF_LDX)
1858 				emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1859 			else
1860 				emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1861 populate_extable:
1862 			{
1863 				struct exception_table_entry *ex;
1864 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1865 				s64 delta;
1866 
1867 				if (!bpf_prog->aux->extable)
1868 					break;
1869 
1870 				if (excnt >= bpf_prog->aux->num_exentries) {
1871 					pr_err("mem32 extable bug\n");
1872 					return -EFAULT;
1873 				}
1874 				ex = &bpf_prog->aux->extable[excnt++];
1875 
1876 				delta = _insn - (u8 *)&ex->insn;
1877 				/* switch ex to rw buffer for writes */
1878 				ex = (void *)rw_image + ((void *)ex - (void *)image);
1879 
1880 				ex->insn = delta;
1881 
1882 				ex->data = EX_TYPE_BPF;
1883 
1884 				ex->fixup = (prog - start_of_ldx) |
1885 					((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8);
1886 			}
1887 			break;
1888 
1889 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1890 		case BPF_LDX | BPF_MEM | BPF_B:
1891 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1892 		case BPF_LDX | BPF_MEM | BPF_H:
1893 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1894 		case BPF_LDX | BPF_MEM | BPF_W:
1895 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1896 		case BPF_LDX | BPF_MEM | BPF_DW:
1897 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1898 			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
1899 		case BPF_LDX | BPF_MEMSX | BPF_B:
1900 		case BPF_LDX | BPF_MEMSX | BPF_H:
1901 		case BPF_LDX | BPF_MEMSX | BPF_W:
1902 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1903 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1904 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1905 			insn_off = insn->off;
1906 
1907 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1908 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1909 				/* Conservatively check that src_reg + insn->off is a kernel address:
1910 				 *   src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
1911 				 *   and
1912 				 *   src_reg + insn->off < VSYSCALL_ADDR
1913 				 */
1914 
1915 				u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
1916 				u8 *end_of_jmp;
1917 
1918 				/* movabsq r10, VSYSCALL_ADDR */
1919 				emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
1920 					       (u32)(long)VSYSCALL_ADDR);
1921 
1922 				/* mov src_reg, r11 */
1923 				EMIT_mov(AUX_REG, src_reg);
1924 
1925 				if (insn->off) {
1926 					/* add r11, insn->off */
1927 					maybe_emit_1mod(&prog, AUX_REG, true);
1928 					EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1929 				}
1930 
1931 				/* sub r11, r10 */
1932 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
1933 				EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
1934 
1935 				/* movabsq r10, limit */
1936 				emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
1937 					       (u32)(long)limit);
1938 
1939 				/* cmp r10, r11 */
1940 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
1941 				EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
1942 
1943 				/* if unsigned '>', goto load */
1944 				EMIT2(X86_JA, 0);
1945 				end_of_jmp = prog;
1946 
1947 				/* xor dst_reg, dst_reg */
1948 				emit_mov_imm32(&prog, false, dst_reg, 0);
1949 				/* jmp byte_after_ldx */
1950 				EMIT2(0xEB, 0);
1951 
1952 				/* populate jmp_offset for JAE above to jump to start_of_ldx */
1953 				start_of_ldx = prog;
1954 				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1955 			}
1956 			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1957 			    BPF_MODE(insn->code) == BPF_MEMSX)
1958 				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1959 			else
1960 				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1961 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1962 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1963 				struct exception_table_entry *ex;
1964 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1965 				s64 delta;
1966 
1967 				/* populate jmp_offset for JMP above */
1968 				start_of_ldx[-1] = prog - start_of_ldx;
1969 
1970 				if (!bpf_prog->aux->extable)
1971 					break;
1972 
1973 				if (excnt >= bpf_prog->aux->num_exentries) {
1974 					pr_err("ex gen bug\n");
1975 					return -EFAULT;
1976 				}
1977 				ex = &bpf_prog->aux->extable[excnt++];
1978 
1979 				delta = _insn - (u8 *)&ex->insn;
1980 				if (!is_simm32(delta)) {
1981 					pr_err("extable->insn doesn't fit into 32-bit\n");
1982 					return -EFAULT;
1983 				}
1984 				/* switch ex to rw buffer for writes */
1985 				ex = (void *)rw_image + ((void *)ex - (void *)image);
1986 
1987 				ex->insn = delta;
1988 
1989 				ex->data = EX_TYPE_BPF;
1990 
1991 				if (dst_reg > BPF_REG_9) {
1992 					pr_err("verifier error\n");
1993 					return -EFAULT;
1994 				}
1995 				/*
1996 				 * Compute size of x86 insn and its target dest x86 register.
1997 				 * ex_handler_bpf() will use lower 8 bits to adjust
1998 				 * pt_regs->ip to jump over this x86 instruction
1999 				 * and upper bits to figure out which pt_regs to zero out.
2000 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2001 				 * of 4 bytes will be ignored and rbx will be zero inited.
2002 				 */
2003 				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
2004 			}
2005 			break;
2006 
2007 		case BPF_STX | BPF_ATOMIC | BPF_W:
2008 		case BPF_STX | BPF_ATOMIC | BPF_DW:
2009 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
2010 			    insn->imm == (BPF_OR | BPF_FETCH) ||
2011 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
2012 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2013 				u32 real_src_reg = src_reg;
2014 				u32 real_dst_reg = dst_reg;
2015 				u8 *branch_target;
2016 
2017 				/*
2018 				 * Can't be implemented with a single x86 insn.
2019 				 * Need to do a CMPXCHG loop.
2020 				 */
2021 
2022 				/* Will need RAX as a CMPXCHG operand so save R0 */
2023 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2024 				if (src_reg == BPF_REG_0)
2025 					real_src_reg = BPF_REG_AX;
2026 				if (dst_reg == BPF_REG_0)
2027 					real_dst_reg = BPF_REG_AX;
2028 
2029 				branch_target = prog;
2030 				/* Load old value */
2031 				emit_ldx(&prog, BPF_SIZE(insn->code),
2032 					 BPF_REG_0, real_dst_reg, insn->off);
2033 				/*
2034 				 * Perform the (commutative) operation locally,
2035 				 * put the result in the AUX_REG.
2036 				 */
2037 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2038 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2039 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2040 				      add_2reg(0xC0, AUX_REG, real_src_reg));
2041 				/* Attempt to swap in new value */
2042 				err = emit_atomic(&prog, BPF_CMPXCHG,
2043 						  real_dst_reg, AUX_REG,
2044 						  insn->off,
2045 						  BPF_SIZE(insn->code));
2046 				if (WARN_ON(err))
2047 					return err;
2048 				/*
2049 				 * ZF tells us whether we won the race. If it's
2050 				 * cleared we need to try again.
2051 				 */
2052 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
2053 				/* Return the pre-modification value */
2054 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2055 				/* Restore R0 after clobbering RAX */
2056 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2057 				break;
2058 			}
2059 
2060 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
2061 					  insn->off, BPF_SIZE(insn->code));
2062 			if (err)
2063 				return err;
2064 			break;
2065 
2066 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2067 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2068 			start_of_ldx = prog;
2069 			err = emit_atomic_index(&prog, insn->imm, BPF_SIZE(insn->code),
2070 						dst_reg, src_reg, X86_REG_R12, insn->off);
2071 			if (err)
2072 				return err;
2073 			goto populate_extable;
2074 
2075 			/* call */
2076 		case BPF_JMP | BPF_CALL: {
2077 			u8 *ip = image + addrs[i - 1];
2078 
2079 			func = (u8 *) __bpf_call_base + imm32;
2080 			if (tail_call_reachable) {
2081 				LOAD_TAIL_CALL_CNT_PTR(bpf_prog->aux->stack_depth);
2082 				ip += 7;
2083 			}
2084 			if (!imm32)
2085 				return -EINVAL;
2086 			ip += x86_call_depth_emit_accounting(&prog, func, ip);
2087 			if (emit_call(&prog, func, ip))
2088 				return -EINVAL;
2089 			break;
2090 		}
2091 
2092 		case BPF_JMP | BPF_TAIL_CALL:
2093 			if (imm32)
2094 				emit_bpf_tail_call_direct(bpf_prog,
2095 							  &bpf_prog->aux->poke_tab[imm32 - 1],
2096 							  &prog, image + addrs[i - 1],
2097 							  callee_regs_used,
2098 							  bpf_prog->aux->stack_depth,
2099 							  ctx);
2100 			else
2101 				emit_bpf_tail_call_indirect(bpf_prog,
2102 							    &prog,
2103 							    callee_regs_used,
2104 							    bpf_prog->aux->stack_depth,
2105 							    image + addrs[i - 1],
2106 							    ctx);
2107 			break;
2108 
2109 			/* cond jump */
2110 		case BPF_JMP | BPF_JEQ | BPF_X:
2111 		case BPF_JMP | BPF_JNE | BPF_X:
2112 		case BPF_JMP | BPF_JGT | BPF_X:
2113 		case BPF_JMP | BPF_JLT | BPF_X:
2114 		case BPF_JMP | BPF_JGE | BPF_X:
2115 		case BPF_JMP | BPF_JLE | BPF_X:
2116 		case BPF_JMP | BPF_JSGT | BPF_X:
2117 		case BPF_JMP | BPF_JSLT | BPF_X:
2118 		case BPF_JMP | BPF_JSGE | BPF_X:
2119 		case BPF_JMP | BPF_JSLE | BPF_X:
2120 		case BPF_JMP32 | BPF_JEQ | BPF_X:
2121 		case BPF_JMP32 | BPF_JNE | BPF_X:
2122 		case BPF_JMP32 | BPF_JGT | BPF_X:
2123 		case BPF_JMP32 | BPF_JLT | BPF_X:
2124 		case BPF_JMP32 | BPF_JGE | BPF_X:
2125 		case BPF_JMP32 | BPF_JLE | BPF_X:
2126 		case BPF_JMP32 | BPF_JSGT | BPF_X:
2127 		case BPF_JMP32 | BPF_JSLT | BPF_X:
2128 		case BPF_JMP32 | BPF_JSGE | BPF_X:
2129 		case BPF_JMP32 | BPF_JSLE | BPF_X:
2130 			/* cmp dst_reg, src_reg */
2131 			maybe_emit_mod(&prog, dst_reg, src_reg,
2132 				       BPF_CLASS(insn->code) == BPF_JMP);
2133 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2134 			goto emit_cond_jmp;
2135 
2136 		case BPF_JMP | BPF_JSET | BPF_X:
2137 		case BPF_JMP32 | BPF_JSET | BPF_X:
2138 			/* test dst_reg, src_reg */
2139 			maybe_emit_mod(&prog, dst_reg, src_reg,
2140 				       BPF_CLASS(insn->code) == BPF_JMP);
2141 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2142 			goto emit_cond_jmp;
2143 
2144 		case BPF_JMP | BPF_JSET | BPF_K:
2145 		case BPF_JMP32 | BPF_JSET | BPF_K:
2146 			/* test dst_reg, imm32 */
2147 			maybe_emit_1mod(&prog, dst_reg,
2148 					BPF_CLASS(insn->code) == BPF_JMP);
2149 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2150 			goto emit_cond_jmp;
2151 
2152 		case BPF_JMP | BPF_JEQ | BPF_K:
2153 		case BPF_JMP | BPF_JNE | BPF_K:
2154 		case BPF_JMP | BPF_JGT | BPF_K:
2155 		case BPF_JMP | BPF_JLT | BPF_K:
2156 		case BPF_JMP | BPF_JGE | BPF_K:
2157 		case BPF_JMP | BPF_JLE | BPF_K:
2158 		case BPF_JMP | BPF_JSGT | BPF_K:
2159 		case BPF_JMP | BPF_JSLT | BPF_K:
2160 		case BPF_JMP | BPF_JSGE | BPF_K:
2161 		case BPF_JMP | BPF_JSLE | BPF_K:
2162 		case BPF_JMP32 | BPF_JEQ | BPF_K:
2163 		case BPF_JMP32 | BPF_JNE | BPF_K:
2164 		case BPF_JMP32 | BPF_JGT | BPF_K:
2165 		case BPF_JMP32 | BPF_JLT | BPF_K:
2166 		case BPF_JMP32 | BPF_JGE | BPF_K:
2167 		case BPF_JMP32 | BPF_JLE | BPF_K:
2168 		case BPF_JMP32 | BPF_JSGT | BPF_K:
2169 		case BPF_JMP32 | BPF_JSLT | BPF_K:
2170 		case BPF_JMP32 | BPF_JSGE | BPF_K:
2171 		case BPF_JMP32 | BPF_JSLE | BPF_K:
2172 			/* test dst_reg, dst_reg to save one extra byte */
2173 			if (imm32 == 0) {
2174 				maybe_emit_mod(&prog, dst_reg, dst_reg,
2175 					       BPF_CLASS(insn->code) == BPF_JMP);
2176 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2177 				goto emit_cond_jmp;
2178 			}
2179 
2180 			/* cmp dst_reg, imm8/32 */
2181 			maybe_emit_1mod(&prog, dst_reg,
2182 					BPF_CLASS(insn->code) == BPF_JMP);
2183 
2184 			if (is_imm8(imm32))
2185 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2186 			else
2187 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2188 
2189 emit_cond_jmp:		/* Convert BPF opcode to x86 */
2190 			switch (BPF_OP(insn->code)) {
2191 			case BPF_JEQ:
2192 				jmp_cond = X86_JE;
2193 				break;
2194 			case BPF_JSET:
2195 			case BPF_JNE:
2196 				jmp_cond = X86_JNE;
2197 				break;
2198 			case BPF_JGT:
2199 				/* GT is unsigned '>', JA in x86 */
2200 				jmp_cond = X86_JA;
2201 				break;
2202 			case BPF_JLT:
2203 				/* LT is unsigned '<', JB in x86 */
2204 				jmp_cond = X86_JB;
2205 				break;
2206 			case BPF_JGE:
2207 				/* GE is unsigned '>=', JAE in x86 */
2208 				jmp_cond = X86_JAE;
2209 				break;
2210 			case BPF_JLE:
2211 				/* LE is unsigned '<=', JBE in x86 */
2212 				jmp_cond = X86_JBE;
2213 				break;
2214 			case BPF_JSGT:
2215 				/* Signed '>', GT in x86 */
2216 				jmp_cond = X86_JG;
2217 				break;
2218 			case BPF_JSLT:
2219 				/* Signed '<', LT in x86 */
2220 				jmp_cond = X86_JL;
2221 				break;
2222 			case BPF_JSGE:
2223 				/* Signed '>=', GE in x86 */
2224 				jmp_cond = X86_JGE;
2225 				break;
2226 			case BPF_JSLE:
2227 				/* Signed '<=', LE in x86 */
2228 				jmp_cond = X86_JLE;
2229 				break;
2230 			default: /* to silence GCC warning */
2231 				return -EFAULT;
2232 			}
2233 			jmp_offset = addrs[i + insn->off] - addrs[i];
2234 			if (is_imm8(jmp_offset)) {
2235 				if (jmp_padding) {
2236 					/* To keep the jmp_offset valid, the extra bytes are
2237 					 * padded before the jump insn, so we subtract the
2238 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2239 					 *
2240 					 * If the previous pass already emits an imm8
2241 					 * jmp_cond, then this BPF insn won't shrink, so
2242 					 * "nops" is 0.
2243 					 *
2244 					 * On the other hand, if the previous pass emits an
2245 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
2246 					 * keep the image from shrinking further.
2247 					 *
2248 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2249 					 *     is 2 bytes, so the size difference is 4 bytes.
2250 					 */
2251 					nops = INSN_SZ_DIFF - 2;
2252 					if (nops != 0 && nops != 4) {
2253 						pr_err("unexpected jmp_cond padding: %d bytes\n",
2254 						       nops);
2255 						return -EFAULT;
2256 					}
2257 					emit_nops(&prog, nops);
2258 				}
2259 				EMIT2(jmp_cond, jmp_offset);
2260 			} else if (is_simm32(jmp_offset)) {
2261 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2262 			} else {
2263 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2264 				return -EFAULT;
2265 			}
2266 
2267 			break;
2268 
2269 		case BPF_JMP | BPF_JA:
2270 		case BPF_JMP32 | BPF_JA:
2271 			if (BPF_CLASS(insn->code) == BPF_JMP) {
2272 				if (insn->off == -1)
2273 					/* -1 jmp instructions will always jump
2274 					 * backwards two bytes. Explicitly handling
2275 					 * this case avoids wasting too many passes
2276 					 * when there are long sequences of replaced
2277 					 * dead code.
2278 					 */
2279 					jmp_offset = -2;
2280 				else
2281 					jmp_offset = addrs[i + insn->off] - addrs[i];
2282 			} else {
2283 				if (insn->imm == -1)
2284 					jmp_offset = -2;
2285 				else
2286 					jmp_offset = addrs[i + insn->imm] - addrs[i];
2287 			}
2288 
2289 			if (!jmp_offset) {
2290 				/*
2291 				 * If jmp_padding is enabled, the extra nops will
2292 				 * be inserted. Otherwise, optimize out nop jumps.
2293 				 */
2294 				if (jmp_padding) {
2295 					/* There are 3 possible conditions.
2296 					 * (1) This BPF_JA is already optimized out in
2297 					 *     the previous run, so there is no need
2298 					 *     to pad any extra byte (0 byte).
2299 					 * (2) The previous pass emits an imm8 jmp,
2300 					 *     so we pad 2 bytes to match the previous
2301 					 *     insn size.
2302 					 * (3) Similarly, the previous pass emits an
2303 					 *     imm32 jmp, and 5 bytes is padded.
2304 					 */
2305 					nops = INSN_SZ_DIFF;
2306 					if (nops != 0 && nops != 2 && nops != 5) {
2307 						pr_err("unexpected nop jump padding: %d bytes\n",
2308 						       nops);
2309 						return -EFAULT;
2310 					}
2311 					emit_nops(&prog, nops);
2312 				}
2313 				break;
2314 			}
2315 emit_jmp:
2316 			if (is_imm8(jmp_offset)) {
2317 				if (jmp_padding) {
2318 					/* To avoid breaking jmp_offset, the extra bytes
2319 					 * are padded before the actual jmp insn, so
2320 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
2321 					 *
2322 					 * If the previous pass already emits an imm8
2323 					 * jmp, there is nothing to pad (0 byte).
2324 					 *
2325 					 * If it emits an imm32 jmp (5 bytes) previously
2326 					 * and now an imm8 jmp (2 bytes), then we pad
2327 					 * (5 - 2 = 3) bytes to stop the image from
2328 					 * shrinking further.
2329 					 */
2330 					nops = INSN_SZ_DIFF - 2;
2331 					if (nops != 0 && nops != 3) {
2332 						pr_err("unexpected jump padding: %d bytes\n",
2333 						       nops);
2334 						return -EFAULT;
2335 					}
2336 					emit_nops(&prog, INSN_SZ_DIFF - 2);
2337 				}
2338 				EMIT2(0xEB, jmp_offset);
2339 			} else if (is_simm32(jmp_offset)) {
2340 				EMIT1_off32(0xE9, jmp_offset);
2341 			} else {
2342 				pr_err("jmp gen bug %llx\n", jmp_offset);
2343 				return -EFAULT;
2344 			}
2345 			break;
2346 
2347 		case BPF_JMP | BPF_EXIT:
2348 			if (seen_exit) {
2349 				jmp_offset = ctx->cleanup_addr - addrs[i];
2350 				goto emit_jmp;
2351 			}
2352 			seen_exit = true;
2353 			/* Update cleanup_addr */
2354 			ctx->cleanup_addr = proglen;
2355 			if (bpf_prog->aux->exception_boundary) {
2356 				pop_callee_regs(&prog, all_callee_regs_used);
2357 				pop_r12(&prog);
2358 			} else {
2359 				pop_callee_regs(&prog, callee_regs_used);
2360 				if (arena_vm_start)
2361 					pop_r12(&prog);
2362 			}
2363 			EMIT1(0xC9);         /* leave */
2364 			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2365 			break;
2366 
2367 		default:
2368 			/*
2369 			 * By design x86-64 JIT should support all BPF instructions.
2370 			 * This error will be seen if new instruction was added
2371 			 * to the interpreter, but not to the JIT, or if there is
2372 			 * junk in bpf_prog.
2373 			 */
2374 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2375 			return -EINVAL;
2376 		}
2377 
2378 		ilen = prog - temp;
2379 		if (ilen > BPF_MAX_INSN_SIZE) {
2380 			pr_err("bpf_jit: fatal insn size error\n");
2381 			return -EFAULT;
2382 		}
2383 
2384 		if (image) {
2385 			/*
2386 			 * When populating the image, assert that:
2387 			 *
2388 			 *  i) We do not write beyond the allocated space, and
2389 			 * ii) addrs[i] did not change from the prior run, in order
2390 			 *     to validate assumptions made for computing branch
2391 			 *     displacements.
2392 			 */
2393 			if (unlikely(proglen + ilen > oldproglen ||
2394 				     proglen + ilen != addrs[i])) {
2395 				pr_err("bpf_jit: fatal error\n");
2396 				return -EFAULT;
2397 			}
2398 			memcpy(rw_image + proglen, temp, ilen);
2399 		}
2400 		proglen += ilen;
2401 		addrs[i] = proglen;
2402 		prog = temp;
2403 	}
2404 
2405 	if (image && excnt != bpf_prog->aux->num_exentries) {
2406 		pr_err("extable is not populated\n");
2407 		return -EFAULT;
2408 	}
2409 	return proglen;
2410 }
2411 
2412 static void clean_stack_garbage(const struct btf_func_model *m,
2413 				u8 **pprog, int nr_stack_slots,
2414 				int stack_size)
2415 {
2416 	int arg_size, off;
2417 	u8 *prog;
2418 
2419 	/* Generally speaking, the compiler will pass the arguments
2420 	 * on-stack with "push" instruction, which will take 8-byte
2421 	 * on the stack. In this case, there won't be garbage values
2422 	 * while we copy the arguments from origin stack frame to current
2423 	 * in BPF_DW.
2424 	 *
2425 	 * However, sometimes the compiler will only allocate 4-byte on
2426 	 * the stack for the arguments. For now, this case will only
2427 	 * happen if there is only one argument on-stack and its size
2428 	 * not more than 4 byte. In this case, there will be garbage
2429 	 * values on the upper 4-byte where we store the argument on
2430 	 * current stack frame.
2431 	 *
2432 	 * arguments on origin stack:
2433 	 *
2434 	 * stack_arg_1(4-byte) xxx(4-byte)
2435 	 *
2436 	 * what we copy:
2437 	 *
2438 	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2439 	 *
2440 	 * and the xxx is the garbage values which we should clean here.
2441 	 */
2442 	if (nr_stack_slots != 1)
2443 		return;
2444 
2445 	/* the size of the last argument */
2446 	arg_size = m->arg_size[m->nr_args - 1];
2447 	if (arg_size <= 4) {
2448 		off = -(stack_size - 4);
2449 		prog = *pprog;
2450 		/* mov DWORD PTR [rbp + off], 0 */
2451 		if (!is_imm8(off))
2452 			EMIT2_off32(0xC7, 0x85, off);
2453 		else
2454 			EMIT3(0xC7, 0x45, off);
2455 		EMIT(0, 4);
2456 		*pprog = prog;
2457 	}
2458 }
2459 
2460 /* get the count of the regs that are used to pass arguments */
2461 static int get_nr_used_regs(const struct btf_func_model *m)
2462 {
2463 	int i, arg_regs, nr_used_regs = 0;
2464 
2465 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2466 		arg_regs = (m->arg_size[i] + 7) / 8;
2467 		if (nr_used_regs + arg_regs <= 6)
2468 			nr_used_regs += arg_regs;
2469 
2470 		if (nr_used_regs >= 6)
2471 			break;
2472 	}
2473 
2474 	return nr_used_regs;
2475 }
2476 
2477 static void save_args(const struct btf_func_model *m, u8 **prog,
2478 		      int stack_size, bool for_call_origin)
2479 {
2480 	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2481 	int i, j;
2482 
2483 	/* Store function arguments to stack.
2484 	 * For a function that accepts two pointers the sequence will be:
2485 	 * mov QWORD PTR [rbp-0x10],rdi
2486 	 * mov QWORD PTR [rbp-0x8],rsi
2487 	 */
2488 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2489 		arg_regs = (m->arg_size[i] + 7) / 8;
2490 
2491 		/* According to the research of Yonghong, struct members
2492 		 * should be all in register or all on the stack.
2493 		 * Meanwhile, the compiler will pass the argument on regs
2494 		 * if the remaining regs can hold the argument.
2495 		 *
2496 		 * Disorder of the args can happen. For example:
2497 		 *
2498 		 * struct foo_struct {
2499 		 *     long a;
2500 		 *     int b;
2501 		 * };
2502 		 * int foo(char, char, char, char, char, struct foo_struct,
2503 		 *         char);
2504 		 *
2505 		 * the arg1-5,arg7 will be passed by regs, and arg6 will
2506 		 * by stack.
2507 		 */
2508 		if (nr_regs + arg_regs > 6) {
2509 			/* copy function arguments from origin stack frame
2510 			 * into current stack frame.
2511 			 *
2512 			 * The starting address of the arguments on-stack
2513 			 * is:
2514 			 *   rbp + 8(push rbp) +
2515 			 *   8(return addr of origin call) +
2516 			 *   8(return addr of the caller)
2517 			 * which means: rbp + 24
2518 			 */
2519 			for (j = 0; j < arg_regs; j++) {
2520 				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2521 					 nr_stack_slots * 8 + 0x18);
2522 				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2523 					 -stack_size);
2524 
2525 				if (!nr_stack_slots)
2526 					first_off = stack_size;
2527 				stack_size -= 8;
2528 				nr_stack_slots++;
2529 			}
2530 		} else {
2531 			/* Only copy the arguments on-stack to current
2532 			 * 'stack_size' and ignore the regs, used to
2533 			 * prepare the arguments on-stack for origin call.
2534 			 */
2535 			if (for_call_origin) {
2536 				nr_regs += arg_regs;
2537 				continue;
2538 			}
2539 
2540 			/* copy the arguments from regs into stack */
2541 			for (j = 0; j < arg_regs; j++) {
2542 				emit_stx(prog, BPF_DW, BPF_REG_FP,
2543 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2544 					 -stack_size);
2545 				stack_size -= 8;
2546 				nr_regs++;
2547 			}
2548 		}
2549 	}
2550 
2551 	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2552 }
2553 
2554 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2555 			 int stack_size)
2556 {
2557 	int i, j, arg_regs, nr_regs = 0;
2558 
2559 	/* Restore function arguments from stack.
2560 	 * For a function that accepts two pointers the sequence will be:
2561 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2562 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2563 	 *
2564 	 * The logic here is similar to what we do in save_args()
2565 	 */
2566 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2567 		arg_regs = (m->arg_size[i] + 7) / 8;
2568 		if (nr_regs + arg_regs <= 6) {
2569 			for (j = 0; j < arg_regs; j++) {
2570 				emit_ldx(prog, BPF_DW,
2571 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2572 					 BPF_REG_FP,
2573 					 -stack_size);
2574 				stack_size -= 8;
2575 				nr_regs++;
2576 			}
2577 		} else {
2578 			stack_size -= 8 * arg_regs;
2579 		}
2580 
2581 		if (nr_regs >= 6)
2582 			break;
2583 	}
2584 }
2585 
2586 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2587 			   struct bpf_tramp_link *l, int stack_size,
2588 			   int run_ctx_off, bool save_ret,
2589 			   void *image, void *rw_image)
2590 {
2591 	u8 *prog = *pprog;
2592 	u8 *jmp_insn;
2593 	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2594 	struct bpf_prog *p = l->link.prog;
2595 	u64 cookie = l->cookie;
2596 
2597 	/* mov rdi, cookie */
2598 	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2599 
2600 	/* Prepare struct bpf_tramp_run_ctx.
2601 	 *
2602 	 * bpf_tramp_run_ctx is already preserved by
2603 	 * arch_prepare_bpf_trampoline().
2604 	 *
2605 	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2606 	 */
2607 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2608 
2609 	/* arg1: mov rdi, progs[i] */
2610 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2611 	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2612 	if (!is_imm8(-run_ctx_off))
2613 		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2614 	else
2615 		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2616 
2617 	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2618 		return -EINVAL;
2619 	/* remember prog start time returned by __bpf_prog_enter */
2620 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2621 
2622 	/* if (__bpf_prog_enter*(prog) == 0)
2623 	 *	goto skip_exec_of_prog;
2624 	 */
2625 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2626 	/* emit 2 nops that will be replaced with JE insn */
2627 	jmp_insn = prog;
2628 	emit_nops(&prog, 2);
2629 
2630 	/* arg1: lea rdi, [rbp - stack_size] */
2631 	if (!is_imm8(-stack_size))
2632 		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2633 	else
2634 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2635 	/* arg2: progs[i]->insnsi for interpreter */
2636 	if (!p->jited)
2637 		emit_mov_imm64(&prog, BPF_REG_2,
2638 			       (long) p->insnsi >> 32,
2639 			       (u32) (long) p->insnsi);
2640 	/* call JITed bpf program or interpreter */
2641 	if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2642 		return -EINVAL;
2643 
2644 	/*
2645 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2646 	 * of the previous call which is then passed on the stack to
2647 	 * the next BPF program.
2648 	 *
2649 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
2650 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2651 	 */
2652 	if (save_ret)
2653 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2654 
2655 	/* replace 2 nops with JE insn, since jmp target is known */
2656 	jmp_insn[0] = X86_JE;
2657 	jmp_insn[1] = prog - jmp_insn - 2;
2658 
2659 	/* arg1: mov rdi, progs[i] */
2660 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2661 	/* arg2: mov rsi, rbx <- start time in nsec */
2662 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2663 	/* arg3: lea rdx, [rbp - run_ctx_off] */
2664 	if (!is_imm8(-run_ctx_off))
2665 		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2666 	else
2667 		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2668 	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2669 		return -EINVAL;
2670 
2671 	*pprog = prog;
2672 	return 0;
2673 }
2674 
2675 static void emit_align(u8 **pprog, u32 align)
2676 {
2677 	u8 *target, *prog = *pprog;
2678 
2679 	target = PTR_ALIGN(prog, align);
2680 	if (target != prog)
2681 		emit_nops(&prog, target - prog);
2682 
2683 	*pprog = prog;
2684 }
2685 
2686 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2687 {
2688 	u8 *prog = *pprog;
2689 	s64 offset;
2690 
2691 	offset = func - (ip + 2 + 4);
2692 	if (!is_simm32(offset)) {
2693 		pr_err("Target %p is out of range\n", func);
2694 		return -EINVAL;
2695 	}
2696 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2697 	*pprog = prog;
2698 	return 0;
2699 }
2700 
2701 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2702 		      struct bpf_tramp_links *tl, int stack_size,
2703 		      int run_ctx_off, bool save_ret,
2704 		      void *image, void *rw_image)
2705 {
2706 	int i;
2707 	u8 *prog = *pprog;
2708 
2709 	for (i = 0; i < tl->nr_links; i++) {
2710 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2711 				    run_ctx_off, save_ret, image, rw_image))
2712 			return -EINVAL;
2713 	}
2714 	*pprog = prog;
2715 	return 0;
2716 }
2717 
2718 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2719 			      struct bpf_tramp_links *tl, int stack_size,
2720 			      int run_ctx_off, u8 **branches,
2721 			      void *image, void *rw_image)
2722 {
2723 	u8 *prog = *pprog;
2724 	int i;
2725 
2726 	/* The first fmod_ret program will receive a garbage return value.
2727 	 * Set this to 0 to avoid confusing the program.
2728 	 */
2729 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2730 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2731 	for (i = 0; i < tl->nr_links; i++) {
2732 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2733 				    image, rw_image))
2734 			return -EINVAL;
2735 
2736 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2737 		 * if (*(u64 *)(rbp - 8) !=  0)
2738 		 *	goto do_fexit;
2739 		 */
2740 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2741 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2742 
2743 		/* Save the location of the branch and Generate 6 nops
2744 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2745 		 * are replaced with a conditional jump once do_fexit (i.e. the
2746 		 * start of the fexit invocation) is finalized.
2747 		 */
2748 		branches[i] = prog;
2749 		emit_nops(&prog, 4 + 2);
2750 	}
2751 
2752 	*pprog = prog;
2753 	return 0;
2754 }
2755 
2756 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
2757 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack)	\
2758 	__LOAD_TCC_PTR(-round_up(stack, 8) - 8)
2759 
2760 /* Example:
2761  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2762  * its 'struct btf_func_model' will be nr_args=2
2763  * The assembly code when eth_type_trans is executing after trampoline:
2764  *
2765  * push rbp
2766  * mov rbp, rsp
2767  * sub rsp, 16                     // space for skb and dev
2768  * push rbx                        // temp regs to pass start time
2769  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2770  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2771  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2772  * mov rbx, rax                    // remember start time in bpf stats are enabled
2773  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2774  * call addr_of_jited_FENTRY_prog
2775  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2776  * mov rsi, rbx                    // prog start time
2777  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2778  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2779  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2780  * pop rbx
2781  * leave
2782  * ret
2783  *
2784  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2785  * replaced with 'call generated_bpf_trampoline'. When it returns
2786  * eth_type_trans will continue executing with original skb and dev pointers.
2787  *
2788  * The assembly code when eth_type_trans is called from trampoline:
2789  *
2790  * push rbp
2791  * mov rbp, rsp
2792  * sub rsp, 24                     // space for skb, dev, return value
2793  * push rbx                        // temp regs to pass start time
2794  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2795  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2796  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2797  * mov rbx, rax                    // remember start time if bpf stats are enabled
2798  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2799  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2800  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2801  * mov rsi, rbx                    // prog start time
2802  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2803  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2804  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2805  * call eth_type_trans+5           // execute body of eth_type_trans
2806  * mov qword ptr [rbp - 8], rax    // save return value
2807  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2808  * mov rbx, rax                    // remember start time in bpf stats are enabled
2809  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2810  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2811  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2812  * mov rsi, rbx                    // prog start time
2813  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2814  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2815  * pop rbx
2816  * leave
2817  * add rsp, 8                      // skip eth_type_trans's frame
2818  * ret                             // return to its caller
2819  */
2820 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
2821 					 void *rw_image_end, void *image,
2822 					 const struct btf_func_model *m, u32 flags,
2823 					 struct bpf_tramp_links *tlinks,
2824 					 void *func_addr)
2825 {
2826 	int i, ret, nr_regs = m->nr_args, stack_size = 0;
2827 	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2828 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2829 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2830 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2831 	void *orig_call = func_addr;
2832 	u8 **branches = NULL;
2833 	u8 *prog;
2834 	bool save_ret;
2835 
2836 	/*
2837 	 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
2838 	 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
2839 	 * because @func_addr.
2840 	 */
2841 	WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
2842 		     (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
2843 
2844 	/* extra registers for struct arguments */
2845 	for (i = 0; i < m->nr_args; i++) {
2846 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2847 			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2848 	}
2849 
2850 	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2851 	 * are passed through regs, the remains are through stack.
2852 	 */
2853 	if (nr_regs > MAX_BPF_FUNC_ARGS)
2854 		return -ENOTSUPP;
2855 
2856 	/* Generated trampoline stack layout:
2857 	 *
2858 	 * RBP + 8         [ return address  ]
2859 	 * RBP + 0         [ RBP             ]
2860 	 *
2861 	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2862 	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2863 	 *
2864 	 *                 [ reg_argN        ]  always
2865 	 *                 [ ...             ]
2866 	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2867 	 *
2868 	 * RBP - nregs_off [ regs count	     ]  always
2869 	 *
2870 	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2871 	 *
2872 	 * RBP - rbx_off   [ rbx value       ]  always
2873 	 *
2874 	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2875 	 *
2876 	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
2877 	 *                     [ ...        ]
2878 	 *                     [ stack_arg2 ]
2879 	 * RBP - arg_stack_off [ stack_arg1 ]
2880 	 * RSP                 [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
2881 	 */
2882 
2883 	/* room for return value of orig_call or fentry prog */
2884 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2885 	if (save_ret)
2886 		stack_size += 8;
2887 
2888 	stack_size += nr_regs * 8;
2889 	regs_off = stack_size;
2890 
2891 	/* regs count  */
2892 	stack_size += 8;
2893 	nregs_off = stack_size;
2894 
2895 	if (flags & BPF_TRAMP_F_IP_ARG)
2896 		stack_size += 8; /* room for IP address argument */
2897 
2898 	ip_off = stack_size;
2899 
2900 	stack_size += 8;
2901 	rbx_off = stack_size;
2902 
2903 	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2904 	run_ctx_off = stack_size;
2905 
2906 	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2907 		/* the space that used to pass arguments on-stack */
2908 		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2909 		/* make sure the stack pointer is 16-byte aligned if we
2910 		 * need pass arguments on stack, which means
2911 		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2912 		 * should be 16-byte aligned. Following code depend on
2913 		 * that stack_size is already 8-byte aligned.
2914 		 */
2915 		stack_size += (stack_size % 16) ? 0 : 8;
2916 	}
2917 
2918 	arg_stack_off = stack_size;
2919 
2920 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2921 		/* skip patched call instruction and point orig_call to actual
2922 		 * body of the kernel function.
2923 		 */
2924 		if (is_endbr(*(u32 *)orig_call))
2925 			orig_call += ENDBR_INSN_SIZE;
2926 		orig_call += X86_PATCH_SIZE;
2927 	}
2928 
2929 	prog = rw_image;
2930 
2931 	if (flags & BPF_TRAMP_F_INDIRECT) {
2932 		/*
2933 		 * Indirect call for bpf_struct_ops
2934 		 */
2935 		emit_cfi(&prog, cfi_get_func_hash(func_addr));
2936 	} else {
2937 		/*
2938 		 * Direct-call fentry stub, as such it needs accounting for the
2939 		 * __fentry__ call.
2940 		 */
2941 		x86_call_depth_emit_accounting(&prog, NULL, image);
2942 	}
2943 	EMIT1(0x55);		 /* push rbp */
2944 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2945 	if (!is_imm8(stack_size)) {
2946 		/* sub rsp, stack_size */
2947 		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2948 	} else {
2949 		/* sub rsp, stack_size */
2950 		EMIT4(0x48, 0x83, 0xEC, stack_size);
2951 	}
2952 	if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2953 		EMIT1(0x50);		/* push rax */
2954 	/* mov QWORD PTR [rbp - rbx_off], rbx */
2955 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2956 
2957 	/* Store number of argument registers of the traced function:
2958 	 *   mov rax, nr_regs
2959 	 *   mov QWORD PTR [rbp - nregs_off], rax
2960 	 */
2961 	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2962 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2963 
2964 	if (flags & BPF_TRAMP_F_IP_ARG) {
2965 		/* Store IP address of the traced function:
2966 		 * movabsq rax, func_addr
2967 		 * mov QWORD PTR [rbp - ip_off], rax
2968 		 */
2969 		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2970 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2971 	}
2972 
2973 	save_args(m, &prog, regs_off, false);
2974 
2975 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2976 		/* arg1: mov rdi, im */
2977 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2978 		if (emit_rsb_call(&prog, __bpf_tramp_enter,
2979 				  image + (prog - (u8 *)rw_image))) {
2980 			ret = -EINVAL;
2981 			goto cleanup;
2982 		}
2983 	}
2984 
2985 	if (fentry->nr_links) {
2986 		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2987 			       flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
2988 			return -EINVAL;
2989 	}
2990 
2991 	if (fmod_ret->nr_links) {
2992 		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2993 				   GFP_KERNEL);
2994 		if (!branches)
2995 			return -ENOMEM;
2996 
2997 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2998 				       run_ctx_off, branches, image, rw_image)) {
2999 			ret = -EINVAL;
3000 			goto cleanup;
3001 		}
3002 	}
3003 
3004 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3005 		restore_regs(m, &prog, regs_off);
3006 		save_args(m, &prog, arg_stack_off, true);
3007 
3008 		if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3009 			/* Before calling the original function, load the
3010 			 * tail_call_cnt_ptr from stack to rax.
3011 			 */
3012 			LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3013 		}
3014 
3015 		if (flags & BPF_TRAMP_F_ORIG_STACK) {
3016 			emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3017 			EMIT2(0xff, 0xd3); /* call *rbx */
3018 		} else {
3019 			/* call original function */
3020 			if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3021 				ret = -EINVAL;
3022 				goto cleanup;
3023 			}
3024 		}
3025 		/* remember return value in a stack for bpf prog to access */
3026 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3027 		im->ip_after_call = image + (prog - (u8 *)rw_image);
3028 		emit_nops(&prog, X86_PATCH_SIZE);
3029 	}
3030 
3031 	if (fmod_ret->nr_links) {
3032 		/* From Intel 64 and IA-32 Architectures Optimization
3033 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3034 		 * Coding Rule 11: All branch targets should be 16-byte
3035 		 * aligned.
3036 		 */
3037 		emit_align(&prog, 16);
3038 		/* Update the branches saved in invoke_bpf_mod_ret with the
3039 		 * aligned address of do_fexit.
3040 		 */
3041 		for (i = 0; i < fmod_ret->nr_links; i++) {
3042 			emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3043 					    image + (branches[i] - (u8 *)rw_image), X86_JNE);
3044 		}
3045 	}
3046 
3047 	if (fexit->nr_links) {
3048 		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
3049 			       false, image, rw_image)) {
3050 			ret = -EINVAL;
3051 			goto cleanup;
3052 		}
3053 	}
3054 
3055 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
3056 		restore_regs(m, &prog, regs_off);
3057 
3058 	/* This needs to be done regardless. If there were fmod_ret programs,
3059 	 * the return value is only updated on the stack and still needs to be
3060 	 * restored to R0.
3061 	 */
3062 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3063 		im->ip_epilogue = image + (prog - (u8 *)rw_image);
3064 		/* arg1: mov rdi, im */
3065 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3066 		if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3067 			ret = -EINVAL;
3068 			goto cleanup;
3069 		}
3070 	} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3071 		/* Before running the original function, load the
3072 		 * tail_call_cnt_ptr from stack to rax.
3073 		 */
3074 		LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3075 	}
3076 
3077 	/* restore return value of orig_call or fentry prog back into RAX */
3078 	if (save_ret)
3079 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3080 
3081 	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3082 	EMIT1(0xC9); /* leave */
3083 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3084 		/* skip our return address and return to parent */
3085 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3086 	}
3087 	emit_return(&prog, image + (prog - (u8 *)rw_image));
3088 	/* Make sure the trampoline generation logic doesn't overflow */
3089 	if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3090 		ret = -EFAULT;
3091 		goto cleanup;
3092 	}
3093 	ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3094 
3095 cleanup:
3096 	kfree(branches);
3097 	return ret;
3098 }
3099 
3100 void *arch_alloc_bpf_trampoline(unsigned int size)
3101 {
3102 	return bpf_prog_pack_alloc(size, jit_fill_hole);
3103 }
3104 
3105 void arch_free_bpf_trampoline(void *image, unsigned int size)
3106 {
3107 	bpf_prog_pack_free(image, size);
3108 }
3109 
3110 int arch_protect_bpf_trampoline(void *image, unsigned int size)
3111 {
3112 	return 0;
3113 }
3114 
3115 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3116 				const struct btf_func_model *m, u32 flags,
3117 				struct bpf_tramp_links *tlinks,
3118 				void *func_addr)
3119 {
3120 	void *rw_image, *tmp;
3121 	int ret;
3122 	u32 size = image_end - image;
3123 
3124 	/* rw_image doesn't need to be in module memory range, so we can
3125 	 * use kvmalloc.
3126 	 */
3127 	rw_image = kvmalloc(size, GFP_KERNEL);
3128 	if (!rw_image)
3129 		return -ENOMEM;
3130 
3131 	ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3132 					    flags, tlinks, func_addr);
3133 	if (ret < 0)
3134 		goto out;
3135 
3136 	tmp = bpf_arch_text_copy(image, rw_image, size);
3137 	if (IS_ERR(tmp))
3138 		ret = PTR_ERR(tmp);
3139 out:
3140 	kvfree(rw_image);
3141 	return ret;
3142 }
3143 
3144 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3145 			     struct bpf_tramp_links *tlinks, void *func_addr)
3146 {
3147 	struct bpf_tramp_image im;
3148 	void *image;
3149 	int ret;
3150 
3151 	/* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3152 	 * This will NOT cause fragmentation in direct map, as we do not
3153 	 * call set_memory_*() on this buffer.
3154 	 *
3155 	 * We cannot use kvmalloc here, because we need image to be in
3156 	 * module memory range.
3157 	 */
3158 	image = bpf_jit_alloc_exec(PAGE_SIZE);
3159 	if (!image)
3160 		return -ENOMEM;
3161 
3162 	ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3163 					    m, flags, tlinks, func_addr);
3164 	bpf_jit_free_exec(image);
3165 	return ret;
3166 }
3167 
3168 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3169 {
3170 	u8 *jg_reloc, *prog = *pprog;
3171 	int pivot, err, jg_bytes = 1;
3172 	s64 jg_offset;
3173 
3174 	if (a == b) {
3175 		/* Leaf node of recursion, i.e. not a range of indices
3176 		 * anymore.
3177 		 */
3178 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
3179 		if (!is_simm32(progs[a]))
3180 			return -1;
3181 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3182 			    progs[a]);
3183 		err = emit_cond_near_jump(&prog,	/* je func */
3184 					  (void *)progs[a], image + (prog - buf),
3185 					  X86_JE);
3186 		if (err)
3187 			return err;
3188 
3189 		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
3190 
3191 		*pprog = prog;
3192 		return 0;
3193 	}
3194 
3195 	/* Not a leaf node, so we pivot, and recursively descend into
3196 	 * the lower and upper ranges.
3197 	 */
3198 	pivot = (b - a) / 2;
3199 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
3200 	if (!is_simm32(progs[a + pivot]))
3201 		return -1;
3202 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3203 
3204 	if (pivot > 2) {				/* jg upper_part */
3205 		/* Require near jump. */
3206 		jg_bytes = 4;
3207 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3208 	} else {
3209 		EMIT2(X86_JG, 0);
3210 	}
3211 	jg_reloc = prog;
3212 
3213 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
3214 				  progs, image, buf);
3215 	if (err)
3216 		return err;
3217 
3218 	/* From Intel 64 and IA-32 Architectures Optimization
3219 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3220 	 * Coding Rule 11: All branch targets should be 16-byte
3221 	 * aligned.
3222 	 */
3223 	emit_align(&prog, 16);
3224 	jg_offset = prog - jg_reloc;
3225 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3226 
3227 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
3228 				  b, progs, image, buf);
3229 	if (err)
3230 		return err;
3231 
3232 	*pprog = prog;
3233 	return 0;
3234 }
3235 
3236 static int cmp_ips(const void *a, const void *b)
3237 {
3238 	const s64 *ipa = a;
3239 	const s64 *ipb = b;
3240 
3241 	if (*ipa > *ipb)
3242 		return 1;
3243 	if (*ipa < *ipb)
3244 		return -1;
3245 	return 0;
3246 }
3247 
3248 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3249 {
3250 	u8 *prog = buf;
3251 
3252 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3253 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3254 }
3255 
3256 struct x64_jit_data {
3257 	struct bpf_binary_header *rw_header;
3258 	struct bpf_binary_header *header;
3259 	int *addrs;
3260 	u8 *image;
3261 	int proglen;
3262 	struct jit_context ctx;
3263 };
3264 
3265 #define MAX_PASSES 20
3266 #define PADDING_PASSES (MAX_PASSES - 5)
3267 
3268 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3269 {
3270 	struct bpf_binary_header *rw_header = NULL;
3271 	struct bpf_binary_header *header = NULL;
3272 	struct bpf_prog *tmp, *orig_prog = prog;
3273 	struct x64_jit_data *jit_data;
3274 	int proglen, oldproglen = 0;
3275 	struct jit_context ctx = {};
3276 	bool tmp_blinded = false;
3277 	bool extra_pass = false;
3278 	bool padding = false;
3279 	u8 *rw_image = NULL;
3280 	u8 *image = NULL;
3281 	int *addrs;
3282 	int pass;
3283 	int i;
3284 
3285 	if (!prog->jit_requested)
3286 		return orig_prog;
3287 
3288 	tmp = bpf_jit_blind_constants(prog);
3289 	/*
3290 	 * If blinding was requested and we failed during blinding,
3291 	 * we must fall back to the interpreter.
3292 	 */
3293 	if (IS_ERR(tmp))
3294 		return orig_prog;
3295 	if (tmp != prog) {
3296 		tmp_blinded = true;
3297 		prog = tmp;
3298 	}
3299 
3300 	jit_data = prog->aux->jit_data;
3301 	if (!jit_data) {
3302 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3303 		if (!jit_data) {
3304 			prog = orig_prog;
3305 			goto out;
3306 		}
3307 		prog->aux->jit_data = jit_data;
3308 	}
3309 	addrs = jit_data->addrs;
3310 	if (addrs) {
3311 		ctx = jit_data->ctx;
3312 		oldproglen = jit_data->proglen;
3313 		image = jit_data->image;
3314 		header = jit_data->header;
3315 		rw_header = jit_data->rw_header;
3316 		rw_image = (void *)rw_header + ((void *)image - (void *)header);
3317 		extra_pass = true;
3318 		padding = true;
3319 		goto skip_init_addrs;
3320 	}
3321 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3322 	if (!addrs) {
3323 		prog = orig_prog;
3324 		goto out_addrs;
3325 	}
3326 
3327 	/*
3328 	 * Before first pass, make a rough estimation of addrs[]
3329 	 * each BPF instruction is translated to less than 64 bytes
3330 	 */
3331 	for (proglen = 0, i = 0; i <= prog->len; i++) {
3332 		proglen += 64;
3333 		addrs[i] = proglen;
3334 	}
3335 	ctx.cleanup_addr = proglen;
3336 skip_init_addrs:
3337 
3338 	/*
3339 	 * JITed image shrinks with every pass and the loop iterates
3340 	 * until the image stops shrinking. Very large BPF programs
3341 	 * may converge on the last pass. In such case do one more
3342 	 * pass to emit the final image.
3343 	 */
3344 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
3345 		if (!padding && pass >= PADDING_PASSES)
3346 			padding = true;
3347 		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3348 		if (proglen <= 0) {
3349 out_image:
3350 			image = NULL;
3351 			if (header) {
3352 				bpf_arch_text_copy(&header->size, &rw_header->size,
3353 						   sizeof(rw_header->size));
3354 				bpf_jit_binary_pack_free(header, rw_header);
3355 			}
3356 			/* Fall back to interpreter mode */
3357 			prog = orig_prog;
3358 			if (extra_pass) {
3359 				prog->bpf_func = NULL;
3360 				prog->jited = 0;
3361 				prog->jited_len = 0;
3362 			}
3363 			goto out_addrs;
3364 		}
3365 		if (image) {
3366 			if (proglen != oldproglen) {
3367 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3368 				       proglen, oldproglen);
3369 				goto out_image;
3370 			}
3371 			break;
3372 		}
3373 		if (proglen == oldproglen) {
3374 			/*
3375 			 * The number of entries in extable is the number of BPF_LDX
3376 			 * insns that access kernel memory via "pointer to BTF type".
3377 			 * The verifier changed their opcode from LDX|MEM|size
3378 			 * to LDX|PROBE_MEM|size to make JITing easier.
3379 			 */
3380 			u32 align = __alignof__(struct exception_table_entry);
3381 			u32 extable_size = prog->aux->num_exentries *
3382 				sizeof(struct exception_table_entry);
3383 
3384 			/* allocate module memory for x86 insns and extable */
3385 			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3386 							   &image, align, &rw_header, &rw_image,
3387 							   jit_fill_hole);
3388 			if (!header) {
3389 				prog = orig_prog;
3390 				goto out_addrs;
3391 			}
3392 			prog->aux->extable = (void *) image + roundup(proglen, align);
3393 		}
3394 		oldproglen = proglen;
3395 		cond_resched();
3396 	}
3397 
3398 	if (bpf_jit_enable > 1)
3399 		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3400 
3401 	if (image) {
3402 		if (!prog->is_func || extra_pass) {
3403 			/*
3404 			 * bpf_jit_binary_pack_finalize fails in two scenarios:
3405 			 *   1) header is not pointing to proper module memory;
3406 			 *   2) the arch doesn't support bpf_arch_text_copy().
3407 			 *
3408 			 * Both cases are serious bugs and justify WARN_ON.
3409 			 */
3410 			if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3411 				/* header has been freed */
3412 				header = NULL;
3413 				goto out_image;
3414 			}
3415 
3416 			bpf_tail_call_direct_fixup(prog);
3417 		} else {
3418 			jit_data->addrs = addrs;
3419 			jit_data->ctx = ctx;
3420 			jit_data->proglen = proglen;
3421 			jit_data->image = image;
3422 			jit_data->header = header;
3423 			jit_data->rw_header = rw_header;
3424 		}
3425 		/*
3426 		 * ctx.prog_offset is used when CFI preambles put code *before*
3427 		 * the function. See emit_cfi(). For FineIBT specifically this code
3428 		 * can also be executed and bpf_prog_kallsyms_add() will
3429 		 * generate an additional symbol to cover this, hence also
3430 		 * decrement proglen.
3431 		 */
3432 		prog->bpf_func = (void *)image + cfi_get_offset();
3433 		prog->jited = 1;
3434 		prog->jited_len = proglen - cfi_get_offset();
3435 	} else {
3436 		prog = orig_prog;
3437 	}
3438 
3439 	if (!image || !prog->is_func || extra_pass) {
3440 		if (image)
3441 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
3442 out_addrs:
3443 		kvfree(addrs);
3444 		kfree(jit_data);
3445 		prog->aux->jit_data = NULL;
3446 	}
3447 out:
3448 	if (tmp_blinded)
3449 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
3450 					   tmp : orig_prog);
3451 	return prog;
3452 }
3453 
3454 bool bpf_jit_supports_kfunc_call(void)
3455 {
3456 	return true;
3457 }
3458 
3459 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3460 {
3461 	if (text_poke_copy(dst, src, len) == NULL)
3462 		return ERR_PTR(-EINVAL);
3463 	return dst;
3464 }
3465 
3466 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3467 bool bpf_jit_supports_subprog_tailcalls(void)
3468 {
3469 	return true;
3470 }
3471 
3472 bool bpf_jit_supports_percpu_insn(void)
3473 {
3474 	return true;
3475 }
3476 
3477 void bpf_jit_free(struct bpf_prog *prog)
3478 {
3479 	if (prog->jited) {
3480 		struct x64_jit_data *jit_data = prog->aux->jit_data;
3481 		struct bpf_binary_header *hdr;
3482 
3483 		/*
3484 		 * If we fail the final pass of JIT (from jit_subprogs),
3485 		 * the program may not be finalized yet. Call finalize here
3486 		 * before freeing it.
3487 		 */
3488 		if (jit_data) {
3489 			bpf_jit_binary_pack_finalize(jit_data->header,
3490 						     jit_data->rw_header);
3491 			kvfree(jit_data->addrs);
3492 			kfree(jit_data);
3493 		}
3494 		prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3495 		hdr = bpf_jit_binary_pack_hdr(prog);
3496 		bpf_jit_binary_pack_free(hdr, NULL);
3497 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3498 	}
3499 
3500 	bpf_prog_unlock_free(prog);
3501 }
3502 
3503 bool bpf_jit_supports_exceptions(void)
3504 {
3505 	/* We unwind through both kernel frames (starting from within bpf_throw
3506 	 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3507 	 * to walk kernel frames and reach BPF frames in the stack trace.
3508 	 */
3509 	return IS_ENABLED(CONFIG_UNWINDER_ORC);
3510 }
3511 
3512 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3513 {
3514 #if defined(CONFIG_UNWINDER_ORC)
3515 	struct unwind_state state;
3516 	unsigned long addr;
3517 
3518 	for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3519 	     unwind_next_frame(&state)) {
3520 		addr = unwind_get_return_address(&state);
3521 		if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3522 			break;
3523 	}
3524 	return;
3525 #endif
3526 	WARN(1, "verification of programs using bpf_throw should have failed\n");
3527 }
3528 
3529 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3530 			       struct bpf_prog *new, struct bpf_prog *old)
3531 {
3532 	u8 *old_addr, *new_addr, *old_bypass_addr;
3533 	int ret;
3534 
3535 	old_bypass_addr = old ? NULL : poke->bypass_addr;
3536 	old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3537 	new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3538 
3539 	/*
3540 	 * On program loading or teardown, the program's kallsym entry
3541 	 * might not be in place, so we use __bpf_arch_text_poke to skip
3542 	 * the kallsyms check.
3543 	 */
3544 	if (new) {
3545 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3546 					   BPF_MOD_JUMP,
3547 					   old_addr, new_addr);
3548 		BUG_ON(ret < 0);
3549 		if (!old) {
3550 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3551 						   BPF_MOD_JUMP,
3552 						   poke->bypass_addr,
3553 						   NULL);
3554 			BUG_ON(ret < 0);
3555 		}
3556 	} else {
3557 		ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3558 					   BPF_MOD_JUMP,
3559 					   old_bypass_addr,
3560 					   poke->bypass_addr);
3561 		BUG_ON(ret < 0);
3562 		/* let other CPUs finish the execution of program
3563 		 * so that it will not possible to expose them
3564 		 * to invalid nop, stack unwind, nop state
3565 		 */
3566 		if (!ret)
3567 			synchronize_rcu();
3568 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3569 					   BPF_MOD_JUMP,
3570 					   old_addr, NULL);
3571 		BUG_ON(ret < 0);
3572 	}
3573 }
3574 
3575 bool bpf_jit_supports_arena(void)
3576 {
3577 	return true;
3578 }
3579 
3580 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3581 {
3582 	if (!in_arena)
3583 		return true;
3584 	switch (insn->code) {
3585 	case BPF_STX | BPF_ATOMIC | BPF_W:
3586 	case BPF_STX | BPF_ATOMIC | BPF_DW:
3587 		if (insn->imm == (BPF_AND | BPF_FETCH) ||
3588 		    insn->imm == (BPF_OR | BPF_FETCH) ||
3589 		    insn->imm == (BPF_XOR | BPF_FETCH))
3590 			return false;
3591 	}
3592 	return true;
3593 }
3594 
3595 bool bpf_jit_supports_ptr_xchg(void)
3596 {
3597 	return true;
3598 }
3599 
3600 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */
3601 u64 bpf_arch_uaddress_limit(void)
3602 {
3603 	return 0;
3604 }
3605