1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BPF JIT compiler 4 * 5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) 6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 7 */ 8 #include <linux/netdevice.h> 9 #include <linux/filter.h> 10 #include <linux/if_vlan.h> 11 #include <linux/bpf.h> 12 #include <linux/memory.h> 13 #include <linux/sort.h> 14 #include <asm/extable.h> 15 #include <asm/ftrace.h> 16 #include <asm/set_memory.h> 17 #include <asm/nospec-branch.h> 18 #include <asm/text-patching.h> 19 #include <asm/unwind.h> 20 #include <asm/cfi.h> 21 22 static bool all_callee_regs_used[4] = {true, true, true, true}; 23 24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) 25 { 26 if (len == 1) 27 *ptr = bytes; 28 else if (len == 2) 29 *(u16 *)ptr = bytes; 30 else { 31 *(u32 *)ptr = bytes; 32 barrier(); 33 } 34 return ptr + len; 35 } 36 37 #define EMIT(bytes, len) \ 38 do { prog = emit_code(prog, bytes, len); } while (0) 39 40 #define EMIT1(b1) EMIT(b1, 1) 41 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) 42 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) 43 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) 44 45 #define EMIT1_off32(b1, off) \ 46 do { EMIT1(b1); EMIT(off, 4); } while (0) 47 #define EMIT2_off32(b1, b2, off) \ 48 do { EMIT2(b1, b2); EMIT(off, 4); } while (0) 49 #define EMIT3_off32(b1, b2, b3, off) \ 50 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) 51 #define EMIT4_off32(b1, b2, b3, b4, off) \ 52 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) 53 54 #ifdef CONFIG_X86_KERNEL_IBT 55 #define EMIT_ENDBR() EMIT(gen_endbr(), 4) 56 #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4) 57 #else 58 #define EMIT_ENDBR() 59 #define EMIT_ENDBR_POISON() 60 #endif 61 62 static bool is_imm8(int value) 63 { 64 return value <= 127 && value >= -128; 65 } 66 67 /* 68 * Let us limit the positive offset to be <= 123. 69 * This is to ensure eventual jit convergence For the following patterns: 70 * ... 71 * pass4, final_proglen=4391: 72 * ... 73 * 20e: 48 85 ff test rdi,rdi 74 * 211: 74 7d je 0x290 75 * 213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0] 76 * ... 77 * 289: 48 85 ff test rdi,rdi 78 * 28c: 74 17 je 0x2a5 79 * 28e: e9 7f ff ff ff jmp 0x212 80 * 293: bf 03 00 00 00 mov edi,0x3 81 * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125) 82 * and insn at 0x28e is 5-byte jmp insn with offset -129. 83 * 84 * pass5, final_proglen=4392: 85 * ... 86 * 20e: 48 85 ff test rdi,rdi 87 * 211: 0f 84 80 00 00 00 je 0x297 88 * 217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0] 89 * ... 90 * 28d: 48 85 ff test rdi,rdi 91 * 290: 74 1a je 0x2ac 92 * 292: eb 84 jmp 0x218 93 * 294: bf 03 00 00 00 mov edi,0x3 94 * Note that insn at 0x211 is 6-byte cond jump insn now since its offset 95 * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80). 96 * At the same time, insn at 0x292 is a 2-byte insn since its offset is 97 * -124. 98 * 99 * pass6 will repeat the same code as in pass4 and this will prevent 100 * eventual convergence. 101 * 102 * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes) 103 * cycle in the above. In the above example je offset <= 0x7c should work. 104 * 105 * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence 106 * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should 107 * avoid no convergence issue. 108 * 109 * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn 110 * to maximum 123 (0x7b). This way, the jit pass can eventually converge. 111 */ 112 static bool is_imm8_jmp_offset(int value) 113 { 114 return value <= 123 && value >= -128; 115 } 116 117 static bool is_simm32(s64 value) 118 { 119 return value == (s64)(s32)value; 120 } 121 122 static bool is_uimm32(u64 value) 123 { 124 return value == (u64)(u32)value; 125 } 126 127 /* mov dst, src */ 128 #define EMIT_mov(DST, SRC) \ 129 do { \ 130 if (DST != SRC) \ 131 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ 132 } while (0) 133 134 static int bpf_size_to_x86_bytes(int bpf_size) 135 { 136 if (bpf_size == BPF_W) 137 return 4; 138 else if (bpf_size == BPF_H) 139 return 2; 140 else if (bpf_size == BPF_B) 141 return 1; 142 else if (bpf_size == BPF_DW) 143 return 4; /* imm32 */ 144 else 145 return 0; 146 } 147 148 /* 149 * List of x86 cond jumps opcodes (. + s8) 150 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) 151 */ 152 #define X86_JB 0x72 153 #define X86_JAE 0x73 154 #define X86_JE 0x74 155 #define X86_JNE 0x75 156 #define X86_JBE 0x76 157 #define X86_JA 0x77 158 #define X86_JL 0x7C 159 #define X86_JGE 0x7D 160 #define X86_JLE 0x7E 161 #define X86_JG 0x7F 162 163 /* Pick a register outside of BPF range for JIT internal work */ 164 #define AUX_REG (MAX_BPF_JIT_REG + 1) 165 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) 166 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3) 167 168 /* 169 * The following table maps BPF registers to x86-64 registers. 170 * 171 * x86-64 register R12 is unused, since if used as base address 172 * register in load/store instructions, it always needs an 173 * extra byte of encoding and is callee saved. 174 * 175 * x86-64 register R9 is not used by BPF programs, but can be used by BPF 176 * trampoline. x86-64 register R10 is used for blinding (if enabled). 177 */ 178 static const int reg2hex[] = { 179 [BPF_REG_0] = 0, /* RAX */ 180 [BPF_REG_1] = 7, /* RDI */ 181 [BPF_REG_2] = 6, /* RSI */ 182 [BPF_REG_3] = 2, /* RDX */ 183 [BPF_REG_4] = 1, /* RCX */ 184 [BPF_REG_5] = 0, /* R8 */ 185 [BPF_REG_6] = 3, /* RBX callee saved */ 186 [BPF_REG_7] = 5, /* R13 callee saved */ 187 [BPF_REG_8] = 6, /* R14 callee saved */ 188 [BPF_REG_9] = 7, /* R15 callee saved */ 189 [BPF_REG_FP] = 5, /* RBP readonly */ 190 [BPF_REG_AX] = 2, /* R10 temp register */ 191 [AUX_REG] = 3, /* R11 temp register */ 192 [X86_REG_R9] = 1, /* R9 register, 6th function argument */ 193 [X86_REG_R12] = 4, /* R12 callee saved */ 194 }; 195 196 static const int reg2pt_regs[] = { 197 [BPF_REG_0] = offsetof(struct pt_regs, ax), 198 [BPF_REG_1] = offsetof(struct pt_regs, di), 199 [BPF_REG_2] = offsetof(struct pt_regs, si), 200 [BPF_REG_3] = offsetof(struct pt_regs, dx), 201 [BPF_REG_4] = offsetof(struct pt_regs, cx), 202 [BPF_REG_5] = offsetof(struct pt_regs, r8), 203 [BPF_REG_6] = offsetof(struct pt_regs, bx), 204 [BPF_REG_7] = offsetof(struct pt_regs, r13), 205 [BPF_REG_8] = offsetof(struct pt_regs, r14), 206 [BPF_REG_9] = offsetof(struct pt_regs, r15), 207 }; 208 209 /* 210 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 211 * which need extra byte of encoding. 212 * rax,rcx,...,rbp have simpler encoding 213 */ 214 static bool is_ereg(u32 reg) 215 { 216 return (1 << reg) & (BIT(BPF_REG_5) | 217 BIT(AUX_REG) | 218 BIT(BPF_REG_7) | 219 BIT(BPF_REG_8) | 220 BIT(BPF_REG_9) | 221 BIT(X86_REG_R9) | 222 BIT(X86_REG_R12) | 223 BIT(BPF_REG_AX)); 224 } 225 226 /* 227 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 228 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte 229 * of encoding. al,cl,dl,bl have simpler encoding. 230 */ 231 static bool is_ereg_8l(u32 reg) 232 { 233 return is_ereg(reg) || 234 (1 << reg) & (BIT(BPF_REG_1) | 235 BIT(BPF_REG_2) | 236 BIT(BPF_REG_FP)); 237 } 238 239 static bool is_axreg(u32 reg) 240 { 241 return reg == BPF_REG_0; 242 } 243 244 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ 245 static u8 add_1mod(u8 byte, u32 reg) 246 { 247 if (is_ereg(reg)) 248 byte |= 1; 249 return byte; 250 } 251 252 static u8 add_2mod(u8 byte, u32 r1, u32 r2) 253 { 254 if (is_ereg(r1)) 255 byte |= 1; 256 if (is_ereg(r2)) 257 byte |= 4; 258 return byte; 259 } 260 261 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index) 262 { 263 if (is_ereg(r1)) 264 byte |= 1; 265 if (is_ereg(index)) 266 byte |= 2; 267 if (is_ereg(r2)) 268 byte |= 4; 269 return byte; 270 } 271 272 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ 273 static u8 add_1reg(u8 byte, u32 dst_reg) 274 { 275 return byte + reg2hex[dst_reg]; 276 } 277 278 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ 279 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) 280 { 281 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); 282 } 283 284 /* Some 1-byte opcodes for binary ALU operations */ 285 static u8 simple_alu_opcodes[] = { 286 [BPF_ADD] = 0x01, 287 [BPF_SUB] = 0x29, 288 [BPF_AND] = 0x21, 289 [BPF_OR] = 0x09, 290 [BPF_XOR] = 0x31, 291 [BPF_LSH] = 0xE0, 292 [BPF_RSH] = 0xE8, 293 [BPF_ARSH] = 0xF8, 294 }; 295 296 static void jit_fill_hole(void *area, unsigned int size) 297 { 298 /* Fill whole space with INT3 instructions */ 299 memset(area, 0xcc, size); 300 } 301 302 int bpf_arch_text_invalidate(void *dst, size_t len) 303 { 304 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len)); 305 } 306 307 struct jit_context { 308 int cleanup_addr; /* Epilogue code offset */ 309 310 /* 311 * Program specific offsets of labels in the code; these rely on the 312 * JIT doing at least 2 passes, recording the position on the first 313 * pass, only to generate the correct offset on the second pass. 314 */ 315 int tail_call_direct_label; 316 int tail_call_indirect_label; 317 }; 318 319 /* Maximum number of bytes emitted while JITing one eBPF insn */ 320 #define BPF_MAX_INSN_SIZE 128 321 #define BPF_INSN_SAFETY 64 322 323 /* Number of bytes emit_patch() needs to generate instructions */ 324 #define X86_PATCH_SIZE 5 325 /* Number of bytes that will be skipped on tailcall */ 326 #define X86_TAIL_CALL_OFFSET (12 + ENDBR_INSN_SIZE) 327 328 static void push_r9(u8 **pprog) 329 { 330 u8 *prog = *pprog; 331 332 EMIT2(0x41, 0x51); /* push r9 */ 333 *pprog = prog; 334 } 335 336 static void pop_r9(u8 **pprog) 337 { 338 u8 *prog = *pprog; 339 340 EMIT2(0x41, 0x59); /* pop r9 */ 341 *pprog = prog; 342 } 343 344 static void push_r12(u8 **pprog) 345 { 346 u8 *prog = *pprog; 347 348 EMIT2(0x41, 0x54); /* push r12 */ 349 *pprog = prog; 350 } 351 352 static void push_callee_regs(u8 **pprog, bool *callee_regs_used) 353 { 354 u8 *prog = *pprog; 355 356 if (callee_regs_used[0]) 357 EMIT1(0x53); /* push rbx */ 358 if (callee_regs_used[1]) 359 EMIT2(0x41, 0x55); /* push r13 */ 360 if (callee_regs_used[2]) 361 EMIT2(0x41, 0x56); /* push r14 */ 362 if (callee_regs_used[3]) 363 EMIT2(0x41, 0x57); /* push r15 */ 364 *pprog = prog; 365 } 366 367 static void pop_r12(u8 **pprog) 368 { 369 u8 *prog = *pprog; 370 371 EMIT2(0x41, 0x5C); /* pop r12 */ 372 *pprog = prog; 373 } 374 375 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) 376 { 377 u8 *prog = *pprog; 378 379 if (callee_regs_used[3]) 380 EMIT2(0x41, 0x5F); /* pop r15 */ 381 if (callee_regs_used[2]) 382 EMIT2(0x41, 0x5E); /* pop r14 */ 383 if (callee_regs_used[1]) 384 EMIT2(0x41, 0x5D); /* pop r13 */ 385 if (callee_regs_used[0]) 386 EMIT1(0x5B); /* pop rbx */ 387 *pprog = prog; 388 } 389 390 static void emit_nops(u8 **pprog, int len) 391 { 392 u8 *prog = *pprog; 393 int i, noplen; 394 395 while (len > 0) { 396 noplen = len; 397 398 if (noplen > ASM_NOP_MAX) 399 noplen = ASM_NOP_MAX; 400 401 for (i = 0; i < noplen; i++) 402 EMIT1(x86_nops[noplen][i]); 403 len -= noplen; 404 } 405 406 *pprog = prog; 407 } 408 409 /* 410 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT 411 * in arch/x86/kernel/alternative.c 412 */ 413 414 static void emit_fineibt(u8 **pprog, u32 hash) 415 { 416 u8 *prog = *pprog; 417 418 EMIT_ENDBR(); 419 EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */ 420 EMIT2(0x74, 0x07); /* jz.d8 +7 */ 421 EMIT2(0x0f, 0x0b); /* ud2 */ 422 EMIT1(0x90); /* nop */ 423 EMIT_ENDBR_POISON(); 424 425 *pprog = prog; 426 } 427 428 static void emit_kcfi(u8 **pprog, u32 hash) 429 { 430 u8 *prog = *pprog; 431 432 EMIT1_off32(0xb8, hash); /* movl $hash, %eax */ 433 #ifdef CONFIG_CALL_PADDING 434 EMIT1(0x90); 435 EMIT1(0x90); 436 EMIT1(0x90); 437 EMIT1(0x90); 438 EMIT1(0x90); 439 EMIT1(0x90); 440 EMIT1(0x90); 441 EMIT1(0x90); 442 EMIT1(0x90); 443 EMIT1(0x90); 444 EMIT1(0x90); 445 #endif 446 EMIT_ENDBR(); 447 448 *pprog = prog; 449 } 450 451 static void emit_cfi(u8 **pprog, u32 hash) 452 { 453 u8 *prog = *pprog; 454 455 switch (cfi_mode) { 456 case CFI_FINEIBT: 457 emit_fineibt(&prog, hash); 458 break; 459 460 case CFI_KCFI: 461 emit_kcfi(&prog, hash); 462 break; 463 464 default: 465 EMIT_ENDBR(); 466 break; 467 } 468 469 *pprog = prog; 470 } 471 472 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog) 473 { 474 u8 *prog = *pprog; 475 476 if (!is_subprog) { 477 /* cmp rax, MAX_TAIL_CALL_CNT */ 478 EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT); 479 EMIT2(X86_JA, 6); /* ja 6 */ 480 /* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT. 481 * case1: entry of main prog. 482 * case2: tail callee of main prog. 483 */ 484 EMIT1(0x50); /* push rax */ 485 /* Make rax as tail_call_cnt_ptr. */ 486 EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */ 487 EMIT2(0xEB, 1); /* jmp 1 */ 488 /* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT. 489 * case: tail callee of subprog. 490 */ 491 EMIT1(0x50); /* push rax */ 492 /* push tail_call_cnt_ptr */ 493 EMIT1(0x50); /* push rax */ 494 } else { /* is_subprog */ 495 /* rax is tail_call_cnt_ptr. */ 496 EMIT1(0x50); /* push rax */ 497 EMIT1(0x50); /* push rax */ 498 } 499 500 *pprog = prog; 501 } 502 503 /* 504 * Emit x86-64 prologue code for BPF program. 505 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes 506 * while jumping to another program 507 */ 508 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf, 509 bool tail_call_reachable, bool is_subprog, 510 bool is_exception_cb) 511 { 512 u8 *prog = *pprog; 513 514 emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash); 515 /* BPF trampoline can be made to work without these nops, 516 * but let's waste 5 bytes for now and optimize later 517 */ 518 emit_nops(&prog, X86_PATCH_SIZE); 519 if (!ebpf_from_cbpf) { 520 if (tail_call_reachable && !is_subprog) 521 /* When it's the entry of the whole tailcall context, 522 * zeroing rax means initialising tail_call_cnt. 523 */ 524 EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */ 525 else 526 /* Keep the same instruction layout. */ 527 emit_nops(&prog, 3); /* nop3 */ 528 } 529 /* Exception callback receives FP as third parameter */ 530 if (is_exception_cb) { 531 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */ 532 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */ 533 /* The main frame must have exception_boundary as true, so we 534 * first restore those callee-saved regs from stack, before 535 * reusing the stack frame. 536 */ 537 pop_callee_regs(&prog, all_callee_regs_used); 538 pop_r12(&prog); 539 /* Reset the stack frame. */ 540 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */ 541 } else { 542 EMIT1(0x55); /* push rbp */ 543 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 544 } 545 546 /* X86_TAIL_CALL_OFFSET is here */ 547 EMIT_ENDBR(); 548 549 /* sub rsp, rounded_stack_depth */ 550 if (stack_depth) 551 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); 552 if (tail_call_reachable) 553 emit_prologue_tail_call(&prog, is_subprog); 554 *pprog = prog; 555 } 556 557 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) 558 { 559 u8 *prog = *pprog; 560 s64 offset; 561 562 offset = func - (ip + X86_PATCH_SIZE); 563 if (!is_simm32(offset)) { 564 pr_err("Target call %p is out of range\n", func); 565 return -ERANGE; 566 } 567 EMIT1_off32(opcode, offset); 568 *pprog = prog; 569 return 0; 570 } 571 572 static int emit_call(u8 **pprog, void *func, void *ip) 573 { 574 return emit_patch(pprog, func, ip, 0xE8); 575 } 576 577 static int emit_rsb_call(u8 **pprog, void *func, void *ip) 578 { 579 OPTIMIZER_HIDE_VAR(func); 580 ip += x86_call_depth_emit_accounting(pprog, func, ip); 581 return emit_patch(pprog, func, ip, 0xE8); 582 } 583 584 static int emit_jump(u8 **pprog, void *func, void *ip) 585 { 586 return emit_patch(pprog, func, ip, 0xE9); 587 } 588 589 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 590 void *old_addr, void *new_addr) 591 { 592 const u8 *nop_insn = x86_nops[5]; 593 u8 old_insn[X86_PATCH_SIZE]; 594 u8 new_insn[X86_PATCH_SIZE]; 595 u8 *prog; 596 int ret; 597 598 memcpy(old_insn, nop_insn, X86_PATCH_SIZE); 599 if (old_addr) { 600 prog = old_insn; 601 ret = t == BPF_MOD_CALL ? 602 emit_call(&prog, old_addr, ip) : 603 emit_jump(&prog, old_addr, ip); 604 if (ret) 605 return ret; 606 } 607 608 memcpy(new_insn, nop_insn, X86_PATCH_SIZE); 609 if (new_addr) { 610 prog = new_insn; 611 ret = t == BPF_MOD_CALL ? 612 emit_call(&prog, new_addr, ip) : 613 emit_jump(&prog, new_addr, ip); 614 if (ret) 615 return ret; 616 } 617 618 ret = -EBUSY; 619 mutex_lock(&text_mutex); 620 if (memcmp(ip, old_insn, X86_PATCH_SIZE)) 621 goto out; 622 ret = 1; 623 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { 624 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL); 625 ret = 0; 626 } 627 out: 628 mutex_unlock(&text_mutex); 629 return ret; 630 } 631 632 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 633 void *old_addr, void *new_addr) 634 { 635 if (!is_kernel_text((long)ip) && 636 !is_bpf_text_address((long)ip)) 637 /* BPF poking in modules is not supported */ 638 return -EINVAL; 639 640 /* 641 * See emit_prologue(), for IBT builds the trampoline hook is preceded 642 * with an ENDBR instruction. 643 */ 644 if (is_endbr(*(u32 *)ip)) 645 ip += ENDBR_INSN_SIZE; 646 647 return __bpf_arch_text_poke(ip, t, old_addr, new_addr); 648 } 649 650 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8) 651 652 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip) 653 { 654 u8 *prog = *pprog; 655 656 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 657 EMIT_LFENCE(); 658 EMIT2(0xFF, 0xE0 + reg); 659 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) { 660 OPTIMIZER_HIDE_VAR(reg); 661 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 662 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip); 663 else 664 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip); 665 } else { 666 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */ 667 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS)) 668 EMIT1(0xCC); /* int3 */ 669 } 670 671 *pprog = prog; 672 } 673 674 static void emit_return(u8 **pprog, u8 *ip) 675 { 676 u8 *prog = *pprog; 677 678 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) { 679 emit_jump(&prog, x86_return_thunk, ip); 680 } else { 681 EMIT1(0xC3); /* ret */ 682 if (IS_ENABLED(CONFIG_MITIGATION_SLS)) 683 EMIT1(0xCC); /* int3 */ 684 } 685 686 *pprog = prog; 687 } 688 689 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack) (-16 - round_up(stack, 8)) 690 691 /* 692 * Generate the following code: 693 * 694 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... 695 * if (index >= array->map.max_entries) 696 * goto out; 697 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 698 * goto out; 699 * prog = array->ptrs[index]; 700 * if (prog == NULL) 701 * goto out; 702 * goto *(prog->bpf_func + prologue_size); 703 * out: 704 */ 705 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog, 706 u8 **pprog, bool *callee_regs_used, 707 u32 stack_depth, u8 *ip, 708 struct jit_context *ctx) 709 { 710 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth); 711 u8 *prog = *pprog, *start = *pprog; 712 int offset; 713 714 /* 715 * rdi - pointer to ctx 716 * rsi - pointer to bpf_array 717 * rdx - index in bpf_array 718 */ 719 720 /* 721 * if (index >= array->map.max_entries) 722 * goto out; 723 */ 724 EMIT2(0x89, 0xD2); /* mov edx, edx */ 725 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ 726 offsetof(struct bpf_array, map.max_entries)); 727 728 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 729 EMIT2(X86_JBE, offset); /* jbe out */ 730 731 /* 732 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 733 * goto out; 734 */ 735 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */ 736 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */ 737 738 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 739 EMIT2(X86_JAE, offset); /* jae out */ 740 741 /* prog = array->ptrs[index]; */ 742 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ 743 offsetof(struct bpf_array, ptrs)); 744 745 /* 746 * if (prog == NULL) 747 * goto out; 748 */ 749 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ 750 751 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 752 EMIT2(X86_JE, offset); /* je out */ 753 754 /* Inc tail_call_cnt if the slot is populated. */ 755 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */ 756 757 if (bpf_prog->aux->exception_boundary) { 758 pop_callee_regs(&prog, all_callee_regs_used); 759 pop_r12(&prog); 760 } else { 761 pop_callee_regs(&prog, callee_regs_used); 762 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) 763 pop_r12(&prog); 764 } 765 766 /* Pop tail_call_cnt_ptr. */ 767 EMIT1(0x58); /* pop rax */ 768 /* Pop tail_call_cnt, if it's main prog. 769 * Pop tail_call_cnt_ptr, if it's subprog. 770 */ 771 EMIT1(0x58); /* pop rax */ 772 if (stack_depth) 773 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ 774 round_up(stack_depth, 8)); 775 776 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ 777 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ 778 offsetof(struct bpf_prog, bpf_func)); 779 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ 780 X86_TAIL_CALL_OFFSET); 781 /* 782 * Now we're ready to jump into next BPF program 783 * rdi == ctx (1st arg) 784 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET 785 */ 786 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start)); 787 788 /* out: */ 789 ctx->tail_call_indirect_label = prog - start; 790 *pprog = prog; 791 } 792 793 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog, 794 struct bpf_jit_poke_descriptor *poke, 795 u8 **pprog, u8 *ip, 796 bool *callee_regs_used, u32 stack_depth, 797 struct jit_context *ctx) 798 { 799 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth); 800 u8 *prog = *pprog, *start = *pprog; 801 int offset; 802 803 /* 804 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 805 * goto out; 806 */ 807 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */ 808 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */ 809 810 offset = ctx->tail_call_direct_label - (prog + 2 - start); 811 EMIT2(X86_JAE, offset); /* jae out */ 812 813 poke->tailcall_bypass = ip + (prog - start); 814 poke->adj_off = X86_TAIL_CALL_OFFSET; 815 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE; 816 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; 817 818 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, 819 poke->tailcall_bypass); 820 821 /* Inc tail_call_cnt if the slot is populated. */ 822 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */ 823 824 if (bpf_prog->aux->exception_boundary) { 825 pop_callee_regs(&prog, all_callee_regs_used); 826 pop_r12(&prog); 827 } else { 828 pop_callee_regs(&prog, callee_regs_used); 829 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) 830 pop_r12(&prog); 831 } 832 833 /* Pop tail_call_cnt_ptr. */ 834 EMIT1(0x58); /* pop rax */ 835 /* Pop tail_call_cnt, if it's main prog. 836 * Pop tail_call_cnt_ptr, if it's subprog. 837 */ 838 EMIT1(0x58); /* pop rax */ 839 if (stack_depth) 840 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); 841 842 emit_nops(&prog, X86_PATCH_SIZE); 843 844 /* out: */ 845 ctx->tail_call_direct_label = prog - start; 846 847 *pprog = prog; 848 } 849 850 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) 851 { 852 struct bpf_jit_poke_descriptor *poke; 853 struct bpf_array *array; 854 struct bpf_prog *target; 855 int i, ret; 856 857 for (i = 0; i < prog->aux->size_poke_tab; i++) { 858 poke = &prog->aux->poke_tab[i]; 859 if (poke->aux && poke->aux != prog->aux) 860 continue; 861 862 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); 863 864 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 865 continue; 866 867 array = container_of(poke->tail_call.map, struct bpf_array, map); 868 mutex_lock(&array->aux->poke_mutex); 869 target = array->ptrs[poke->tail_call.key]; 870 if (target) { 871 ret = __bpf_arch_text_poke(poke->tailcall_target, 872 BPF_MOD_JUMP, NULL, 873 (u8 *)target->bpf_func + 874 poke->adj_off); 875 BUG_ON(ret < 0); 876 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 877 BPF_MOD_JUMP, 878 (u8 *)poke->tailcall_target + 879 X86_PATCH_SIZE, NULL); 880 BUG_ON(ret < 0); 881 } 882 WRITE_ONCE(poke->tailcall_target_stable, true); 883 mutex_unlock(&array->aux->poke_mutex); 884 } 885 } 886 887 static void emit_mov_imm32(u8 **pprog, bool sign_propagate, 888 u32 dst_reg, const u32 imm32) 889 { 890 u8 *prog = *pprog; 891 u8 b1, b2, b3; 892 893 /* 894 * Optimization: if imm32 is positive, use 'mov %eax, imm32' 895 * (which zero-extends imm32) to save 2 bytes. 896 */ 897 if (sign_propagate && (s32)imm32 < 0) { 898 /* 'mov %rax, imm32' sign extends imm32 */ 899 b1 = add_1mod(0x48, dst_reg); 900 b2 = 0xC7; 901 b3 = 0xC0; 902 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); 903 goto done; 904 } 905 906 /* 907 * Optimization: if imm32 is zero, use 'xor %eax, %eax' 908 * to save 3 bytes. 909 */ 910 if (imm32 == 0) { 911 if (is_ereg(dst_reg)) 912 EMIT1(add_2mod(0x40, dst_reg, dst_reg)); 913 b2 = 0x31; /* xor */ 914 b3 = 0xC0; 915 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); 916 goto done; 917 } 918 919 /* mov %eax, imm32 */ 920 if (is_ereg(dst_reg)) 921 EMIT1(add_1mod(0x40, dst_reg)); 922 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); 923 done: 924 *pprog = prog; 925 } 926 927 static void emit_mov_imm64(u8 **pprog, u32 dst_reg, 928 const u32 imm32_hi, const u32 imm32_lo) 929 { 930 u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo; 931 u8 *prog = *pprog; 932 933 if (is_uimm32(imm64)) { 934 /* 935 * For emitting plain u32, where sign bit must not be 936 * propagated LLVM tends to load imm64 over mov32 937 * directly, so save couple of bytes by just doing 938 * 'mov %eax, imm32' instead. 939 */ 940 emit_mov_imm32(&prog, false, dst_reg, imm32_lo); 941 } else if (is_simm32(imm64)) { 942 emit_mov_imm32(&prog, true, dst_reg, imm32_lo); 943 } else { 944 /* movabsq rax, imm64 */ 945 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); 946 EMIT(imm32_lo, 4); 947 EMIT(imm32_hi, 4); 948 } 949 950 *pprog = prog; 951 } 952 953 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) 954 { 955 u8 *prog = *pprog; 956 957 if (is64) { 958 /* mov dst, src */ 959 EMIT_mov(dst_reg, src_reg); 960 } else { 961 /* mov32 dst, src */ 962 if (is_ereg(dst_reg) || is_ereg(src_reg)) 963 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 964 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); 965 } 966 967 *pprog = prog; 968 } 969 970 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg, 971 u32 src_reg) 972 { 973 u8 *prog = *pprog; 974 975 if (is64) { 976 /* movs[b,w,l]q dst, src */ 977 if (num_bits == 8) 978 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe, 979 add_2reg(0xC0, src_reg, dst_reg)); 980 else if (num_bits == 16) 981 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf, 982 add_2reg(0xC0, src_reg, dst_reg)); 983 else if (num_bits == 32) 984 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63, 985 add_2reg(0xC0, src_reg, dst_reg)); 986 } else { 987 /* movs[b,w]l dst, src */ 988 if (num_bits == 8) { 989 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe, 990 add_2reg(0xC0, src_reg, dst_reg)); 991 } else if (num_bits == 16) { 992 if (is_ereg(dst_reg) || is_ereg(src_reg)) 993 EMIT1(add_2mod(0x40, src_reg, dst_reg)); 994 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf, 995 add_2reg(0xC0, src_reg, dst_reg)); 996 } 997 } 998 999 *pprog = prog; 1000 } 1001 1002 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ 1003 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) 1004 { 1005 u8 *prog = *pprog; 1006 1007 if (is_imm8(off)) { 1008 /* 1-byte signed displacement. 1009 * 1010 * If off == 0 we could skip this and save one extra byte, but 1011 * special case of x86 R13 which always needs an offset is not 1012 * worth the hassle 1013 */ 1014 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); 1015 } else { 1016 /* 4-byte signed displacement */ 1017 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); 1018 } 1019 *pprog = prog; 1020 } 1021 1022 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off) 1023 { 1024 u8 *prog = *pprog; 1025 1026 if (is_imm8(off)) { 1027 EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); 1028 } else { 1029 EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); 1030 } 1031 *pprog = prog; 1032 } 1033 1034 /* 1035 * Emit a REX byte if it will be necessary to address these registers 1036 */ 1037 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) 1038 { 1039 u8 *prog = *pprog; 1040 1041 if (is64) 1042 EMIT1(add_2mod(0x48, dst_reg, src_reg)); 1043 else if (is_ereg(dst_reg) || is_ereg(src_reg)) 1044 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 1045 *pprog = prog; 1046 } 1047 1048 /* 1049 * Similar version of maybe_emit_mod() for a single register 1050 */ 1051 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64) 1052 { 1053 u8 *prog = *pprog; 1054 1055 if (is64) 1056 EMIT1(add_1mod(0x48, reg)); 1057 else if (is_ereg(reg)) 1058 EMIT1(add_1mod(0x40, reg)); 1059 *pprog = prog; 1060 } 1061 1062 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 1063 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1064 { 1065 u8 *prog = *pprog; 1066 1067 switch (size) { 1068 case BPF_B: 1069 /* Emit 'movzx rax, byte ptr [rax + off]' */ 1070 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); 1071 break; 1072 case BPF_H: 1073 /* Emit 'movzx rax, word ptr [rax + off]' */ 1074 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); 1075 break; 1076 case BPF_W: 1077 /* Emit 'mov eax, dword ptr [rax+0x14]' */ 1078 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1079 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); 1080 else 1081 EMIT1(0x8B); 1082 break; 1083 case BPF_DW: 1084 /* Emit 'mov rax, qword ptr [rax+0x14]' */ 1085 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); 1086 break; 1087 } 1088 emit_insn_suffix(&prog, src_reg, dst_reg, off); 1089 *pprog = prog; 1090 } 1091 1092 /* LDSX: dst_reg = *(s8*)(src_reg + off) */ 1093 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1094 { 1095 u8 *prog = *pprog; 1096 1097 switch (size) { 1098 case BPF_B: 1099 /* Emit 'movsx rax, byte ptr [rax + off]' */ 1100 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE); 1101 break; 1102 case BPF_H: 1103 /* Emit 'movsx rax, word ptr [rax + off]' */ 1104 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF); 1105 break; 1106 case BPF_W: 1107 /* Emit 'movsx rax, dword ptr [rax+0x14]' */ 1108 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63); 1109 break; 1110 } 1111 emit_insn_suffix(&prog, src_reg, dst_reg, off); 1112 *pprog = prog; 1113 } 1114 1115 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1116 { 1117 u8 *prog = *pprog; 1118 1119 switch (size) { 1120 case BPF_B: 1121 /* movzx rax, byte ptr [rax + r12 + off] */ 1122 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6); 1123 break; 1124 case BPF_H: 1125 /* movzx rax, word ptr [rax + r12 + off] */ 1126 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7); 1127 break; 1128 case BPF_W: 1129 /* mov eax, dword ptr [rax + r12 + off] */ 1130 EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B); 1131 break; 1132 case BPF_DW: 1133 /* mov rax, qword ptr [rax + r12 + off] */ 1134 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B); 1135 break; 1136 } 1137 emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off); 1138 *pprog = prog; 1139 } 1140 1141 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1142 { 1143 emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); 1144 } 1145 1146 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1147 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1148 { 1149 u8 *prog = *pprog; 1150 1151 switch (size) { 1152 case BPF_B: 1153 /* Emit 'mov byte ptr [rax + off], al' */ 1154 if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) 1155 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ 1156 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); 1157 else 1158 EMIT1(0x88); 1159 break; 1160 case BPF_H: 1161 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1162 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); 1163 else 1164 EMIT2(0x66, 0x89); 1165 break; 1166 case BPF_W: 1167 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1168 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); 1169 else 1170 EMIT1(0x89); 1171 break; 1172 case BPF_DW: 1173 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); 1174 break; 1175 } 1176 emit_insn_suffix(&prog, dst_reg, src_reg, off); 1177 *pprog = prog; 1178 } 1179 1180 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */ 1181 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1182 { 1183 u8 *prog = *pprog; 1184 1185 switch (size) { 1186 case BPF_B: 1187 /* mov byte ptr [rax + r12 + off], al */ 1188 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88); 1189 break; 1190 case BPF_H: 1191 /* mov word ptr [rax + r12 + off], ax */ 1192 EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); 1193 break; 1194 case BPF_W: 1195 /* mov dword ptr [rax + r12 + 1], eax */ 1196 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); 1197 break; 1198 case BPF_DW: 1199 /* mov qword ptr [rax + r12 + 1], rax */ 1200 EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89); 1201 break; 1202 } 1203 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); 1204 *pprog = prog; 1205 } 1206 1207 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1208 { 1209 emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); 1210 } 1211 1212 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */ 1213 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm) 1214 { 1215 u8 *prog = *pprog; 1216 1217 switch (size) { 1218 case BPF_B: 1219 /* mov byte ptr [rax + r12 + off], imm8 */ 1220 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6); 1221 break; 1222 case BPF_H: 1223 /* mov word ptr [rax + r12 + off], imm16 */ 1224 EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); 1225 break; 1226 case BPF_W: 1227 /* mov dword ptr [rax + r12 + 1], imm32 */ 1228 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); 1229 break; 1230 case BPF_DW: 1231 /* mov qword ptr [rax + r12 + 1], imm32 */ 1232 EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7); 1233 break; 1234 } 1235 emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off); 1236 EMIT(imm, bpf_size_to_x86_bytes(size)); 1237 *pprog = prog; 1238 } 1239 1240 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm) 1241 { 1242 emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm); 1243 } 1244 1245 static int emit_atomic_rmw(u8 **pprog, u32 atomic_op, 1246 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) 1247 { 1248 u8 *prog = *pprog; 1249 1250 EMIT1(0xF0); /* lock prefix */ 1251 1252 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); 1253 1254 /* emit opcode */ 1255 switch (atomic_op) { 1256 case BPF_ADD: 1257 case BPF_AND: 1258 case BPF_OR: 1259 case BPF_XOR: 1260 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ 1261 EMIT1(simple_alu_opcodes[atomic_op]); 1262 break; 1263 case BPF_ADD | BPF_FETCH: 1264 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ 1265 EMIT2(0x0F, 0xC1); 1266 break; 1267 case BPF_XCHG: 1268 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 1269 EMIT1(0x87); 1270 break; 1271 case BPF_CMPXCHG: 1272 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 1273 EMIT2(0x0F, 0xB1); 1274 break; 1275 default: 1276 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 1277 return -EFAULT; 1278 } 1279 1280 emit_insn_suffix(&prog, dst_reg, src_reg, off); 1281 1282 *pprog = prog; 1283 return 0; 1284 } 1285 1286 static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size, 1287 u32 dst_reg, u32 src_reg, u32 index_reg, 1288 int off) 1289 { 1290 u8 *prog = *pprog; 1291 1292 EMIT1(0xF0); /* lock prefix */ 1293 switch (size) { 1294 case BPF_W: 1295 EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg)); 1296 break; 1297 case BPF_DW: 1298 EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg)); 1299 break; 1300 default: 1301 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 1302 return -EFAULT; 1303 } 1304 1305 /* emit opcode */ 1306 switch (atomic_op) { 1307 case BPF_ADD: 1308 case BPF_AND: 1309 case BPF_OR: 1310 case BPF_XOR: 1311 /* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */ 1312 EMIT1(simple_alu_opcodes[atomic_op]); 1313 break; 1314 case BPF_ADD | BPF_FETCH: 1315 /* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */ 1316 EMIT2(0x0F, 0xC1); 1317 break; 1318 case BPF_XCHG: 1319 /* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */ 1320 EMIT1(0x87); 1321 break; 1322 case BPF_CMPXCHG: 1323 /* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */ 1324 EMIT2(0x0F, 0xB1); 1325 break; 1326 default: 1327 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 1328 return -EFAULT; 1329 } 1330 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); 1331 *pprog = prog; 1332 return 0; 1333 } 1334 1335 static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg, 1336 u32 src_reg, s16 off, u8 bpf_size) 1337 { 1338 switch (atomic_op) { 1339 case BPF_LOAD_ACQ: 1340 /* dst_reg = smp_load_acquire(src_reg + off16) */ 1341 emit_ldx(pprog, bpf_size, dst_reg, src_reg, off); 1342 break; 1343 case BPF_STORE_REL: 1344 /* smp_store_release(dst_reg + off16, src_reg) */ 1345 emit_stx(pprog, bpf_size, dst_reg, src_reg, off); 1346 break; 1347 default: 1348 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n", 1349 atomic_op); 1350 return -EFAULT; 1351 } 1352 1353 return 0; 1354 } 1355 1356 static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size, 1357 u32 dst_reg, u32 src_reg, u32 index_reg, 1358 int off) 1359 { 1360 switch (atomic_op) { 1361 case BPF_LOAD_ACQ: 1362 /* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */ 1363 emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off); 1364 break; 1365 case BPF_STORE_REL: 1366 /* smp_store_release(dst_reg + idx_reg + off16, src_reg) */ 1367 emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off); 1368 break; 1369 default: 1370 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n", 1371 atomic_op); 1372 return -EFAULT; 1373 } 1374 1375 return 0; 1376 } 1377 1378 #define DONT_CLEAR 1 1379 1380 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) 1381 { 1382 u32 reg = x->fixup >> 8; 1383 1384 /* jump over faulting load and clear dest register */ 1385 if (reg != DONT_CLEAR) 1386 *(unsigned long *)((void *)regs + reg) = 0; 1387 regs->ip += x->fixup & 0xff; 1388 return true; 1389 } 1390 1391 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, 1392 bool *regs_used) 1393 { 1394 int i; 1395 1396 for (i = 1; i <= insn_cnt; i++, insn++) { 1397 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 1398 regs_used[0] = true; 1399 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 1400 regs_used[1] = true; 1401 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 1402 regs_used[2] = true; 1403 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 1404 regs_used[3] = true; 1405 } 1406 } 1407 1408 /* emit the 3-byte VEX prefix 1409 * 1410 * r: same as rex.r, extra bit for ModRM reg field 1411 * x: same as rex.x, extra bit for SIB index field 1412 * b: same as rex.b, extra bit for ModRM r/m, or SIB base 1413 * m: opcode map select, encoding escape bytes e.g. 0x0f38 1414 * w: same as rex.w (32 bit or 64 bit) or opcode specific 1415 * src_reg2: additional source reg (encoded as BPF reg) 1416 * l: vector length (128 bit or 256 bit) or reserved 1417 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3) 1418 */ 1419 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m, 1420 bool w, u8 src_reg2, bool l, u8 pp) 1421 { 1422 u8 *prog = *pprog; 1423 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */ 1424 u8 b1, b2; 1425 u8 vvvv = reg2hex[src_reg2]; 1426 1427 /* reg2hex gives only the lower 3 bit of vvvv */ 1428 if (is_ereg(src_reg2)) 1429 vvvv |= 1 << 3; 1430 1431 /* 1432 * 2nd byte of 3-byte VEX prefix 1433 * ~ means bit inverted encoding 1434 * 1435 * 7 0 1436 * +---+---+---+---+---+---+---+---+ 1437 * |~R |~X |~B | m | 1438 * +---+---+---+---+---+---+---+---+ 1439 */ 1440 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f); 1441 /* 1442 * 3rd byte of 3-byte VEX prefix 1443 * 1444 * 7 0 1445 * +---+---+---+---+---+---+---+---+ 1446 * | W | ~vvvv | L | pp | 1447 * +---+---+---+---+---+---+---+---+ 1448 */ 1449 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3); 1450 1451 EMIT3(b0, b1, b2); 1452 *pprog = prog; 1453 } 1454 1455 /* emit BMI2 shift instruction */ 1456 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op) 1457 { 1458 u8 *prog = *pprog; 1459 bool r = is_ereg(dst_reg); 1460 u8 m = 2; /* escape code 0f38 */ 1461 1462 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op); 1463 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg)); 1464 *pprog = prog; 1465 } 1466 1467 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr) 1468 { 1469 u8 *prog = *pprog; 1470 1471 /* movabs r9, priv_frame_ptr */ 1472 emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32, 1473 (u32) (__force long) priv_frame_ptr); 1474 1475 #ifdef CONFIG_SMP 1476 /* add <r9>, gs:[<off>] */ 1477 EMIT2(0x65, 0x4c); 1478 EMIT3(0x03, 0x0c, 0x25); 1479 EMIT((u32)(unsigned long)&this_cpu_off, 4); 1480 #endif 1481 1482 *pprog = prog; 1483 } 1484 1485 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) 1486 1487 #define __LOAD_TCC_PTR(off) \ 1488 EMIT3_off32(0x48, 0x8B, 0x85, off) 1489 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */ 1490 #define LOAD_TAIL_CALL_CNT_PTR(stack) \ 1491 __LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack)) 1492 1493 /* Memory size/value to protect private stack overflow/underflow */ 1494 #define PRIV_STACK_GUARD_SZ 8 1495 #define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL 1496 1497 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image, 1498 int oldproglen, struct jit_context *ctx, bool jmp_padding) 1499 { 1500 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; 1501 struct bpf_insn *insn = bpf_prog->insnsi; 1502 bool callee_regs_used[4] = {}; 1503 int insn_cnt = bpf_prog->len; 1504 bool seen_exit = false; 1505 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; 1506 void __percpu *priv_frame_ptr = NULL; 1507 u64 arena_vm_start, user_vm_start; 1508 void __percpu *priv_stack_ptr; 1509 int i, excnt = 0; 1510 int ilen, proglen = 0; 1511 u8 *prog = temp; 1512 u32 stack_depth; 1513 int err; 1514 1515 stack_depth = bpf_prog->aux->stack_depth; 1516 priv_stack_ptr = bpf_prog->aux->priv_stack_ptr; 1517 if (priv_stack_ptr) { 1518 priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8); 1519 stack_depth = 0; 1520 } 1521 1522 arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena); 1523 user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena); 1524 1525 detect_reg_usage(insn, insn_cnt, callee_regs_used); 1526 1527 emit_prologue(&prog, stack_depth, 1528 bpf_prog_was_classic(bpf_prog), tail_call_reachable, 1529 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb); 1530 /* Exception callback will clobber callee regs for its own use, and 1531 * restore the original callee regs from main prog's stack frame. 1532 */ 1533 if (bpf_prog->aux->exception_boundary) { 1534 /* We also need to save r12, which is not mapped to any BPF 1535 * register, as we throw after entry into the kernel, which may 1536 * overwrite r12. 1537 */ 1538 push_r12(&prog); 1539 push_callee_regs(&prog, all_callee_regs_used); 1540 } else { 1541 if (arena_vm_start) 1542 push_r12(&prog); 1543 push_callee_regs(&prog, callee_regs_used); 1544 } 1545 if (arena_vm_start) 1546 emit_mov_imm64(&prog, X86_REG_R12, 1547 arena_vm_start >> 32, (u32) arena_vm_start); 1548 1549 if (priv_frame_ptr) 1550 emit_priv_frame_ptr(&prog, priv_frame_ptr); 1551 1552 ilen = prog - temp; 1553 if (rw_image) 1554 memcpy(rw_image + proglen, temp, ilen); 1555 proglen += ilen; 1556 addrs[0] = proglen; 1557 prog = temp; 1558 1559 for (i = 1; i <= insn_cnt; i++, insn++) { 1560 const s32 imm32 = insn->imm; 1561 u32 dst_reg = insn->dst_reg; 1562 u32 src_reg = insn->src_reg; 1563 u8 b2 = 0, b3 = 0; 1564 u8 *start_of_ldx; 1565 s64 jmp_offset; 1566 s16 insn_off; 1567 u8 jmp_cond; 1568 u8 *func; 1569 int nops; 1570 1571 if (priv_frame_ptr) { 1572 if (src_reg == BPF_REG_FP) 1573 src_reg = X86_REG_R9; 1574 1575 if (dst_reg == BPF_REG_FP) 1576 dst_reg = X86_REG_R9; 1577 } 1578 1579 switch (insn->code) { 1580 /* ALU */ 1581 case BPF_ALU | BPF_ADD | BPF_X: 1582 case BPF_ALU | BPF_SUB | BPF_X: 1583 case BPF_ALU | BPF_AND | BPF_X: 1584 case BPF_ALU | BPF_OR | BPF_X: 1585 case BPF_ALU | BPF_XOR | BPF_X: 1586 case BPF_ALU64 | BPF_ADD | BPF_X: 1587 case BPF_ALU64 | BPF_SUB | BPF_X: 1588 case BPF_ALU64 | BPF_AND | BPF_X: 1589 case BPF_ALU64 | BPF_OR | BPF_X: 1590 case BPF_ALU64 | BPF_XOR | BPF_X: 1591 maybe_emit_mod(&prog, dst_reg, src_reg, 1592 BPF_CLASS(insn->code) == BPF_ALU64); 1593 b2 = simple_alu_opcodes[BPF_OP(insn->code)]; 1594 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); 1595 break; 1596 1597 case BPF_ALU64 | BPF_MOV | BPF_X: 1598 if (insn_is_cast_user(insn)) { 1599 if (dst_reg != src_reg) 1600 /* 32-bit mov */ 1601 emit_mov_reg(&prog, false, dst_reg, src_reg); 1602 /* shl dst_reg, 32 */ 1603 maybe_emit_1mod(&prog, dst_reg, true); 1604 EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32); 1605 1606 /* or dst_reg, user_vm_start */ 1607 maybe_emit_1mod(&prog, dst_reg, true); 1608 if (is_axreg(dst_reg)) 1609 EMIT1_off32(0x0D, user_vm_start >> 32); 1610 else 1611 EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32); 1612 1613 /* rol dst_reg, 32 */ 1614 maybe_emit_1mod(&prog, dst_reg, true); 1615 EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32); 1616 1617 /* xor r11, r11 */ 1618 EMIT3(0x4D, 0x31, 0xDB); 1619 1620 /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */ 1621 maybe_emit_mod(&prog, dst_reg, dst_reg, false); 1622 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 1623 1624 /* cmove r11, dst_reg; if so, set dst_reg to zero */ 1625 /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */ 1626 maybe_emit_mod(&prog, AUX_REG, dst_reg, true); 1627 EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg)); 1628 break; 1629 } else if (insn_is_mov_percpu_addr(insn)) { 1630 /* mov <dst>, <src> (if necessary) */ 1631 EMIT_mov(dst_reg, src_reg); 1632 #ifdef CONFIG_SMP 1633 /* add <dst>, gs:[<off>] */ 1634 EMIT2(0x65, add_1mod(0x48, dst_reg)); 1635 EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25); 1636 EMIT((u32)(unsigned long)&this_cpu_off, 4); 1637 #endif 1638 break; 1639 } 1640 fallthrough; 1641 case BPF_ALU | BPF_MOV | BPF_X: 1642 if (insn->off == 0) 1643 emit_mov_reg(&prog, 1644 BPF_CLASS(insn->code) == BPF_ALU64, 1645 dst_reg, src_reg); 1646 else 1647 emit_movsx_reg(&prog, insn->off, 1648 BPF_CLASS(insn->code) == BPF_ALU64, 1649 dst_reg, src_reg); 1650 break; 1651 1652 /* neg dst */ 1653 case BPF_ALU | BPF_NEG: 1654 case BPF_ALU64 | BPF_NEG: 1655 maybe_emit_1mod(&prog, dst_reg, 1656 BPF_CLASS(insn->code) == BPF_ALU64); 1657 EMIT2(0xF7, add_1reg(0xD8, dst_reg)); 1658 break; 1659 1660 case BPF_ALU | BPF_ADD | BPF_K: 1661 case BPF_ALU | BPF_SUB | BPF_K: 1662 case BPF_ALU | BPF_AND | BPF_K: 1663 case BPF_ALU | BPF_OR | BPF_K: 1664 case BPF_ALU | BPF_XOR | BPF_K: 1665 case BPF_ALU64 | BPF_ADD | BPF_K: 1666 case BPF_ALU64 | BPF_SUB | BPF_K: 1667 case BPF_ALU64 | BPF_AND | BPF_K: 1668 case BPF_ALU64 | BPF_OR | BPF_K: 1669 case BPF_ALU64 | BPF_XOR | BPF_K: 1670 maybe_emit_1mod(&prog, dst_reg, 1671 BPF_CLASS(insn->code) == BPF_ALU64); 1672 1673 /* 1674 * b3 holds 'normal' opcode, b2 short form only valid 1675 * in case dst is eax/rax. 1676 */ 1677 switch (BPF_OP(insn->code)) { 1678 case BPF_ADD: 1679 b3 = 0xC0; 1680 b2 = 0x05; 1681 break; 1682 case BPF_SUB: 1683 b3 = 0xE8; 1684 b2 = 0x2D; 1685 break; 1686 case BPF_AND: 1687 b3 = 0xE0; 1688 b2 = 0x25; 1689 break; 1690 case BPF_OR: 1691 b3 = 0xC8; 1692 b2 = 0x0D; 1693 break; 1694 case BPF_XOR: 1695 b3 = 0xF0; 1696 b2 = 0x35; 1697 break; 1698 } 1699 1700 if (is_imm8(imm32)) 1701 EMIT3(0x83, add_1reg(b3, dst_reg), imm32); 1702 else if (is_axreg(dst_reg)) 1703 EMIT1_off32(b2, imm32); 1704 else 1705 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); 1706 break; 1707 1708 case BPF_ALU64 | BPF_MOV | BPF_K: 1709 case BPF_ALU | BPF_MOV | BPF_K: 1710 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, 1711 dst_reg, imm32); 1712 break; 1713 1714 case BPF_LD | BPF_IMM | BPF_DW: 1715 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); 1716 insn++; 1717 i++; 1718 break; 1719 1720 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ 1721 case BPF_ALU | BPF_MOD | BPF_X: 1722 case BPF_ALU | BPF_DIV | BPF_X: 1723 case BPF_ALU | BPF_MOD | BPF_K: 1724 case BPF_ALU | BPF_DIV | BPF_K: 1725 case BPF_ALU64 | BPF_MOD | BPF_X: 1726 case BPF_ALU64 | BPF_DIV | BPF_X: 1727 case BPF_ALU64 | BPF_MOD | BPF_K: 1728 case BPF_ALU64 | BPF_DIV | BPF_K: { 1729 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 1730 1731 if (dst_reg != BPF_REG_0) 1732 EMIT1(0x50); /* push rax */ 1733 if (dst_reg != BPF_REG_3) 1734 EMIT1(0x52); /* push rdx */ 1735 1736 if (BPF_SRC(insn->code) == BPF_X) { 1737 if (src_reg == BPF_REG_0 || 1738 src_reg == BPF_REG_3) { 1739 /* mov r11, src_reg */ 1740 EMIT_mov(AUX_REG, src_reg); 1741 src_reg = AUX_REG; 1742 } 1743 } else { 1744 /* mov r11, imm32 */ 1745 EMIT3_off32(0x49, 0xC7, 0xC3, imm32); 1746 src_reg = AUX_REG; 1747 } 1748 1749 if (dst_reg != BPF_REG_0) 1750 /* mov rax, dst_reg */ 1751 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg); 1752 1753 if (insn->off == 0) { 1754 /* 1755 * xor edx, edx 1756 * equivalent to 'xor rdx, rdx', but one byte less 1757 */ 1758 EMIT2(0x31, 0xd2); 1759 1760 /* div src_reg */ 1761 maybe_emit_1mod(&prog, src_reg, is64); 1762 EMIT2(0xF7, add_1reg(0xF0, src_reg)); 1763 } else { 1764 if (BPF_CLASS(insn->code) == BPF_ALU) 1765 EMIT1(0x99); /* cdq */ 1766 else 1767 EMIT2(0x48, 0x99); /* cqo */ 1768 1769 /* idiv src_reg */ 1770 maybe_emit_1mod(&prog, src_reg, is64); 1771 EMIT2(0xF7, add_1reg(0xF8, src_reg)); 1772 } 1773 1774 if (BPF_OP(insn->code) == BPF_MOD && 1775 dst_reg != BPF_REG_3) 1776 /* mov dst_reg, rdx */ 1777 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3); 1778 else if (BPF_OP(insn->code) == BPF_DIV && 1779 dst_reg != BPF_REG_0) 1780 /* mov dst_reg, rax */ 1781 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0); 1782 1783 if (dst_reg != BPF_REG_3) 1784 EMIT1(0x5A); /* pop rdx */ 1785 if (dst_reg != BPF_REG_0) 1786 EMIT1(0x58); /* pop rax */ 1787 break; 1788 } 1789 1790 case BPF_ALU | BPF_MUL | BPF_K: 1791 case BPF_ALU64 | BPF_MUL | BPF_K: 1792 maybe_emit_mod(&prog, dst_reg, dst_reg, 1793 BPF_CLASS(insn->code) == BPF_ALU64); 1794 1795 if (is_imm8(imm32)) 1796 /* imul dst_reg, dst_reg, imm8 */ 1797 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg), 1798 imm32); 1799 else 1800 /* imul dst_reg, dst_reg, imm32 */ 1801 EMIT2_off32(0x69, 1802 add_2reg(0xC0, dst_reg, dst_reg), 1803 imm32); 1804 break; 1805 1806 case BPF_ALU | BPF_MUL | BPF_X: 1807 case BPF_ALU64 | BPF_MUL | BPF_X: 1808 maybe_emit_mod(&prog, src_reg, dst_reg, 1809 BPF_CLASS(insn->code) == BPF_ALU64); 1810 1811 /* imul dst_reg, src_reg */ 1812 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg)); 1813 break; 1814 1815 /* Shifts */ 1816 case BPF_ALU | BPF_LSH | BPF_K: 1817 case BPF_ALU | BPF_RSH | BPF_K: 1818 case BPF_ALU | BPF_ARSH | BPF_K: 1819 case BPF_ALU64 | BPF_LSH | BPF_K: 1820 case BPF_ALU64 | BPF_RSH | BPF_K: 1821 case BPF_ALU64 | BPF_ARSH | BPF_K: 1822 maybe_emit_1mod(&prog, dst_reg, 1823 BPF_CLASS(insn->code) == BPF_ALU64); 1824 1825 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1826 if (imm32 == 1) 1827 EMIT2(0xD1, add_1reg(b3, dst_reg)); 1828 else 1829 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); 1830 break; 1831 1832 case BPF_ALU | BPF_LSH | BPF_X: 1833 case BPF_ALU | BPF_RSH | BPF_X: 1834 case BPF_ALU | BPF_ARSH | BPF_X: 1835 case BPF_ALU64 | BPF_LSH | BPF_X: 1836 case BPF_ALU64 | BPF_RSH | BPF_X: 1837 case BPF_ALU64 | BPF_ARSH | BPF_X: 1838 /* BMI2 shifts aren't better when shift count is already in rcx */ 1839 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) { 1840 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */ 1841 bool w = (BPF_CLASS(insn->code) == BPF_ALU64); 1842 u8 op; 1843 1844 switch (BPF_OP(insn->code)) { 1845 case BPF_LSH: 1846 op = 1; /* prefix 0x66 */ 1847 break; 1848 case BPF_RSH: 1849 op = 3; /* prefix 0xf2 */ 1850 break; 1851 case BPF_ARSH: 1852 op = 2; /* prefix 0xf3 */ 1853 break; 1854 } 1855 1856 emit_shiftx(&prog, dst_reg, src_reg, w, op); 1857 1858 break; 1859 } 1860 1861 if (src_reg != BPF_REG_4) { /* common case */ 1862 /* Check for bad case when dst_reg == rcx */ 1863 if (dst_reg == BPF_REG_4) { 1864 /* mov r11, dst_reg */ 1865 EMIT_mov(AUX_REG, dst_reg); 1866 dst_reg = AUX_REG; 1867 } else { 1868 EMIT1(0x51); /* push rcx */ 1869 } 1870 /* mov rcx, src_reg */ 1871 EMIT_mov(BPF_REG_4, src_reg); 1872 } 1873 1874 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ 1875 maybe_emit_1mod(&prog, dst_reg, 1876 BPF_CLASS(insn->code) == BPF_ALU64); 1877 1878 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1879 EMIT2(0xD3, add_1reg(b3, dst_reg)); 1880 1881 if (src_reg != BPF_REG_4) { 1882 if (insn->dst_reg == BPF_REG_4) 1883 /* mov dst_reg, r11 */ 1884 EMIT_mov(insn->dst_reg, AUX_REG); 1885 else 1886 EMIT1(0x59); /* pop rcx */ 1887 } 1888 1889 break; 1890 1891 case BPF_ALU | BPF_END | BPF_FROM_BE: 1892 case BPF_ALU64 | BPF_END | BPF_FROM_LE: 1893 switch (imm32) { 1894 case 16: 1895 /* Emit 'ror %ax, 8' to swap lower 2 bytes */ 1896 EMIT1(0x66); 1897 if (is_ereg(dst_reg)) 1898 EMIT1(0x41); 1899 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); 1900 1901 /* Emit 'movzwl eax, ax' */ 1902 if (is_ereg(dst_reg)) 1903 EMIT3(0x45, 0x0F, 0xB7); 1904 else 1905 EMIT2(0x0F, 0xB7); 1906 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1907 break; 1908 case 32: 1909 /* Emit 'bswap eax' to swap lower 4 bytes */ 1910 if (is_ereg(dst_reg)) 1911 EMIT2(0x41, 0x0F); 1912 else 1913 EMIT1(0x0F); 1914 EMIT1(add_1reg(0xC8, dst_reg)); 1915 break; 1916 case 64: 1917 /* Emit 'bswap rax' to swap 8 bytes */ 1918 EMIT3(add_1mod(0x48, dst_reg), 0x0F, 1919 add_1reg(0xC8, dst_reg)); 1920 break; 1921 } 1922 break; 1923 1924 case BPF_ALU | BPF_END | BPF_FROM_LE: 1925 switch (imm32) { 1926 case 16: 1927 /* 1928 * Emit 'movzwl eax, ax' to zero extend 16-bit 1929 * into 64 bit 1930 */ 1931 if (is_ereg(dst_reg)) 1932 EMIT3(0x45, 0x0F, 0xB7); 1933 else 1934 EMIT2(0x0F, 0xB7); 1935 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1936 break; 1937 case 32: 1938 /* Emit 'mov eax, eax' to clear upper 32-bits */ 1939 if (is_ereg(dst_reg)) 1940 EMIT1(0x45); 1941 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); 1942 break; 1943 case 64: 1944 /* nop */ 1945 break; 1946 } 1947 break; 1948 1949 /* speculation barrier */ 1950 case BPF_ST | BPF_NOSPEC: 1951 EMIT_LFENCE(); 1952 break; 1953 1954 /* ST: *(u8*)(dst_reg + off) = imm */ 1955 case BPF_ST | BPF_MEM | BPF_B: 1956 if (is_ereg(dst_reg)) 1957 EMIT2(0x41, 0xC6); 1958 else 1959 EMIT1(0xC6); 1960 goto st; 1961 case BPF_ST | BPF_MEM | BPF_H: 1962 if (is_ereg(dst_reg)) 1963 EMIT3(0x66, 0x41, 0xC7); 1964 else 1965 EMIT2(0x66, 0xC7); 1966 goto st; 1967 case BPF_ST | BPF_MEM | BPF_W: 1968 if (is_ereg(dst_reg)) 1969 EMIT2(0x41, 0xC7); 1970 else 1971 EMIT1(0xC7); 1972 goto st; 1973 case BPF_ST | BPF_MEM | BPF_DW: 1974 EMIT2(add_1mod(0x48, dst_reg), 0xC7); 1975 1976 st: if (is_imm8(insn->off)) 1977 EMIT2(add_1reg(0x40, dst_reg), insn->off); 1978 else 1979 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); 1980 1981 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); 1982 break; 1983 1984 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1985 case BPF_STX | BPF_MEM | BPF_B: 1986 case BPF_STX | BPF_MEM | BPF_H: 1987 case BPF_STX | BPF_MEM | BPF_W: 1988 case BPF_STX | BPF_MEM | BPF_DW: 1989 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 1990 break; 1991 1992 case BPF_ST | BPF_PROBE_MEM32 | BPF_B: 1993 case BPF_ST | BPF_PROBE_MEM32 | BPF_H: 1994 case BPF_ST | BPF_PROBE_MEM32 | BPF_W: 1995 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW: 1996 start_of_ldx = prog; 1997 emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm); 1998 goto populate_extable; 1999 2000 /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */ 2001 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B: 2002 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H: 2003 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W: 2004 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW: 2005 case BPF_STX | BPF_PROBE_MEM32 | BPF_B: 2006 case BPF_STX | BPF_PROBE_MEM32 | BPF_H: 2007 case BPF_STX | BPF_PROBE_MEM32 | BPF_W: 2008 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW: 2009 start_of_ldx = prog; 2010 if (BPF_CLASS(insn->code) == BPF_LDX) 2011 emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2012 else 2013 emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2014 populate_extable: 2015 { 2016 struct exception_table_entry *ex; 2017 u8 *_insn = image + proglen + (start_of_ldx - temp); 2018 s64 delta; 2019 2020 if (!bpf_prog->aux->extable) 2021 break; 2022 2023 if (excnt >= bpf_prog->aux->num_exentries) { 2024 pr_err("mem32 extable bug\n"); 2025 return -EFAULT; 2026 } 2027 ex = &bpf_prog->aux->extable[excnt++]; 2028 2029 delta = _insn - (u8 *)&ex->insn; 2030 /* switch ex to rw buffer for writes */ 2031 ex = (void *)rw_image + ((void *)ex - (void *)image); 2032 2033 ex->insn = delta; 2034 2035 ex->data = EX_TYPE_BPF; 2036 2037 ex->fixup = (prog - start_of_ldx) | 2038 ((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8); 2039 } 2040 break; 2041 2042 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 2043 case BPF_LDX | BPF_MEM | BPF_B: 2044 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 2045 case BPF_LDX | BPF_MEM | BPF_H: 2046 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 2047 case BPF_LDX | BPF_MEM | BPF_W: 2048 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 2049 case BPF_LDX | BPF_MEM | BPF_DW: 2050 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 2051 /* LDXS: dst_reg = *(s8*)(src_reg + off) */ 2052 case BPF_LDX | BPF_MEMSX | BPF_B: 2053 case BPF_LDX | BPF_MEMSX | BPF_H: 2054 case BPF_LDX | BPF_MEMSX | BPF_W: 2055 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: 2056 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: 2057 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: 2058 insn_off = insn->off; 2059 2060 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 2061 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 2062 /* Conservatively check that src_reg + insn->off is a kernel address: 2063 * src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE 2064 * and 2065 * src_reg + insn->off < VSYSCALL_ADDR 2066 */ 2067 2068 u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR; 2069 u8 *end_of_jmp; 2070 2071 /* movabsq r10, VSYSCALL_ADDR */ 2072 emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32, 2073 (u32)(long)VSYSCALL_ADDR); 2074 2075 /* mov src_reg, r11 */ 2076 EMIT_mov(AUX_REG, src_reg); 2077 2078 if (insn->off) { 2079 /* add r11, insn->off */ 2080 maybe_emit_1mod(&prog, AUX_REG, true); 2081 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off); 2082 } 2083 2084 /* sub r11, r10 */ 2085 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); 2086 EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); 2087 2088 /* movabsq r10, limit */ 2089 emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32, 2090 (u32)(long)limit); 2091 2092 /* cmp r10, r11 */ 2093 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); 2094 EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); 2095 2096 /* if unsigned '>', goto load */ 2097 EMIT2(X86_JA, 0); 2098 end_of_jmp = prog; 2099 2100 /* xor dst_reg, dst_reg */ 2101 emit_mov_imm32(&prog, false, dst_reg, 0); 2102 /* jmp byte_after_ldx */ 2103 EMIT2(0xEB, 0); 2104 2105 /* populate jmp_offset for JAE above to jump to start_of_ldx */ 2106 start_of_ldx = prog; 2107 end_of_jmp[-1] = start_of_ldx - end_of_jmp; 2108 } 2109 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || 2110 BPF_MODE(insn->code) == BPF_MEMSX) 2111 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 2112 else 2113 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 2114 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 2115 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 2116 struct exception_table_entry *ex; 2117 u8 *_insn = image + proglen + (start_of_ldx - temp); 2118 s64 delta; 2119 2120 /* populate jmp_offset for JMP above */ 2121 start_of_ldx[-1] = prog - start_of_ldx; 2122 2123 if (!bpf_prog->aux->extable) 2124 break; 2125 2126 if (excnt >= bpf_prog->aux->num_exentries) { 2127 pr_err("ex gen bug\n"); 2128 return -EFAULT; 2129 } 2130 ex = &bpf_prog->aux->extable[excnt++]; 2131 2132 delta = _insn - (u8 *)&ex->insn; 2133 if (!is_simm32(delta)) { 2134 pr_err("extable->insn doesn't fit into 32-bit\n"); 2135 return -EFAULT; 2136 } 2137 /* switch ex to rw buffer for writes */ 2138 ex = (void *)rw_image + ((void *)ex - (void *)image); 2139 2140 ex->insn = delta; 2141 2142 ex->data = EX_TYPE_BPF; 2143 2144 if (dst_reg > BPF_REG_9) { 2145 pr_err("verifier error\n"); 2146 return -EFAULT; 2147 } 2148 /* 2149 * Compute size of x86 insn and its target dest x86 register. 2150 * ex_handler_bpf() will use lower 8 bits to adjust 2151 * pt_regs->ip to jump over this x86 instruction 2152 * and upper bits to figure out which pt_regs to zero out. 2153 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" 2154 * of 4 bytes will be ignored and rbx will be zero inited. 2155 */ 2156 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8); 2157 } 2158 break; 2159 2160 case BPF_STX | BPF_ATOMIC | BPF_B: 2161 case BPF_STX | BPF_ATOMIC | BPF_H: 2162 if (!bpf_atomic_is_load_store(insn)) { 2163 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 2164 return -EFAULT; 2165 } 2166 fallthrough; 2167 case BPF_STX | BPF_ATOMIC | BPF_W: 2168 case BPF_STX | BPF_ATOMIC | BPF_DW: 2169 if (insn->imm == (BPF_AND | BPF_FETCH) || 2170 insn->imm == (BPF_OR | BPF_FETCH) || 2171 insn->imm == (BPF_XOR | BPF_FETCH)) { 2172 bool is64 = BPF_SIZE(insn->code) == BPF_DW; 2173 u32 real_src_reg = src_reg; 2174 u32 real_dst_reg = dst_reg; 2175 u8 *branch_target; 2176 2177 /* 2178 * Can't be implemented with a single x86 insn. 2179 * Need to do a CMPXCHG loop. 2180 */ 2181 2182 /* Will need RAX as a CMPXCHG operand so save R0 */ 2183 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); 2184 if (src_reg == BPF_REG_0) 2185 real_src_reg = BPF_REG_AX; 2186 if (dst_reg == BPF_REG_0) 2187 real_dst_reg = BPF_REG_AX; 2188 2189 branch_target = prog; 2190 /* Load old value */ 2191 emit_ldx(&prog, BPF_SIZE(insn->code), 2192 BPF_REG_0, real_dst_reg, insn->off); 2193 /* 2194 * Perform the (commutative) operation locally, 2195 * put the result in the AUX_REG. 2196 */ 2197 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); 2198 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64); 2199 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], 2200 add_2reg(0xC0, AUX_REG, real_src_reg)); 2201 /* Attempt to swap in new value */ 2202 err = emit_atomic_rmw(&prog, BPF_CMPXCHG, 2203 real_dst_reg, AUX_REG, 2204 insn->off, 2205 BPF_SIZE(insn->code)); 2206 if (WARN_ON(err)) 2207 return err; 2208 /* 2209 * ZF tells us whether we won the race. If it's 2210 * cleared we need to try again. 2211 */ 2212 EMIT2(X86_JNE, -(prog - branch_target) - 2); 2213 /* Return the pre-modification value */ 2214 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0); 2215 /* Restore R0 after clobbering RAX */ 2216 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); 2217 break; 2218 } 2219 2220 if (bpf_atomic_is_load_store(insn)) 2221 err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg, 2222 insn->off, BPF_SIZE(insn->code)); 2223 else 2224 err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg, 2225 insn->off, BPF_SIZE(insn->code)); 2226 if (err) 2227 return err; 2228 break; 2229 2230 case BPF_STX | BPF_PROBE_ATOMIC | BPF_B: 2231 case BPF_STX | BPF_PROBE_ATOMIC | BPF_H: 2232 if (!bpf_atomic_is_load_store(insn)) { 2233 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 2234 return -EFAULT; 2235 } 2236 fallthrough; 2237 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W: 2238 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW: 2239 start_of_ldx = prog; 2240 2241 if (bpf_atomic_is_load_store(insn)) 2242 err = emit_atomic_ld_st_index(&prog, insn->imm, 2243 BPF_SIZE(insn->code), dst_reg, 2244 src_reg, X86_REG_R12, insn->off); 2245 else 2246 err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code), 2247 dst_reg, src_reg, X86_REG_R12, 2248 insn->off); 2249 if (err) 2250 return err; 2251 goto populate_extable; 2252 2253 /* call */ 2254 case BPF_JMP | BPF_CALL: { 2255 u8 *ip = image + addrs[i - 1]; 2256 2257 func = (u8 *) __bpf_call_base + imm32; 2258 if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) { 2259 LOAD_TAIL_CALL_CNT_PTR(stack_depth); 2260 ip += 7; 2261 } 2262 if (!imm32) 2263 return -EINVAL; 2264 if (priv_frame_ptr) { 2265 push_r9(&prog); 2266 ip += 2; 2267 } 2268 ip += x86_call_depth_emit_accounting(&prog, func, ip); 2269 if (emit_call(&prog, func, ip)) 2270 return -EINVAL; 2271 if (priv_frame_ptr) 2272 pop_r9(&prog); 2273 break; 2274 } 2275 2276 case BPF_JMP | BPF_TAIL_CALL: 2277 if (imm32) 2278 emit_bpf_tail_call_direct(bpf_prog, 2279 &bpf_prog->aux->poke_tab[imm32 - 1], 2280 &prog, image + addrs[i - 1], 2281 callee_regs_used, 2282 stack_depth, 2283 ctx); 2284 else 2285 emit_bpf_tail_call_indirect(bpf_prog, 2286 &prog, 2287 callee_regs_used, 2288 stack_depth, 2289 image + addrs[i - 1], 2290 ctx); 2291 break; 2292 2293 /* cond jump */ 2294 case BPF_JMP | BPF_JEQ | BPF_X: 2295 case BPF_JMP | BPF_JNE | BPF_X: 2296 case BPF_JMP | BPF_JGT | BPF_X: 2297 case BPF_JMP | BPF_JLT | BPF_X: 2298 case BPF_JMP | BPF_JGE | BPF_X: 2299 case BPF_JMP | BPF_JLE | BPF_X: 2300 case BPF_JMP | BPF_JSGT | BPF_X: 2301 case BPF_JMP | BPF_JSLT | BPF_X: 2302 case BPF_JMP | BPF_JSGE | BPF_X: 2303 case BPF_JMP | BPF_JSLE | BPF_X: 2304 case BPF_JMP32 | BPF_JEQ | BPF_X: 2305 case BPF_JMP32 | BPF_JNE | BPF_X: 2306 case BPF_JMP32 | BPF_JGT | BPF_X: 2307 case BPF_JMP32 | BPF_JLT | BPF_X: 2308 case BPF_JMP32 | BPF_JGE | BPF_X: 2309 case BPF_JMP32 | BPF_JLE | BPF_X: 2310 case BPF_JMP32 | BPF_JSGT | BPF_X: 2311 case BPF_JMP32 | BPF_JSLT | BPF_X: 2312 case BPF_JMP32 | BPF_JSGE | BPF_X: 2313 case BPF_JMP32 | BPF_JSLE | BPF_X: 2314 /* cmp dst_reg, src_reg */ 2315 maybe_emit_mod(&prog, dst_reg, src_reg, 2316 BPF_CLASS(insn->code) == BPF_JMP); 2317 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); 2318 goto emit_cond_jmp; 2319 2320 case BPF_JMP | BPF_JSET | BPF_X: 2321 case BPF_JMP32 | BPF_JSET | BPF_X: 2322 /* test dst_reg, src_reg */ 2323 maybe_emit_mod(&prog, dst_reg, src_reg, 2324 BPF_CLASS(insn->code) == BPF_JMP); 2325 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); 2326 goto emit_cond_jmp; 2327 2328 case BPF_JMP | BPF_JSET | BPF_K: 2329 case BPF_JMP32 | BPF_JSET | BPF_K: 2330 /* test dst_reg, imm32 */ 2331 maybe_emit_1mod(&prog, dst_reg, 2332 BPF_CLASS(insn->code) == BPF_JMP); 2333 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); 2334 goto emit_cond_jmp; 2335 2336 case BPF_JMP | BPF_JEQ | BPF_K: 2337 case BPF_JMP | BPF_JNE | BPF_K: 2338 case BPF_JMP | BPF_JGT | BPF_K: 2339 case BPF_JMP | BPF_JLT | BPF_K: 2340 case BPF_JMP | BPF_JGE | BPF_K: 2341 case BPF_JMP | BPF_JLE | BPF_K: 2342 case BPF_JMP | BPF_JSGT | BPF_K: 2343 case BPF_JMP | BPF_JSLT | BPF_K: 2344 case BPF_JMP | BPF_JSGE | BPF_K: 2345 case BPF_JMP | BPF_JSLE | BPF_K: 2346 case BPF_JMP32 | BPF_JEQ | BPF_K: 2347 case BPF_JMP32 | BPF_JNE | BPF_K: 2348 case BPF_JMP32 | BPF_JGT | BPF_K: 2349 case BPF_JMP32 | BPF_JLT | BPF_K: 2350 case BPF_JMP32 | BPF_JGE | BPF_K: 2351 case BPF_JMP32 | BPF_JLE | BPF_K: 2352 case BPF_JMP32 | BPF_JSGT | BPF_K: 2353 case BPF_JMP32 | BPF_JSLT | BPF_K: 2354 case BPF_JMP32 | BPF_JSGE | BPF_K: 2355 case BPF_JMP32 | BPF_JSLE | BPF_K: 2356 /* test dst_reg, dst_reg to save one extra byte */ 2357 if (imm32 == 0) { 2358 maybe_emit_mod(&prog, dst_reg, dst_reg, 2359 BPF_CLASS(insn->code) == BPF_JMP); 2360 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 2361 goto emit_cond_jmp; 2362 } 2363 2364 /* cmp dst_reg, imm8/32 */ 2365 maybe_emit_1mod(&prog, dst_reg, 2366 BPF_CLASS(insn->code) == BPF_JMP); 2367 2368 if (is_imm8(imm32)) 2369 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); 2370 else 2371 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); 2372 2373 emit_cond_jmp: /* Convert BPF opcode to x86 */ 2374 switch (BPF_OP(insn->code)) { 2375 case BPF_JEQ: 2376 jmp_cond = X86_JE; 2377 break; 2378 case BPF_JSET: 2379 case BPF_JNE: 2380 jmp_cond = X86_JNE; 2381 break; 2382 case BPF_JGT: 2383 /* GT is unsigned '>', JA in x86 */ 2384 jmp_cond = X86_JA; 2385 break; 2386 case BPF_JLT: 2387 /* LT is unsigned '<', JB in x86 */ 2388 jmp_cond = X86_JB; 2389 break; 2390 case BPF_JGE: 2391 /* GE is unsigned '>=', JAE in x86 */ 2392 jmp_cond = X86_JAE; 2393 break; 2394 case BPF_JLE: 2395 /* LE is unsigned '<=', JBE in x86 */ 2396 jmp_cond = X86_JBE; 2397 break; 2398 case BPF_JSGT: 2399 /* Signed '>', GT in x86 */ 2400 jmp_cond = X86_JG; 2401 break; 2402 case BPF_JSLT: 2403 /* Signed '<', LT in x86 */ 2404 jmp_cond = X86_JL; 2405 break; 2406 case BPF_JSGE: 2407 /* Signed '>=', GE in x86 */ 2408 jmp_cond = X86_JGE; 2409 break; 2410 case BPF_JSLE: 2411 /* Signed '<=', LE in x86 */ 2412 jmp_cond = X86_JLE; 2413 break; 2414 default: /* to silence GCC warning */ 2415 return -EFAULT; 2416 } 2417 jmp_offset = addrs[i + insn->off] - addrs[i]; 2418 if (is_imm8_jmp_offset(jmp_offset)) { 2419 if (jmp_padding) { 2420 /* To keep the jmp_offset valid, the extra bytes are 2421 * padded before the jump insn, so we subtract the 2422 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. 2423 * 2424 * If the previous pass already emits an imm8 2425 * jmp_cond, then this BPF insn won't shrink, so 2426 * "nops" is 0. 2427 * 2428 * On the other hand, if the previous pass emits an 2429 * imm32 jmp_cond, the extra 4 bytes(*) is padded to 2430 * keep the image from shrinking further. 2431 * 2432 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond 2433 * is 2 bytes, so the size difference is 4 bytes. 2434 */ 2435 nops = INSN_SZ_DIFF - 2; 2436 if (nops != 0 && nops != 4) { 2437 pr_err("unexpected jmp_cond padding: %d bytes\n", 2438 nops); 2439 return -EFAULT; 2440 } 2441 emit_nops(&prog, nops); 2442 } 2443 EMIT2(jmp_cond, jmp_offset); 2444 } else if (is_simm32(jmp_offset)) { 2445 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 2446 } else { 2447 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 2448 return -EFAULT; 2449 } 2450 2451 break; 2452 2453 case BPF_JMP | BPF_JA: 2454 case BPF_JMP32 | BPF_JA: 2455 if (BPF_CLASS(insn->code) == BPF_JMP) { 2456 if (insn->off == -1) 2457 /* -1 jmp instructions will always jump 2458 * backwards two bytes. Explicitly handling 2459 * this case avoids wasting too many passes 2460 * when there are long sequences of replaced 2461 * dead code. 2462 */ 2463 jmp_offset = -2; 2464 else 2465 jmp_offset = addrs[i + insn->off] - addrs[i]; 2466 } else { 2467 if (insn->imm == -1) 2468 jmp_offset = -2; 2469 else 2470 jmp_offset = addrs[i + insn->imm] - addrs[i]; 2471 } 2472 2473 if (!jmp_offset) { 2474 /* 2475 * If jmp_padding is enabled, the extra nops will 2476 * be inserted. Otherwise, optimize out nop jumps. 2477 */ 2478 if (jmp_padding) { 2479 /* There are 3 possible conditions. 2480 * (1) This BPF_JA is already optimized out in 2481 * the previous run, so there is no need 2482 * to pad any extra byte (0 byte). 2483 * (2) The previous pass emits an imm8 jmp, 2484 * so we pad 2 bytes to match the previous 2485 * insn size. 2486 * (3) Similarly, the previous pass emits an 2487 * imm32 jmp, and 5 bytes is padded. 2488 */ 2489 nops = INSN_SZ_DIFF; 2490 if (nops != 0 && nops != 2 && nops != 5) { 2491 pr_err("unexpected nop jump padding: %d bytes\n", 2492 nops); 2493 return -EFAULT; 2494 } 2495 emit_nops(&prog, nops); 2496 } 2497 break; 2498 } 2499 emit_jmp: 2500 if (is_imm8_jmp_offset(jmp_offset)) { 2501 if (jmp_padding) { 2502 /* To avoid breaking jmp_offset, the extra bytes 2503 * are padded before the actual jmp insn, so 2504 * 2 bytes is subtracted from INSN_SZ_DIFF. 2505 * 2506 * If the previous pass already emits an imm8 2507 * jmp, there is nothing to pad (0 byte). 2508 * 2509 * If it emits an imm32 jmp (5 bytes) previously 2510 * and now an imm8 jmp (2 bytes), then we pad 2511 * (5 - 2 = 3) bytes to stop the image from 2512 * shrinking further. 2513 */ 2514 nops = INSN_SZ_DIFF - 2; 2515 if (nops != 0 && nops != 3) { 2516 pr_err("unexpected jump padding: %d bytes\n", 2517 nops); 2518 return -EFAULT; 2519 } 2520 emit_nops(&prog, INSN_SZ_DIFF - 2); 2521 } 2522 EMIT2(0xEB, jmp_offset); 2523 } else if (is_simm32(jmp_offset)) { 2524 EMIT1_off32(0xE9, jmp_offset); 2525 } else { 2526 pr_err("jmp gen bug %llx\n", jmp_offset); 2527 return -EFAULT; 2528 } 2529 break; 2530 2531 case BPF_JMP | BPF_EXIT: 2532 if (seen_exit) { 2533 jmp_offset = ctx->cleanup_addr - addrs[i]; 2534 goto emit_jmp; 2535 } 2536 seen_exit = true; 2537 /* Update cleanup_addr */ 2538 ctx->cleanup_addr = proglen; 2539 if (bpf_prog->aux->exception_boundary) { 2540 pop_callee_regs(&prog, all_callee_regs_used); 2541 pop_r12(&prog); 2542 } else { 2543 pop_callee_regs(&prog, callee_regs_used); 2544 if (arena_vm_start) 2545 pop_r12(&prog); 2546 } 2547 EMIT1(0xC9); /* leave */ 2548 emit_return(&prog, image + addrs[i - 1] + (prog - temp)); 2549 break; 2550 2551 default: 2552 /* 2553 * By design x86-64 JIT should support all BPF instructions. 2554 * This error will be seen if new instruction was added 2555 * to the interpreter, but not to the JIT, or if there is 2556 * junk in bpf_prog. 2557 */ 2558 pr_err("bpf_jit: unknown opcode %02x\n", insn->code); 2559 return -EINVAL; 2560 } 2561 2562 ilen = prog - temp; 2563 if (ilen > BPF_MAX_INSN_SIZE) { 2564 pr_err("bpf_jit: fatal insn size error\n"); 2565 return -EFAULT; 2566 } 2567 2568 if (image) { 2569 /* 2570 * When populating the image, assert that: 2571 * 2572 * i) We do not write beyond the allocated space, and 2573 * ii) addrs[i] did not change from the prior run, in order 2574 * to validate assumptions made for computing branch 2575 * displacements. 2576 */ 2577 if (unlikely(proglen + ilen > oldproglen || 2578 proglen + ilen != addrs[i])) { 2579 pr_err("bpf_jit: fatal error\n"); 2580 return -EFAULT; 2581 } 2582 memcpy(rw_image + proglen, temp, ilen); 2583 } 2584 proglen += ilen; 2585 addrs[i] = proglen; 2586 prog = temp; 2587 } 2588 2589 if (image && excnt != bpf_prog->aux->num_exentries) { 2590 pr_err("extable is not populated\n"); 2591 return -EFAULT; 2592 } 2593 return proglen; 2594 } 2595 2596 static void clean_stack_garbage(const struct btf_func_model *m, 2597 u8 **pprog, int nr_stack_slots, 2598 int stack_size) 2599 { 2600 int arg_size, off; 2601 u8 *prog; 2602 2603 /* Generally speaking, the compiler will pass the arguments 2604 * on-stack with "push" instruction, which will take 8-byte 2605 * on the stack. In this case, there won't be garbage values 2606 * while we copy the arguments from origin stack frame to current 2607 * in BPF_DW. 2608 * 2609 * However, sometimes the compiler will only allocate 4-byte on 2610 * the stack for the arguments. For now, this case will only 2611 * happen if there is only one argument on-stack and its size 2612 * not more than 4 byte. In this case, there will be garbage 2613 * values on the upper 4-byte where we store the argument on 2614 * current stack frame. 2615 * 2616 * arguments on origin stack: 2617 * 2618 * stack_arg_1(4-byte) xxx(4-byte) 2619 * 2620 * what we copy: 2621 * 2622 * stack_arg_1(8-byte): stack_arg_1(origin) xxx 2623 * 2624 * and the xxx is the garbage values which we should clean here. 2625 */ 2626 if (nr_stack_slots != 1) 2627 return; 2628 2629 /* the size of the last argument */ 2630 arg_size = m->arg_size[m->nr_args - 1]; 2631 if (arg_size <= 4) { 2632 off = -(stack_size - 4); 2633 prog = *pprog; 2634 /* mov DWORD PTR [rbp + off], 0 */ 2635 if (!is_imm8(off)) 2636 EMIT2_off32(0xC7, 0x85, off); 2637 else 2638 EMIT3(0xC7, 0x45, off); 2639 EMIT(0, 4); 2640 *pprog = prog; 2641 } 2642 } 2643 2644 /* get the count of the regs that are used to pass arguments */ 2645 static int get_nr_used_regs(const struct btf_func_model *m) 2646 { 2647 int i, arg_regs, nr_used_regs = 0; 2648 2649 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2650 arg_regs = (m->arg_size[i] + 7) / 8; 2651 if (nr_used_regs + arg_regs <= 6) 2652 nr_used_regs += arg_regs; 2653 2654 if (nr_used_regs >= 6) 2655 break; 2656 } 2657 2658 return nr_used_regs; 2659 } 2660 2661 static void save_args(const struct btf_func_model *m, u8 **prog, 2662 int stack_size, bool for_call_origin) 2663 { 2664 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0; 2665 int i, j; 2666 2667 /* Store function arguments to stack. 2668 * For a function that accepts two pointers the sequence will be: 2669 * mov QWORD PTR [rbp-0x10],rdi 2670 * mov QWORD PTR [rbp-0x8],rsi 2671 */ 2672 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2673 arg_regs = (m->arg_size[i] + 7) / 8; 2674 2675 /* According to the research of Yonghong, struct members 2676 * should be all in register or all on the stack. 2677 * Meanwhile, the compiler will pass the argument on regs 2678 * if the remaining regs can hold the argument. 2679 * 2680 * Disorder of the args can happen. For example: 2681 * 2682 * struct foo_struct { 2683 * long a; 2684 * int b; 2685 * }; 2686 * int foo(char, char, char, char, char, struct foo_struct, 2687 * char); 2688 * 2689 * the arg1-5,arg7 will be passed by regs, and arg6 will 2690 * by stack. 2691 */ 2692 if (nr_regs + arg_regs > 6) { 2693 /* copy function arguments from origin stack frame 2694 * into current stack frame. 2695 * 2696 * The starting address of the arguments on-stack 2697 * is: 2698 * rbp + 8(push rbp) + 2699 * 8(return addr of origin call) + 2700 * 8(return addr of the caller) 2701 * which means: rbp + 24 2702 */ 2703 for (j = 0; j < arg_regs; j++) { 2704 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 2705 nr_stack_slots * 8 + 0x18); 2706 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0, 2707 -stack_size); 2708 2709 if (!nr_stack_slots) 2710 first_off = stack_size; 2711 stack_size -= 8; 2712 nr_stack_slots++; 2713 } 2714 } else { 2715 /* Only copy the arguments on-stack to current 2716 * 'stack_size' and ignore the regs, used to 2717 * prepare the arguments on-stack for origin call. 2718 */ 2719 if (for_call_origin) { 2720 nr_regs += arg_regs; 2721 continue; 2722 } 2723 2724 /* copy the arguments from regs into stack */ 2725 for (j = 0; j < arg_regs; j++) { 2726 emit_stx(prog, BPF_DW, BPF_REG_FP, 2727 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2728 -stack_size); 2729 stack_size -= 8; 2730 nr_regs++; 2731 } 2732 } 2733 } 2734 2735 clean_stack_garbage(m, prog, nr_stack_slots, first_off); 2736 } 2737 2738 static void restore_regs(const struct btf_func_model *m, u8 **prog, 2739 int stack_size) 2740 { 2741 int i, j, arg_regs, nr_regs = 0; 2742 2743 /* Restore function arguments from stack. 2744 * For a function that accepts two pointers the sequence will be: 2745 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] 2746 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] 2747 * 2748 * The logic here is similar to what we do in save_args() 2749 */ 2750 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2751 arg_regs = (m->arg_size[i] + 7) / 8; 2752 if (nr_regs + arg_regs <= 6) { 2753 for (j = 0; j < arg_regs; j++) { 2754 emit_ldx(prog, BPF_DW, 2755 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2756 BPF_REG_FP, 2757 -stack_size); 2758 stack_size -= 8; 2759 nr_regs++; 2760 } 2761 } else { 2762 stack_size -= 8 * arg_regs; 2763 } 2764 2765 if (nr_regs >= 6) 2766 break; 2767 } 2768 } 2769 2770 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, 2771 struct bpf_tramp_link *l, int stack_size, 2772 int run_ctx_off, bool save_ret, 2773 void *image, void *rw_image) 2774 { 2775 u8 *prog = *pprog; 2776 u8 *jmp_insn; 2777 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); 2778 struct bpf_prog *p = l->link.prog; 2779 u64 cookie = l->cookie; 2780 2781 /* mov rdi, cookie */ 2782 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie); 2783 2784 /* Prepare struct bpf_tramp_run_ctx. 2785 * 2786 * bpf_tramp_run_ctx is already preserved by 2787 * arch_prepare_bpf_trampoline(). 2788 * 2789 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi 2790 */ 2791 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off); 2792 2793 /* arg1: mov rdi, progs[i] */ 2794 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2795 /* arg2: lea rsi, [rbp - ctx_cookie_off] */ 2796 if (!is_imm8(-run_ctx_off)) 2797 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off); 2798 else 2799 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off); 2800 2801 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image))) 2802 return -EINVAL; 2803 /* remember prog start time returned by __bpf_prog_enter */ 2804 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); 2805 2806 /* if (__bpf_prog_enter*(prog) == 0) 2807 * goto skip_exec_of_prog; 2808 */ 2809 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ 2810 /* emit 2 nops that will be replaced with JE insn */ 2811 jmp_insn = prog; 2812 emit_nops(&prog, 2); 2813 2814 /* arg1: lea rdi, [rbp - stack_size] */ 2815 if (!is_imm8(-stack_size)) 2816 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size); 2817 else 2818 EMIT4(0x48, 0x8D, 0x7D, -stack_size); 2819 /* arg2: progs[i]->insnsi for interpreter */ 2820 if (!p->jited) 2821 emit_mov_imm64(&prog, BPF_REG_2, 2822 (long) p->insnsi >> 32, 2823 (u32) (long) p->insnsi); 2824 /* call JITed bpf program or interpreter */ 2825 if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image))) 2826 return -EINVAL; 2827 2828 /* 2829 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return 2830 * of the previous call which is then passed on the stack to 2831 * the next BPF program. 2832 * 2833 * BPF_TRAMP_FENTRY trampoline may need to return the return 2834 * value of BPF_PROG_TYPE_STRUCT_OPS prog. 2835 */ 2836 if (save_ret) 2837 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2838 2839 /* replace 2 nops with JE insn, since jmp target is known */ 2840 jmp_insn[0] = X86_JE; 2841 jmp_insn[1] = prog - jmp_insn - 2; 2842 2843 /* arg1: mov rdi, progs[i] */ 2844 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2845 /* arg2: mov rsi, rbx <- start time in nsec */ 2846 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); 2847 /* arg3: lea rdx, [rbp - run_ctx_off] */ 2848 if (!is_imm8(-run_ctx_off)) 2849 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off); 2850 else 2851 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off); 2852 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image))) 2853 return -EINVAL; 2854 2855 *pprog = prog; 2856 return 0; 2857 } 2858 2859 static void emit_align(u8 **pprog, u32 align) 2860 { 2861 u8 *target, *prog = *pprog; 2862 2863 target = PTR_ALIGN(prog, align); 2864 if (target != prog) 2865 emit_nops(&prog, target - prog); 2866 2867 *pprog = prog; 2868 } 2869 2870 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) 2871 { 2872 u8 *prog = *pprog; 2873 s64 offset; 2874 2875 offset = func - (ip + 2 + 4); 2876 if (!is_simm32(offset)) { 2877 pr_err("Target %p is out of range\n", func); 2878 return -EINVAL; 2879 } 2880 EMIT2_off32(0x0F, jmp_cond + 0x10, offset); 2881 *pprog = prog; 2882 return 0; 2883 } 2884 2885 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, 2886 struct bpf_tramp_links *tl, int stack_size, 2887 int run_ctx_off, bool save_ret, 2888 void *image, void *rw_image) 2889 { 2890 int i; 2891 u8 *prog = *pprog; 2892 2893 for (i = 0; i < tl->nr_links; i++) { 2894 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, 2895 run_ctx_off, save_ret, image, rw_image)) 2896 return -EINVAL; 2897 } 2898 *pprog = prog; 2899 return 0; 2900 } 2901 2902 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, 2903 struct bpf_tramp_links *tl, int stack_size, 2904 int run_ctx_off, u8 **branches, 2905 void *image, void *rw_image) 2906 { 2907 u8 *prog = *pprog; 2908 int i; 2909 2910 /* The first fmod_ret program will receive a garbage return value. 2911 * Set this to 0 to avoid confusing the program. 2912 */ 2913 emit_mov_imm32(&prog, false, BPF_REG_0, 0); 2914 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2915 for (i = 0; i < tl->nr_links; i++) { 2916 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true, 2917 image, rw_image)) 2918 return -EINVAL; 2919 2920 /* mod_ret prog stored return value into [rbp - 8]. Emit: 2921 * if (*(u64 *)(rbp - 8) != 0) 2922 * goto do_fexit; 2923 */ 2924 /* cmp QWORD PTR [rbp - 0x8], 0x0 */ 2925 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); 2926 2927 /* Save the location of the branch and Generate 6 nops 2928 * (4 bytes for an offset and 2 bytes for the jump) These nops 2929 * are replaced with a conditional jump once do_fexit (i.e. the 2930 * start of the fexit invocation) is finalized. 2931 */ 2932 branches[i] = prog; 2933 emit_nops(&prog, 4 + 2); 2934 } 2935 2936 *pprog = prog; 2937 return 0; 2938 } 2939 2940 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */ 2941 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack) \ 2942 __LOAD_TCC_PTR(-round_up(stack, 8) - 8) 2943 2944 /* Example: 2945 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); 2946 * its 'struct btf_func_model' will be nr_args=2 2947 * The assembly code when eth_type_trans is executing after trampoline: 2948 * 2949 * push rbp 2950 * mov rbp, rsp 2951 * sub rsp, 16 // space for skb and dev 2952 * push rbx // temp regs to pass start time 2953 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack 2954 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack 2955 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 2956 * mov rbx, rax // remember start time in bpf stats are enabled 2957 * lea rdi, [rbp - 16] // R1==ctx of bpf prog 2958 * call addr_of_jited_FENTRY_prog 2959 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 2960 * mov rsi, rbx // prog start time 2961 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 2962 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack 2963 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack 2964 * pop rbx 2965 * leave 2966 * ret 2967 * 2968 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be 2969 * replaced with 'call generated_bpf_trampoline'. When it returns 2970 * eth_type_trans will continue executing with original skb and dev pointers. 2971 * 2972 * The assembly code when eth_type_trans is called from trampoline: 2973 * 2974 * push rbp 2975 * mov rbp, rsp 2976 * sub rsp, 24 // space for skb, dev, return value 2977 * push rbx // temp regs to pass start time 2978 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack 2979 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack 2980 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 2981 * mov rbx, rax // remember start time if bpf stats are enabled 2982 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 2983 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev 2984 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 2985 * mov rsi, rbx // prog start time 2986 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 2987 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack 2988 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack 2989 * call eth_type_trans+5 // execute body of eth_type_trans 2990 * mov qword ptr [rbp - 8], rax // save return value 2991 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 2992 * mov rbx, rax // remember start time in bpf stats are enabled 2993 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 2994 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value 2995 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 2996 * mov rsi, rbx // prog start time 2997 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 2998 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value 2999 * pop rbx 3000 * leave 3001 * add rsp, 8 // skip eth_type_trans's frame 3002 * ret // return to its caller 3003 */ 3004 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image, 3005 void *rw_image_end, void *image, 3006 const struct btf_func_model *m, u32 flags, 3007 struct bpf_tramp_links *tlinks, 3008 void *func_addr) 3009 { 3010 int i, ret, nr_regs = m->nr_args, stack_size = 0; 3011 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off; 3012 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; 3013 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; 3014 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; 3015 void *orig_call = func_addr; 3016 u8 **branches = NULL; 3017 u8 *prog; 3018 bool save_ret; 3019 3020 /* 3021 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is 3022 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG 3023 * because @func_addr. 3024 */ 3025 WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) && 3026 (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET))); 3027 3028 /* extra registers for struct arguments */ 3029 for (i = 0; i < m->nr_args; i++) { 3030 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) 3031 nr_regs += (m->arg_size[i] + 7) / 8 - 1; 3032 } 3033 3034 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6 3035 * are passed through regs, the remains are through stack. 3036 */ 3037 if (nr_regs > MAX_BPF_FUNC_ARGS) 3038 return -ENOTSUPP; 3039 3040 /* Generated trampoline stack layout: 3041 * 3042 * RBP + 8 [ return address ] 3043 * RBP + 0 [ RBP ] 3044 * 3045 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or 3046 * BPF_TRAMP_F_RET_FENTRY_RET flags 3047 * 3048 * [ reg_argN ] always 3049 * [ ... ] 3050 * RBP - regs_off [ reg_arg1 ] program's ctx pointer 3051 * 3052 * RBP - nregs_off [ regs count ] always 3053 * 3054 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag 3055 * 3056 * RBP - rbx_off [ rbx value ] always 3057 * 3058 * RBP - run_ctx_off [ bpf_tramp_run_ctx ] 3059 * 3060 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG 3061 * [ ... ] 3062 * [ stack_arg2 ] 3063 * RBP - arg_stack_off [ stack_arg1 ] 3064 * RSP [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX 3065 */ 3066 3067 /* room for return value of orig_call or fentry prog */ 3068 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); 3069 if (save_ret) 3070 stack_size += 8; 3071 3072 stack_size += nr_regs * 8; 3073 regs_off = stack_size; 3074 3075 /* regs count */ 3076 stack_size += 8; 3077 nregs_off = stack_size; 3078 3079 if (flags & BPF_TRAMP_F_IP_ARG) 3080 stack_size += 8; /* room for IP address argument */ 3081 3082 ip_off = stack_size; 3083 3084 stack_size += 8; 3085 rbx_off = stack_size; 3086 3087 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7; 3088 run_ctx_off = stack_size; 3089 3090 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) { 3091 /* the space that used to pass arguments on-stack */ 3092 stack_size += (nr_regs - get_nr_used_regs(m)) * 8; 3093 /* make sure the stack pointer is 16-byte aligned if we 3094 * need pass arguments on stack, which means 3095 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)] 3096 * should be 16-byte aligned. Following code depend on 3097 * that stack_size is already 8-byte aligned. 3098 */ 3099 stack_size += (stack_size % 16) ? 0 : 8; 3100 } 3101 3102 arg_stack_off = stack_size; 3103 3104 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 3105 /* skip patched call instruction and point orig_call to actual 3106 * body of the kernel function. 3107 */ 3108 if (is_endbr(*(u32 *)orig_call)) 3109 orig_call += ENDBR_INSN_SIZE; 3110 orig_call += X86_PATCH_SIZE; 3111 } 3112 3113 prog = rw_image; 3114 3115 if (flags & BPF_TRAMP_F_INDIRECT) { 3116 /* 3117 * Indirect call for bpf_struct_ops 3118 */ 3119 emit_cfi(&prog, cfi_get_func_hash(func_addr)); 3120 } else { 3121 /* 3122 * Direct-call fentry stub, as such it needs accounting for the 3123 * __fentry__ call. 3124 */ 3125 x86_call_depth_emit_accounting(&prog, NULL, image); 3126 } 3127 EMIT1(0x55); /* push rbp */ 3128 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 3129 if (!is_imm8(stack_size)) { 3130 /* sub rsp, stack_size */ 3131 EMIT3_off32(0x48, 0x81, 0xEC, stack_size); 3132 } else { 3133 /* sub rsp, stack_size */ 3134 EMIT4(0x48, 0x83, 0xEC, stack_size); 3135 } 3136 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) 3137 EMIT1(0x50); /* push rax */ 3138 /* mov QWORD PTR [rbp - rbx_off], rbx */ 3139 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off); 3140 3141 /* Store number of argument registers of the traced function: 3142 * mov rax, nr_regs 3143 * mov QWORD PTR [rbp - nregs_off], rax 3144 */ 3145 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs); 3146 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off); 3147 3148 if (flags & BPF_TRAMP_F_IP_ARG) { 3149 /* Store IP address of the traced function: 3150 * movabsq rax, func_addr 3151 * mov QWORD PTR [rbp - ip_off], rax 3152 */ 3153 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr); 3154 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off); 3155 } 3156 3157 save_args(m, &prog, regs_off, false); 3158 3159 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3160 /* arg1: mov rdi, im */ 3161 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 3162 if (emit_rsb_call(&prog, __bpf_tramp_enter, 3163 image + (prog - (u8 *)rw_image))) { 3164 ret = -EINVAL; 3165 goto cleanup; 3166 } 3167 } 3168 3169 if (fentry->nr_links) { 3170 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off, 3171 flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image)) 3172 return -EINVAL; 3173 } 3174 3175 if (fmod_ret->nr_links) { 3176 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *), 3177 GFP_KERNEL); 3178 if (!branches) 3179 return -ENOMEM; 3180 3181 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off, 3182 run_ctx_off, branches, image, rw_image)) { 3183 ret = -EINVAL; 3184 goto cleanup; 3185 } 3186 } 3187 3188 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3189 restore_regs(m, &prog, regs_off); 3190 save_args(m, &prog, arg_stack_off, true); 3191 3192 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { 3193 /* Before calling the original function, load the 3194 * tail_call_cnt_ptr from stack to rax. 3195 */ 3196 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size); 3197 } 3198 3199 if (flags & BPF_TRAMP_F_ORIG_STACK) { 3200 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8); 3201 EMIT2(0xff, 0xd3); /* call *rbx */ 3202 } else { 3203 /* call original function */ 3204 if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) { 3205 ret = -EINVAL; 3206 goto cleanup; 3207 } 3208 } 3209 /* remember return value in a stack for bpf prog to access */ 3210 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 3211 im->ip_after_call = image + (prog - (u8 *)rw_image); 3212 emit_nops(&prog, X86_PATCH_SIZE); 3213 } 3214 3215 if (fmod_ret->nr_links) { 3216 /* From Intel 64 and IA-32 Architectures Optimization 3217 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 3218 * Coding Rule 11: All branch targets should be 16-byte 3219 * aligned. 3220 */ 3221 emit_align(&prog, 16); 3222 /* Update the branches saved in invoke_bpf_mod_ret with the 3223 * aligned address of do_fexit. 3224 */ 3225 for (i = 0; i < fmod_ret->nr_links; i++) { 3226 emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image), 3227 image + (branches[i] - (u8 *)rw_image), X86_JNE); 3228 } 3229 } 3230 3231 if (fexit->nr_links) { 3232 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, 3233 false, image, rw_image)) { 3234 ret = -EINVAL; 3235 goto cleanup; 3236 } 3237 } 3238 3239 if (flags & BPF_TRAMP_F_RESTORE_REGS) 3240 restore_regs(m, &prog, regs_off); 3241 3242 /* This needs to be done regardless. If there were fmod_ret programs, 3243 * the return value is only updated on the stack and still needs to be 3244 * restored to R0. 3245 */ 3246 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3247 im->ip_epilogue = image + (prog - (u8 *)rw_image); 3248 /* arg1: mov rdi, im */ 3249 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 3250 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) { 3251 ret = -EINVAL; 3252 goto cleanup; 3253 } 3254 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { 3255 /* Before running the original function, load the 3256 * tail_call_cnt_ptr from stack to rax. 3257 */ 3258 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size); 3259 } 3260 3261 /* restore return value of orig_call or fentry prog back into RAX */ 3262 if (save_ret) 3263 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); 3264 3265 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off); 3266 EMIT1(0xC9); /* leave */ 3267 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 3268 /* skip our return address and return to parent */ 3269 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ 3270 } 3271 emit_return(&prog, image + (prog - (u8 *)rw_image)); 3272 /* Make sure the trampoline generation logic doesn't overflow */ 3273 if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) { 3274 ret = -EFAULT; 3275 goto cleanup; 3276 } 3277 ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY; 3278 3279 cleanup: 3280 kfree(branches); 3281 return ret; 3282 } 3283 3284 void *arch_alloc_bpf_trampoline(unsigned int size) 3285 { 3286 return bpf_prog_pack_alloc(size, jit_fill_hole); 3287 } 3288 3289 void arch_free_bpf_trampoline(void *image, unsigned int size) 3290 { 3291 bpf_prog_pack_free(image, size); 3292 } 3293 3294 int arch_protect_bpf_trampoline(void *image, unsigned int size) 3295 { 3296 return 0; 3297 } 3298 3299 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 3300 const struct btf_func_model *m, u32 flags, 3301 struct bpf_tramp_links *tlinks, 3302 void *func_addr) 3303 { 3304 void *rw_image, *tmp; 3305 int ret; 3306 u32 size = image_end - image; 3307 3308 /* rw_image doesn't need to be in module memory range, so we can 3309 * use kvmalloc. 3310 */ 3311 rw_image = kvmalloc(size, GFP_KERNEL); 3312 if (!rw_image) 3313 return -ENOMEM; 3314 3315 ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m, 3316 flags, tlinks, func_addr); 3317 if (ret < 0) 3318 goto out; 3319 3320 tmp = bpf_arch_text_copy(image, rw_image, size); 3321 if (IS_ERR(tmp)) 3322 ret = PTR_ERR(tmp); 3323 out: 3324 kvfree(rw_image); 3325 return ret; 3326 } 3327 3328 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 3329 struct bpf_tramp_links *tlinks, void *func_addr) 3330 { 3331 struct bpf_tramp_image im; 3332 void *image; 3333 int ret; 3334 3335 /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline(). 3336 * This will NOT cause fragmentation in direct map, as we do not 3337 * call set_memory_*() on this buffer. 3338 * 3339 * We cannot use kvmalloc here, because we need image to be in 3340 * module memory range. 3341 */ 3342 image = bpf_jit_alloc_exec(PAGE_SIZE); 3343 if (!image) 3344 return -ENOMEM; 3345 3346 ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image, 3347 m, flags, tlinks, func_addr); 3348 bpf_jit_free_exec(image); 3349 return ret; 3350 } 3351 3352 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf) 3353 { 3354 u8 *jg_reloc, *prog = *pprog; 3355 int pivot, err, jg_bytes = 1; 3356 s64 jg_offset; 3357 3358 if (a == b) { 3359 /* Leaf node of recursion, i.e. not a range of indices 3360 * anymore. 3361 */ 3362 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 3363 if (!is_simm32(progs[a])) 3364 return -1; 3365 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), 3366 progs[a]); 3367 err = emit_cond_near_jump(&prog, /* je func */ 3368 (void *)progs[a], image + (prog - buf), 3369 X86_JE); 3370 if (err) 3371 return err; 3372 3373 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf)); 3374 3375 *pprog = prog; 3376 return 0; 3377 } 3378 3379 /* Not a leaf node, so we pivot, and recursively descend into 3380 * the lower and upper ranges. 3381 */ 3382 pivot = (b - a) / 2; 3383 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 3384 if (!is_simm32(progs[a + pivot])) 3385 return -1; 3386 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); 3387 3388 if (pivot > 2) { /* jg upper_part */ 3389 /* Require near jump. */ 3390 jg_bytes = 4; 3391 EMIT2_off32(0x0F, X86_JG + 0x10, 0); 3392 } else { 3393 EMIT2(X86_JG, 0); 3394 } 3395 jg_reloc = prog; 3396 3397 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ 3398 progs, image, buf); 3399 if (err) 3400 return err; 3401 3402 /* From Intel 64 and IA-32 Architectures Optimization 3403 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 3404 * Coding Rule 11: All branch targets should be 16-byte 3405 * aligned. 3406 */ 3407 emit_align(&prog, 16); 3408 jg_offset = prog - jg_reloc; 3409 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); 3410 3411 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ 3412 b, progs, image, buf); 3413 if (err) 3414 return err; 3415 3416 *pprog = prog; 3417 return 0; 3418 } 3419 3420 static int cmp_ips(const void *a, const void *b) 3421 { 3422 const s64 *ipa = a; 3423 const s64 *ipb = b; 3424 3425 if (*ipa > *ipb) 3426 return 1; 3427 if (*ipa < *ipb) 3428 return -1; 3429 return 0; 3430 } 3431 3432 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs) 3433 { 3434 u8 *prog = buf; 3435 3436 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); 3437 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf); 3438 } 3439 3440 static const char *bpf_get_prog_name(struct bpf_prog *prog) 3441 { 3442 if (prog->aux->ksym.prog) 3443 return prog->aux->ksym.name; 3444 return prog->aux->name; 3445 } 3446 3447 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size) 3448 { 3449 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3; 3450 u64 *stack_ptr; 3451 3452 for_each_possible_cpu(cpu) { 3453 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu); 3454 stack_ptr[0] = PRIV_STACK_GUARD_VAL; 3455 stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL; 3456 } 3457 } 3458 3459 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size, 3460 struct bpf_prog *prog) 3461 { 3462 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3; 3463 u64 *stack_ptr; 3464 3465 for_each_possible_cpu(cpu) { 3466 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu); 3467 if (stack_ptr[0] != PRIV_STACK_GUARD_VAL || 3468 stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) { 3469 pr_err("BPF private stack overflow/underflow detected for prog %sx\n", 3470 bpf_get_prog_name(prog)); 3471 break; 3472 } 3473 } 3474 } 3475 3476 struct x64_jit_data { 3477 struct bpf_binary_header *rw_header; 3478 struct bpf_binary_header *header; 3479 int *addrs; 3480 u8 *image; 3481 int proglen; 3482 struct jit_context ctx; 3483 }; 3484 3485 #define MAX_PASSES 20 3486 #define PADDING_PASSES (MAX_PASSES - 5) 3487 3488 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 3489 { 3490 struct bpf_binary_header *rw_header = NULL; 3491 struct bpf_binary_header *header = NULL; 3492 struct bpf_prog *tmp, *orig_prog = prog; 3493 void __percpu *priv_stack_ptr = NULL; 3494 struct x64_jit_data *jit_data; 3495 int priv_stack_alloc_sz; 3496 int proglen, oldproglen = 0; 3497 struct jit_context ctx = {}; 3498 bool tmp_blinded = false; 3499 bool extra_pass = false; 3500 bool padding = false; 3501 u8 *rw_image = NULL; 3502 u8 *image = NULL; 3503 int *addrs; 3504 int pass; 3505 int i; 3506 3507 if (!prog->jit_requested) 3508 return orig_prog; 3509 3510 tmp = bpf_jit_blind_constants(prog); 3511 /* 3512 * If blinding was requested and we failed during blinding, 3513 * we must fall back to the interpreter. 3514 */ 3515 if (IS_ERR(tmp)) 3516 return orig_prog; 3517 if (tmp != prog) { 3518 tmp_blinded = true; 3519 prog = tmp; 3520 } 3521 3522 jit_data = prog->aux->jit_data; 3523 if (!jit_data) { 3524 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 3525 if (!jit_data) { 3526 prog = orig_prog; 3527 goto out; 3528 } 3529 prog->aux->jit_data = jit_data; 3530 } 3531 priv_stack_ptr = prog->aux->priv_stack_ptr; 3532 if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) { 3533 /* Allocate actual private stack size with verifier-calculated 3534 * stack size plus two memory guards to protect overflow and 3535 * underflow. 3536 */ 3537 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) + 3538 2 * PRIV_STACK_GUARD_SZ; 3539 priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL); 3540 if (!priv_stack_ptr) { 3541 prog = orig_prog; 3542 goto out_priv_stack; 3543 } 3544 3545 priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz); 3546 prog->aux->priv_stack_ptr = priv_stack_ptr; 3547 } 3548 addrs = jit_data->addrs; 3549 if (addrs) { 3550 ctx = jit_data->ctx; 3551 oldproglen = jit_data->proglen; 3552 image = jit_data->image; 3553 header = jit_data->header; 3554 rw_header = jit_data->rw_header; 3555 rw_image = (void *)rw_header + ((void *)image - (void *)header); 3556 extra_pass = true; 3557 padding = true; 3558 goto skip_init_addrs; 3559 } 3560 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); 3561 if (!addrs) { 3562 prog = orig_prog; 3563 goto out_addrs; 3564 } 3565 3566 /* 3567 * Before first pass, make a rough estimation of addrs[] 3568 * each BPF instruction is translated to less than 64 bytes 3569 */ 3570 for (proglen = 0, i = 0; i <= prog->len; i++) { 3571 proglen += 64; 3572 addrs[i] = proglen; 3573 } 3574 ctx.cleanup_addr = proglen; 3575 skip_init_addrs: 3576 3577 /* 3578 * JITed image shrinks with every pass and the loop iterates 3579 * until the image stops shrinking. Very large BPF programs 3580 * may converge on the last pass. In such case do one more 3581 * pass to emit the final image. 3582 */ 3583 for (pass = 0; pass < MAX_PASSES || image; pass++) { 3584 if (!padding && pass >= PADDING_PASSES) 3585 padding = true; 3586 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding); 3587 if (proglen <= 0) { 3588 out_image: 3589 image = NULL; 3590 if (header) { 3591 bpf_arch_text_copy(&header->size, &rw_header->size, 3592 sizeof(rw_header->size)); 3593 bpf_jit_binary_pack_free(header, rw_header); 3594 } 3595 /* Fall back to interpreter mode */ 3596 prog = orig_prog; 3597 if (extra_pass) { 3598 prog->bpf_func = NULL; 3599 prog->jited = 0; 3600 prog->jited_len = 0; 3601 } 3602 goto out_addrs; 3603 } 3604 if (image) { 3605 if (proglen != oldproglen) { 3606 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", 3607 proglen, oldproglen); 3608 goto out_image; 3609 } 3610 break; 3611 } 3612 if (proglen == oldproglen) { 3613 /* 3614 * The number of entries in extable is the number of BPF_LDX 3615 * insns that access kernel memory via "pointer to BTF type". 3616 * The verifier changed their opcode from LDX|MEM|size 3617 * to LDX|PROBE_MEM|size to make JITing easier. 3618 */ 3619 u32 align = __alignof__(struct exception_table_entry); 3620 u32 extable_size = prog->aux->num_exentries * 3621 sizeof(struct exception_table_entry); 3622 3623 /* allocate module memory for x86 insns and extable */ 3624 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size, 3625 &image, align, &rw_header, &rw_image, 3626 jit_fill_hole); 3627 if (!header) { 3628 prog = orig_prog; 3629 goto out_addrs; 3630 } 3631 prog->aux->extable = (void *) image + roundup(proglen, align); 3632 } 3633 oldproglen = proglen; 3634 cond_resched(); 3635 } 3636 3637 if (bpf_jit_enable > 1) 3638 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image); 3639 3640 if (image) { 3641 if (!prog->is_func || extra_pass) { 3642 /* 3643 * bpf_jit_binary_pack_finalize fails in two scenarios: 3644 * 1) header is not pointing to proper module memory; 3645 * 2) the arch doesn't support bpf_arch_text_copy(). 3646 * 3647 * Both cases are serious bugs and justify WARN_ON. 3648 */ 3649 if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) { 3650 /* header has been freed */ 3651 header = NULL; 3652 goto out_image; 3653 } 3654 3655 bpf_tail_call_direct_fixup(prog); 3656 } else { 3657 jit_data->addrs = addrs; 3658 jit_data->ctx = ctx; 3659 jit_data->proglen = proglen; 3660 jit_data->image = image; 3661 jit_data->header = header; 3662 jit_data->rw_header = rw_header; 3663 } 3664 /* 3665 * ctx.prog_offset is used when CFI preambles put code *before* 3666 * the function. See emit_cfi(). For FineIBT specifically this code 3667 * can also be executed and bpf_prog_kallsyms_add() will 3668 * generate an additional symbol to cover this, hence also 3669 * decrement proglen. 3670 */ 3671 prog->bpf_func = (void *)image + cfi_get_offset(); 3672 prog->jited = 1; 3673 prog->jited_len = proglen - cfi_get_offset(); 3674 } else { 3675 prog = orig_prog; 3676 } 3677 3678 if (!image || !prog->is_func || extra_pass) { 3679 if (image) 3680 bpf_prog_fill_jited_linfo(prog, addrs + 1); 3681 out_addrs: 3682 kvfree(addrs); 3683 if (!image && priv_stack_ptr) { 3684 free_percpu(priv_stack_ptr); 3685 prog->aux->priv_stack_ptr = NULL; 3686 } 3687 out_priv_stack: 3688 kfree(jit_data); 3689 prog->aux->jit_data = NULL; 3690 } 3691 out: 3692 if (tmp_blinded) 3693 bpf_jit_prog_release_other(prog, prog == orig_prog ? 3694 tmp : orig_prog); 3695 return prog; 3696 } 3697 3698 bool bpf_jit_supports_kfunc_call(void) 3699 { 3700 return true; 3701 } 3702 3703 void *bpf_arch_text_copy(void *dst, void *src, size_t len) 3704 { 3705 if (text_poke_copy(dst, src, len) == NULL) 3706 return ERR_PTR(-EINVAL); 3707 return dst; 3708 } 3709 3710 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ 3711 bool bpf_jit_supports_subprog_tailcalls(void) 3712 { 3713 return true; 3714 } 3715 3716 bool bpf_jit_supports_percpu_insn(void) 3717 { 3718 return true; 3719 } 3720 3721 void bpf_jit_free(struct bpf_prog *prog) 3722 { 3723 if (prog->jited) { 3724 struct x64_jit_data *jit_data = prog->aux->jit_data; 3725 struct bpf_binary_header *hdr; 3726 void __percpu *priv_stack_ptr; 3727 int priv_stack_alloc_sz; 3728 3729 /* 3730 * If we fail the final pass of JIT (from jit_subprogs), 3731 * the program may not be finalized yet. Call finalize here 3732 * before freeing it. 3733 */ 3734 if (jit_data) { 3735 bpf_jit_binary_pack_finalize(jit_data->header, 3736 jit_data->rw_header); 3737 kvfree(jit_data->addrs); 3738 kfree(jit_data); 3739 } 3740 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset(); 3741 hdr = bpf_jit_binary_pack_hdr(prog); 3742 bpf_jit_binary_pack_free(hdr, NULL); 3743 priv_stack_ptr = prog->aux->priv_stack_ptr; 3744 if (priv_stack_ptr) { 3745 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) + 3746 2 * PRIV_STACK_GUARD_SZ; 3747 priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog); 3748 free_percpu(prog->aux->priv_stack_ptr); 3749 } 3750 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); 3751 } 3752 3753 bpf_prog_unlock_free(prog); 3754 } 3755 3756 bool bpf_jit_supports_exceptions(void) 3757 { 3758 /* We unwind through both kernel frames (starting from within bpf_throw 3759 * call) and BPF frames. Therefore we require ORC unwinder to be enabled 3760 * to walk kernel frames and reach BPF frames in the stack trace. 3761 */ 3762 return IS_ENABLED(CONFIG_UNWINDER_ORC); 3763 } 3764 3765 bool bpf_jit_supports_private_stack(void) 3766 { 3767 return true; 3768 } 3769 3770 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie) 3771 { 3772 #if defined(CONFIG_UNWINDER_ORC) 3773 struct unwind_state state; 3774 unsigned long addr; 3775 3776 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state); 3777 unwind_next_frame(&state)) { 3778 addr = unwind_get_return_address(&state); 3779 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp)) 3780 break; 3781 } 3782 return; 3783 #endif 3784 WARN(1, "verification of programs using bpf_throw should have failed\n"); 3785 } 3786 3787 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3788 struct bpf_prog *new, struct bpf_prog *old) 3789 { 3790 u8 *old_addr, *new_addr, *old_bypass_addr; 3791 int ret; 3792 3793 old_bypass_addr = old ? NULL : poke->bypass_addr; 3794 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; 3795 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; 3796 3797 /* 3798 * On program loading or teardown, the program's kallsym entry 3799 * might not be in place, so we use __bpf_arch_text_poke to skip 3800 * the kallsyms check. 3801 */ 3802 if (new) { 3803 ret = __bpf_arch_text_poke(poke->tailcall_target, 3804 BPF_MOD_JUMP, 3805 old_addr, new_addr); 3806 BUG_ON(ret < 0); 3807 if (!old) { 3808 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 3809 BPF_MOD_JUMP, 3810 poke->bypass_addr, 3811 NULL); 3812 BUG_ON(ret < 0); 3813 } 3814 } else { 3815 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 3816 BPF_MOD_JUMP, 3817 old_bypass_addr, 3818 poke->bypass_addr); 3819 BUG_ON(ret < 0); 3820 /* let other CPUs finish the execution of program 3821 * so that it will not possible to expose them 3822 * to invalid nop, stack unwind, nop state 3823 */ 3824 if (!ret) 3825 synchronize_rcu(); 3826 ret = __bpf_arch_text_poke(poke->tailcall_target, 3827 BPF_MOD_JUMP, 3828 old_addr, NULL); 3829 BUG_ON(ret < 0); 3830 } 3831 } 3832 3833 bool bpf_jit_supports_arena(void) 3834 { 3835 return true; 3836 } 3837 3838 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena) 3839 { 3840 if (!in_arena) 3841 return true; 3842 switch (insn->code) { 3843 case BPF_STX | BPF_ATOMIC | BPF_W: 3844 case BPF_STX | BPF_ATOMIC | BPF_DW: 3845 if (insn->imm == (BPF_AND | BPF_FETCH) || 3846 insn->imm == (BPF_OR | BPF_FETCH) || 3847 insn->imm == (BPF_XOR | BPF_FETCH)) 3848 return false; 3849 } 3850 return true; 3851 } 3852 3853 bool bpf_jit_supports_ptr_xchg(void) 3854 { 3855 return true; 3856 } 3857 3858 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */ 3859 u64 bpf_arch_uaddress_limit(void) 3860 { 3861 return 0; 3862 } 3863 3864 bool bpf_jit_supports_timed_may_goto(void) 3865 { 3866 return true; 3867 } 3868