1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BPF JIT compiler 4 * 5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) 6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 7 */ 8 #include <linux/netdevice.h> 9 #include <linux/filter.h> 10 #include <linux/if_vlan.h> 11 #include <linux/bpf.h> 12 #include <linux/memory.h> 13 #include <linux/sort.h> 14 #include <asm/extable.h> 15 #include <asm/ftrace.h> 16 #include <asm/set_memory.h> 17 #include <asm/nospec-branch.h> 18 #include <asm/text-patching.h> 19 #include <asm/unwind.h> 20 #include <asm/cfi.h> 21 22 static bool all_callee_regs_used[4] = {true, true, true, true}; 23 24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) 25 { 26 if (len == 1) 27 *ptr = bytes; 28 else if (len == 2) 29 *(u16 *)ptr = bytes; 30 else { 31 *(u32 *)ptr = bytes; 32 barrier(); 33 } 34 return ptr + len; 35 } 36 37 #define EMIT(bytes, len) \ 38 do { prog = emit_code(prog, bytes, len); } while (0) 39 40 #define EMIT1(b1) EMIT(b1, 1) 41 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) 42 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) 43 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) 44 #define EMIT5(b1, b2, b3, b4, b5) \ 45 do { EMIT1(b1); EMIT4(b2, b3, b4, b5); } while (0) 46 47 #define EMIT1_off32(b1, off) \ 48 do { EMIT1(b1); EMIT(off, 4); } while (0) 49 #define EMIT2_off32(b1, b2, off) \ 50 do { EMIT2(b1, b2); EMIT(off, 4); } while (0) 51 #define EMIT3_off32(b1, b2, b3, off) \ 52 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) 53 #define EMIT4_off32(b1, b2, b3, b4, off) \ 54 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) 55 56 #ifdef CONFIG_X86_KERNEL_IBT 57 #define EMIT_ENDBR() EMIT(gen_endbr(), 4) 58 #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4) 59 #else 60 #define EMIT_ENDBR() 61 #define EMIT_ENDBR_POISON() 62 #endif 63 64 static bool is_imm8(int value) 65 { 66 return value <= 127 && value >= -128; 67 } 68 69 /* 70 * Let us limit the positive offset to be <= 123. 71 * This is to ensure eventual jit convergence For the following patterns: 72 * ... 73 * pass4, final_proglen=4391: 74 * ... 75 * 20e: 48 85 ff test rdi,rdi 76 * 211: 74 7d je 0x290 77 * 213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0] 78 * ... 79 * 289: 48 85 ff test rdi,rdi 80 * 28c: 74 17 je 0x2a5 81 * 28e: e9 7f ff ff ff jmp 0x212 82 * 293: bf 03 00 00 00 mov edi,0x3 83 * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125) 84 * and insn at 0x28e is 5-byte jmp insn with offset -129. 85 * 86 * pass5, final_proglen=4392: 87 * ... 88 * 20e: 48 85 ff test rdi,rdi 89 * 211: 0f 84 80 00 00 00 je 0x297 90 * 217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0] 91 * ... 92 * 28d: 48 85 ff test rdi,rdi 93 * 290: 74 1a je 0x2ac 94 * 292: eb 84 jmp 0x218 95 * 294: bf 03 00 00 00 mov edi,0x3 96 * Note that insn at 0x211 is 6-byte cond jump insn now since its offset 97 * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80). 98 * At the same time, insn at 0x292 is a 2-byte insn since its offset is 99 * -124. 100 * 101 * pass6 will repeat the same code as in pass4 and this will prevent 102 * eventual convergence. 103 * 104 * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes) 105 * cycle in the above. In the above example je offset <= 0x7c should work. 106 * 107 * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence 108 * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should 109 * avoid no convergence issue. 110 * 111 * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn 112 * to maximum 123 (0x7b). This way, the jit pass can eventually converge. 113 */ 114 static bool is_imm8_jmp_offset(int value) 115 { 116 return value <= 123 && value >= -128; 117 } 118 119 static bool is_simm32(s64 value) 120 { 121 return value == (s64)(s32)value; 122 } 123 124 static bool is_uimm32(u64 value) 125 { 126 return value == (u64)(u32)value; 127 } 128 129 /* mov dst, src */ 130 #define EMIT_mov(DST, SRC) \ 131 do { \ 132 if (DST != SRC) \ 133 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ 134 } while (0) 135 136 static int bpf_size_to_x86_bytes(int bpf_size) 137 { 138 if (bpf_size == BPF_W) 139 return 4; 140 else if (bpf_size == BPF_H) 141 return 2; 142 else if (bpf_size == BPF_B) 143 return 1; 144 else if (bpf_size == BPF_DW) 145 return 4; /* imm32 */ 146 else 147 return 0; 148 } 149 150 /* 151 * List of x86 cond jumps opcodes (. + s8) 152 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) 153 */ 154 #define X86_JB 0x72 155 #define X86_JAE 0x73 156 #define X86_JE 0x74 157 #define X86_JNE 0x75 158 #define X86_JBE 0x76 159 #define X86_JA 0x77 160 #define X86_JL 0x7C 161 #define X86_JGE 0x7D 162 #define X86_JLE 0x7E 163 #define X86_JG 0x7F 164 165 /* Pick a register outside of BPF range for JIT internal work */ 166 #define AUX_REG (MAX_BPF_JIT_REG + 1) 167 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) 168 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3) 169 170 /* 171 * The following table maps BPF registers to x86-64 registers. 172 * 173 * x86-64 register R12 is unused, since if used as base address 174 * register in load/store instructions, it always needs an 175 * extra byte of encoding and is callee saved. 176 * 177 * x86-64 register R9 is not used by BPF programs, but can be used by BPF 178 * trampoline. x86-64 register R10 is used for blinding (if enabled). 179 */ 180 static const int reg2hex[] = { 181 [BPF_REG_0] = 0, /* RAX */ 182 [BPF_REG_1] = 7, /* RDI */ 183 [BPF_REG_2] = 6, /* RSI */ 184 [BPF_REG_3] = 2, /* RDX */ 185 [BPF_REG_4] = 1, /* RCX */ 186 [BPF_REG_5] = 0, /* R8 */ 187 [BPF_REG_6] = 3, /* RBX callee saved */ 188 [BPF_REG_7] = 5, /* R13 callee saved */ 189 [BPF_REG_8] = 6, /* R14 callee saved */ 190 [BPF_REG_9] = 7, /* R15 callee saved */ 191 [BPF_REG_FP] = 5, /* RBP readonly */ 192 [BPF_REG_AX] = 2, /* R10 temp register */ 193 [AUX_REG] = 3, /* R11 temp register */ 194 [X86_REG_R9] = 1, /* R9 register, 6th function argument */ 195 [X86_REG_R12] = 4, /* R12 callee saved */ 196 }; 197 198 static const int reg2pt_regs[] = { 199 [BPF_REG_0] = offsetof(struct pt_regs, ax), 200 [BPF_REG_1] = offsetof(struct pt_regs, di), 201 [BPF_REG_2] = offsetof(struct pt_regs, si), 202 [BPF_REG_3] = offsetof(struct pt_regs, dx), 203 [BPF_REG_4] = offsetof(struct pt_regs, cx), 204 [BPF_REG_5] = offsetof(struct pt_regs, r8), 205 [BPF_REG_6] = offsetof(struct pt_regs, bx), 206 [BPF_REG_7] = offsetof(struct pt_regs, r13), 207 [BPF_REG_8] = offsetof(struct pt_regs, r14), 208 [BPF_REG_9] = offsetof(struct pt_regs, r15), 209 }; 210 211 /* 212 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 213 * which need extra byte of encoding. 214 * rax,rcx,...,rbp have simpler encoding 215 */ 216 static bool is_ereg(u32 reg) 217 { 218 return (1 << reg) & (BIT(BPF_REG_5) | 219 BIT(AUX_REG) | 220 BIT(BPF_REG_7) | 221 BIT(BPF_REG_8) | 222 BIT(BPF_REG_9) | 223 BIT(X86_REG_R9) | 224 BIT(X86_REG_R12) | 225 BIT(BPF_REG_AX)); 226 } 227 228 /* 229 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 230 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte 231 * of encoding. al,cl,dl,bl have simpler encoding. 232 */ 233 static bool is_ereg_8l(u32 reg) 234 { 235 return is_ereg(reg) || 236 (1 << reg) & (BIT(BPF_REG_1) | 237 BIT(BPF_REG_2) | 238 BIT(BPF_REG_FP)); 239 } 240 241 static bool is_axreg(u32 reg) 242 { 243 return reg == BPF_REG_0; 244 } 245 246 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ 247 static u8 add_1mod(u8 byte, u32 reg) 248 { 249 if (is_ereg(reg)) 250 byte |= 1; 251 return byte; 252 } 253 254 static u8 add_2mod(u8 byte, u32 r1, u32 r2) 255 { 256 if (is_ereg(r1)) 257 byte |= 1; 258 if (is_ereg(r2)) 259 byte |= 4; 260 return byte; 261 } 262 263 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index) 264 { 265 if (is_ereg(r1)) 266 byte |= 1; 267 if (is_ereg(index)) 268 byte |= 2; 269 if (is_ereg(r2)) 270 byte |= 4; 271 return byte; 272 } 273 274 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ 275 static u8 add_1reg(u8 byte, u32 dst_reg) 276 { 277 return byte + reg2hex[dst_reg]; 278 } 279 280 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ 281 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) 282 { 283 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); 284 } 285 286 /* Some 1-byte opcodes for binary ALU operations */ 287 static u8 simple_alu_opcodes[] = { 288 [BPF_ADD] = 0x01, 289 [BPF_SUB] = 0x29, 290 [BPF_AND] = 0x21, 291 [BPF_OR] = 0x09, 292 [BPF_XOR] = 0x31, 293 [BPF_LSH] = 0xE0, 294 [BPF_RSH] = 0xE8, 295 [BPF_ARSH] = 0xF8, 296 }; 297 298 static void jit_fill_hole(void *area, unsigned int size) 299 { 300 /* Fill whole space with INT3 instructions */ 301 memset(area, 0xcc, size); 302 } 303 304 int bpf_arch_text_invalidate(void *dst, size_t len) 305 { 306 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len)); 307 } 308 309 struct jit_context { 310 int cleanup_addr; /* Epilogue code offset */ 311 312 /* 313 * Program specific offsets of labels in the code; these rely on the 314 * JIT doing at least 2 passes, recording the position on the first 315 * pass, only to generate the correct offset on the second pass. 316 */ 317 int tail_call_direct_label; 318 int tail_call_indirect_label; 319 }; 320 321 /* Maximum number of bytes emitted while JITing one eBPF insn */ 322 #define BPF_MAX_INSN_SIZE 128 323 #define BPF_INSN_SAFETY 64 324 325 /* Number of bytes emit_patch() needs to generate instructions */ 326 #define X86_PATCH_SIZE 5 327 /* Number of bytes that will be skipped on tailcall */ 328 #define X86_TAIL_CALL_OFFSET (12 + ENDBR_INSN_SIZE) 329 330 static void push_r9(u8 **pprog) 331 { 332 u8 *prog = *pprog; 333 334 EMIT2(0x41, 0x51); /* push r9 */ 335 *pprog = prog; 336 } 337 338 static void pop_r9(u8 **pprog) 339 { 340 u8 *prog = *pprog; 341 342 EMIT2(0x41, 0x59); /* pop r9 */ 343 *pprog = prog; 344 } 345 346 static void push_r12(u8 **pprog) 347 { 348 u8 *prog = *pprog; 349 350 EMIT2(0x41, 0x54); /* push r12 */ 351 *pprog = prog; 352 } 353 354 static void push_callee_regs(u8 **pprog, bool *callee_regs_used) 355 { 356 u8 *prog = *pprog; 357 358 if (callee_regs_used[0]) 359 EMIT1(0x53); /* push rbx */ 360 if (callee_regs_used[1]) 361 EMIT2(0x41, 0x55); /* push r13 */ 362 if (callee_regs_used[2]) 363 EMIT2(0x41, 0x56); /* push r14 */ 364 if (callee_regs_used[3]) 365 EMIT2(0x41, 0x57); /* push r15 */ 366 *pprog = prog; 367 } 368 369 static void pop_r12(u8 **pprog) 370 { 371 u8 *prog = *pprog; 372 373 EMIT2(0x41, 0x5C); /* pop r12 */ 374 *pprog = prog; 375 } 376 377 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) 378 { 379 u8 *prog = *pprog; 380 381 if (callee_regs_used[3]) 382 EMIT2(0x41, 0x5F); /* pop r15 */ 383 if (callee_regs_used[2]) 384 EMIT2(0x41, 0x5E); /* pop r14 */ 385 if (callee_regs_used[1]) 386 EMIT2(0x41, 0x5D); /* pop r13 */ 387 if (callee_regs_used[0]) 388 EMIT1(0x5B); /* pop rbx */ 389 *pprog = prog; 390 } 391 392 static void emit_nops(u8 **pprog, int len) 393 { 394 u8 *prog = *pprog; 395 int i, noplen; 396 397 while (len > 0) { 398 noplen = len; 399 400 if (noplen > ASM_NOP_MAX) 401 noplen = ASM_NOP_MAX; 402 403 for (i = 0; i < noplen; i++) 404 EMIT1(x86_nops[noplen][i]); 405 len -= noplen; 406 } 407 408 *pprog = prog; 409 } 410 411 /* 412 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT 413 * in arch/x86/kernel/alternative.c 414 */ 415 static int emit_call(u8 **prog, void *func, void *ip); 416 417 static void emit_fineibt(u8 **pprog, u8 *ip, u32 hash, int arity) 418 { 419 u8 *prog = *pprog; 420 421 EMIT_ENDBR(); 422 EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */ 423 if (cfi_bhi) { 424 emit_call(&prog, __bhi_args[arity], ip + 11); 425 } else { 426 EMIT2(0x75, 0xf9); /* jne.d8 .-7 */ 427 EMIT3(0x0f, 0x1f, 0x00); /* nop3 */ 428 } 429 EMIT_ENDBR_POISON(); 430 431 *pprog = prog; 432 } 433 434 static void emit_kcfi(u8 **pprog, u32 hash) 435 { 436 u8 *prog = *pprog; 437 438 EMIT1_off32(0xb8, hash); /* movl $hash, %eax */ 439 #ifdef CONFIG_CALL_PADDING 440 EMIT1(0x90); 441 EMIT1(0x90); 442 EMIT1(0x90); 443 EMIT1(0x90); 444 EMIT1(0x90); 445 EMIT1(0x90); 446 EMIT1(0x90); 447 EMIT1(0x90); 448 EMIT1(0x90); 449 EMIT1(0x90); 450 EMIT1(0x90); 451 #endif 452 EMIT_ENDBR(); 453 454 *pprog = prog; 455 } 456 457 static void emit_cfi(u8 **pprog, u8 *ip, u32 hash, int arity) 458 { 459 u8 *prog = *pprog; 460 461 switch (cfi_mode) { 462 case CFI_FINEIBT: 463 emit_fineibt(&prog, ip, hash, arity); 464 break; 465 466 case CFI_KCFI: 467 emit_kcfi(&prog, hash); 468 break; 469 470 default: 471 EMIT_ENDBR(); 472 break; 473 } 474 475 *pprog = prog; 476 } 477 478 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog) 479 { 480 u8 *prog = *pprog; 481 482 if (!is_subprog) { 483 /* cmp rax, MAX_TAIL_CALL_CNT */ 484 EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT); 485 EMIT2(X86_JA, 6); /* ja 6 */ 486 /* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT. 487 * case1: entry of main prog. 488 * case2: tail callee of main prog. 489 */ 490 EMIT1(0x50); /* push rax */ 491 /* Make rax as tail_call_cnt_ptr. */ 492 EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */ 493 EMIT2(0xEB, 1); /* jmp 1 */ 494 /* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT. 495 * case: tail callee of subprog. 496 */ 497 EMIT1(0x50); /* push rax */ 498 /* push tail_call_cnt_ptr */ 499 EMIT1(0x50); /* push rax */ 500 } else { /* is_subprog */ 501 /* rax is tail_call_cnt_ptr. */ 502 EMIT1(0x50); /* push rax */ 503 EMIT1(0x50); /* push rax */ 504 } 505 506 *pprog = prog; 507 } 508 509 /* 510 * Emit x86-64 prologue code for BPF program. 511 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes 512 * while jumping to another program 513 */ 514 static void emit_prologue(u8 **pprog, u8 *ip, u32 stack_depth, bool ebpf_from_cbpf, 515 bool tail_call_reachable, bool is_subprog, 516 bool is_exception_cb) 517 { 518 u8 *prog = *pprog; 519 520 if (is_subprog) { 521 emit_cfi(&prog, ip, cfi_bpf_subprog_hash, 5); 522 } else { 523 emit_cfi(&prog, ip, cfi_bpf_hash, 1); 524 } 525 /* BPF trampoline can be made to work without these nops, 526 * but let's waste 5 bytes for now and optimize later 527 */ 528 emit_nops(&prog, X86_PATCH_SIZE); 529 if (!ebpf_from_cbpf) { 530 if (tail_call_reachable && !is_subprog) 531 /* When it's the entry of the whole tailcall context, 532 * zeroing rax means initialising tail_call_cnt. 533 */ 534 EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */ 535 else 536 /* Keep the same instruction layout. */ 537 emit_nops(&prog, 3); /* nop3 */ 538 } 539 /* Exception callback receives FP as third parameter */ 540 if (is_exception_cb) { 541 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */ 542 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */ 543 /* The main frame must have exception_boundary as true, so we 544 * first restore those callee-saved regs from stack, before 545 * reusing the stack frame. 546 */ 547 pop_callee_regs(&prog, all_callee_regs_used); 548 pop_r12(&prog); 549 /* Reset the stack frame. */ 550 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */ 551 } else { 552 EMIT1(0x55); /* push rbp */ 553 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 554 } 555 556 /* X86_TAIL_CALL_OFFSET is here */ 557 EMIT_ENDBR(); 558 559 /* sub rsp, rounded_stack_depth */ 560 if (stack_depth) 561 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); 562 if (tail_call_reachable) 563 emit_prologue_tail_call(&prog, is_subprog); 564 *pprog = prog; 565 } 566 567 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) 568 { 569 u8 *prog = *pprog; 570 s64 offset; 571 572 offset = func - (ip + X86_PATCH_SIZE); 573 if (!is_simm32(offset)) { 574 pr_err("Target call %p is out of range\n", func); 575 return -ERANGE; 576 } 577 EMIT1_off32(opcode, offset); 578 *pprog = prog; 579 return 0; 580 } 581 582 static int emit_call(u8 **pprog, void *func, void *ip) 583 { 584 return emit_patch(pprog, func, ip, 0xE8); 585 } 586 587 static int emit_rsb_call(u8 **pprog, void *func, void *ip) 588 { 589 OPTIMIZER_HIDE_VAR(func); 590 ip += x86_call_depth_emit_accounting(pprog, func, ip); 591 return emit_patch(pprog, func, ip, 0xE8); 592 } 593 594 static int emit_jump(u8 **pprog, void *func, void *ip) 595 { 596 return emit_patch(pprog, func, ip, 0xE9); 597 } 598 599 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 600 void *old_addr, void *new_addr) 601 { 602 const u8 *nop_insn = x86_nops[5]; 603 u8 old_insn[X86_PATCH_SIZE]; 604 u8 new_insn[X86_PATCH_SIZE]; 605 u8 *prog; 606 int ret; 607 608 memcpy(old_insn, nop_insn, X86_PATCH_SIZE); 609 if (old_addr) { 610 prog = old_insn; 611 ret = t == BPF_MOD_CALL ? 612 emit_call(&prog, old_addr, ip) : 613 emit_jump(&prog, old_addr, ip); 614 if (ret) 615 return ret; 616 } 617 618 memcpy(new_insn, nop_insn, X86_PATCH_SIZE); 619 if (new_addr) { 620 prog = new_insn; 621 ret = t == BPF_MOD_CALL ? 622 emit_call(&prog, new_addr, ip) : 623 emit_jump(&prog, new_addr, ip); 624 if (ret) 625 return ret; 626 } 627 628 ret = -EBUSY; 629 mutex_lock(&text_mutex); 630 if (memcmp(ip, old_insn, X86_PATCH_SIZE)) 631 goto out; 632 ret = 1; 633 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { 634 smp_text_poke_single(ip, new_insn, X86_PATCH_SIZE, NULL); 635 ret = 0; 636 } 637 out: 638 mutex_unlock(&text_mutex); 639 return ret; 640 } 641 642 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 643 void *old_addr, void *new_addr) 644 { 645 if (!is_kernel_text((long)ip) && 646 !is_bpf_text_address((long)ip)) 647 /* BPF poking in modules is not supported */ 648 return -EINVAL; 649 650 /* 651 * See emit_prologue(), for IBT builds the trampoline hook is preceded 652 * with an ENDBR instruction. 653 */ 654 if (is_endbr(ip)) 655 ip += ENDBR_INSN_SIZE; 656 657 return __bpf_arch_text_poke(ip, t, old_addr, new_addr); 658 } 659 660 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8) 661 662 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip) 663 { 664 u8 *prog = *pprog; 665 666 if (cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) { 667 OPTIMIZER_HIDE_VAR(reg); 668 emit_jump(&prog, its_static_thunk(reg), ip); 669 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 670 EMIT_LFENCE(); 671 EMIT2(0xFF, 0xE0 + reg); 672 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) { 673 OPTIMIZER_HIDE_VAR(reg); 674 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 675 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip); 676 else 677 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip); 678 } else { 679 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */ 680 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS)) 681 EMIT1(0xCC); /* int3 */ 682 } 683 684 *pprog = prog; 685 } 686 687 static void emit_return(u8 **pprog, u8 *ip) 688 { 689 u8 *prog = *pprog; 690 691 if (cpu_wants_rethunk()) { 692 emit_jump(&prog, x86_return_thunk, ip); 693 } else { 694 EMIT1(0xC3); /* ret */ 695 if (IS_ENABLED(CONFIG_MITIGATION_SLS)) 696 EMIT1(0xCC); /* int3 */ 697 } 698 699 *pprog = prog; 700 } 701 702 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack) (-16 - round_up(stack, 8)) 703 704 /* 705 * Generate the following code: 706 * 707 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... 708 * if (index >= array->map.max_entries) 709 * goto out; 710 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 711 * goto out; 712 * prog = array->ptrs[index]; 713 * if (prog == NULL) 714 * goto out; 715 * goto *(prog->bpf_func + prologue_size); 716 * out: 717 */ 718 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog, 719 u8 **pprog, bool *callee_regs_used, 720 u32 stack_depth, u8 *ip, 721 struct jit_context *ctx) 722 { 723 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth); 724 u8 *prog = *pprog, *start = *pprog; 725 int offset; 726 727 /* 728 * rdi - pointer to ctx 729 * rsi - pointer to bpf_array 730 * rdx - index in bpf_array 731 */ 732 733 /* 734 * if (index >= array->map.max_entries) 735 * goto out; 736 */ 737 EMIT2(0x89, 0xD2); /* mov edx, edx */ 738 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ 739 offsetof(struct bpf_array, map.max_entries)); 740 741 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 742 EMIT2(X86_JBE, offset); /* jbe out */ 743 744 /* 745 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 746 * goto out; 747 */ 748 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */ 749 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */ 750 751 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 752 EMIT2(X86_JAE, offset); /* jae out */ 753 754 /* prog = array->ptrs[index]; */ 755 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ 756 offsetof(struct bpf_array, ptrs)); 757 758 /* 759 * if (prog == NULL) 760 * goto out; 761 */ 762 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ 763 764 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 765 EMIT2(X86_JE, offset); /* je out */ 766 767 /* Inc tail_call_cnt if the slot is populated. */ 768 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */ 769 770 if (bpf_prog->aux->exception_boundary) { 771 pop_callee_regs(&prog, all_callee_regs_used); 772 pop_r12(&prog); 773 } else { 774 pop_callee_regs(&prog, callee_regs_used); 775 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) 776 pop_r12(&prog); 777 } 778 779 /* Pop tail_call_cnt_ptr. */ 780 EMIT1(0x58); /* pop rax */ 781 /* Pop tail_call_cnt, if it's main prog. 782 * Pop tail_call_cnt_ptr, if it's subprog. 783 */ 784 EMIT1(0x58); /* pop rax */ 785 if (stack_depth) 786 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ 787 round_up(stack_depth, 8)); 788 789 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ 790 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ 791 offsetof(struct bpf_prog, bpf_func)); 792 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ 793 X86_TAIL_CALL_OFFSET); 794 /* 795 * Now we're ready to jump into next BPF program 796 * rdi == ctx (1st arg) 797 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET 798 */ 799 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start)); 800 801 /* out: */ 802 ctx->tail_call_indirect_label = prog - start; 803 *pprog = prog; 804 } 805 806 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog, 807 struct bpf_jit_poke_descriptor *poke, 808 u8 **pprog, u8 *ip, 809 bool *callee_regs_used, u32 stack_depth, 810 struct jit_context *ctx) 811 { 812 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth); 813 u8 *prog = *pprog, *start = *pprog; 814 int offset; 815 816 /* 817 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 818 * goto out; 819 */ 820 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */ 821 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */ 822 823 offset = ctx->tail_call_direct_label - (prog + 2 - start); 824 EMIT2(X86_JAE, offset); /* jae out */ 825 826 poke->tailcall_bypass = ip + (prog - start); 827 poke->adj_off = X86_TAIL_CALL_OFFSET; 828 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE; 829 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; 830 831 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, 832 poke->tailcall_bypass); 833 834 /* Inc tail_call_cnt if the slot is populated. */ 835 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */ 836 837 if (bpf_prog->aux->exception_boundary) { 838 pop_callee_regs(&prog, all_callee_regs_used); 839 pop_r12(&prog); 840 } else { 841 pop_callee_regs(&prog, callee_regs_used); 842 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) 843 pop_r12(&prog); 844 } 845 846 /* Pop tail_call_cnt_ptr. */ 847 EMIT1(0x58); /* pop rax */ 848 /* Pop tail_call_cnt, if it's main prog. 849 * Pop tail_call_cnt_ptr, if it's subprog. 850 */ 851 EMIT1(0x58); /* pop rax */ 852 if (stack_depth) 853 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); 854 855 emit_nops(&prog, X86_PATCH_SIZE); 856 857 /* out: */ 858 ctx->tail_call_direct_label = prog - start; 859 860 *pprog = prog; 861 } 862 863 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) 864 { 865 struct bpf_jit_poke_descriptor *poke; 866 struct bpf_array *array; 867 struct bpf_prog *target; 868 int i, ret; 869 870 for (i = 0; i < prog->aux->size_poke_tab; i++) { 871 poke = &prog->aux->poke_tab[i]; 872 if (poke->aux && poke->aux != prog->aux) 873 continue; 874 875 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); 876 877 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 878 continue; 879 880 array = container_of(poke->tail_call.map, struct bpf_array, map); 881 mutex_lock(&array->aux->poke_mutex); 882 target = array->ptrs[poke->tail_call.key]; 883 if (target) { 884 ret = __bpf_arch_text_poke(poke->tailcall_target, 885 BPF_MOD_JUMP, NULL, 886 (u8 *)target->bpf_func + 887 poke->adj_off); 888 BUG_ON(ret < 0); 889 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 890 BPF_MOD_JUMP, 891 (u8 *)poke->tailcall_target + 892 X86_PATCH_SIZE, NULL); 893 BUG_ON(ret < 0); 894 } 895 WRITE_ONCE(poke->tailcall_target_stable, true); 896 mutex_unlock(&array->aux->poke_mutex); 897 } 898 } 899 900 static void emit_mov_imm32(u8 **pprog, bool sign_propagate, 901 u32 dst_reg, const u32 imm32) 902 { 903 u8 *prog = *pprog; 904 u8 b1, b2, b3; 905 906 /* 907 * Optimization: if imm32 is positive, use 'mov %eax, imm32' 908 * (which zero-extends imm32) to save 2 bytes. 909 */ 910 if (sign_propagate && (s32)imm32 < 0) { 911 /* 'mov %rax, imm32' sign extends imm32 */ 912 b1 = add_1mod(0x48, dst_reg); 913 b2 = 0xC7; 914 b3 = 0xC0; 915 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); 916 goto done; 917 } 918 919 /* 920 * Optimization: if imm32 is zero, use 'xor %eax, %eax' 921 * to save 3 bytes. 922 */ 923 if (imm32 == 0) { 924 if (is_ereg(dst_reg)) 925 EMIT1(add_2mod(0x40, dst_reg, dst_reg)); 926 b2 = 0x31; /* xor */ 927 b3 = 0xC0; 928 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); 929 goto done; 930 } 931 932 /* mov %eax, imm32 */ 933 if (is_ereg(dst_reg)) 934 EMIT1(add_1mod(0x40, dst_reg)); 935 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); 936 done: 937 *pprog = prog; 938 } 939 940 static void emit_mov_imm64(u8 **pprog, u32 dst_reg, 941 const u32 imm32_hi, const u32 imm32_lo) 942 { 943 u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo; 944 u8 *prog = *pprog; 945 946 if (is_uimm32(imm64)) { 947 /* 948 * For emitting plain u32, where sign bit must not be 949 * propagated LLVM tends to load imm64 over mov32 950 * directly, so save couple of bytes by just doing 951 * 'mov %eax, imm32' instead. 952 */ 953 emit_mov_imm32(&prog, false, dst_reg, imm32_lo); 954 } else if (is_simm32(imm64)) { 955 emit_mov_imm32(&prog, true, dst_reg, imm32_lo); 956 } else { 957 /* movabsq rax, imm64 */ 958 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); 959 EMIT(imm32_lo, 4); 960 EMIT(imm32_hi, 4); 961 } 962 963 *pprog = prog; 964 } 965 966 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) 967 { 968 u8 *prog = *pprog; 969 970 if (is64) { 971 /* mov dst, src */ 972 EMIT_mov(dst_reg, src_reg); 973 } else { 974 /* mov32 dst, src */ 975 if (is_ereg(dst_reg) || is_ereg(src_reg)) 976 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 977 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); 978 } 979 980 *pprog = prog; 981 } 982 983 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg, 984 u32 src_reg) 985 { 986 u8 *prog = *pprog; 987 988 if (is64) { 989 /* movs[b,w,l]q dst, src */ 990 if (num_bits == 8) 991 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe, 992 add_2reg(0xC0, src_reg, dst_reg)); 993 else if (num_bits == 16) 994 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf, 995 add_2reg(0xC0, src_reg, dst_reg)); 996 else if (num_bits == 32) 997 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63, 998 add_2reg(0xC0, src_reg, dst_reg)); 999 } else { 1000 /* movs[b,w]l dst, src */ 1001 if (num_bits == 8) { 1002 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe, 1003 add_2reg(0xC0, src_reg, dst_reg)); 1004 } else if (num_bits == 16) { 1005 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1006 EMIT1(add_2mod(0x40, src_reg, dst_reg)); 1007 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf, 1008 add_2reg(0xC0, src_reg, dst_reg)); 1009 } 1010 } 1011 1012 *pprog = prog; 1013 } 1014 1015 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ 1016 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) 1017 { 1018 u8 *prog = *pprog; 1019 1020 if (is_imm8(off)) { 1021 /* 1-byte signed displacement. 1022 * 1023 * If off == 0 we could skip this and save one extra byte, but 1024 * special case of x86 R13 which always needs an offset is not 1025 * worth the hassle 1026 */ 1027 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); 1028 } else { 1029 /* 4-byte signed displacement */ 1030 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); 1031 } 1032 *pprog = prog; 1033 } 1034 1035 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off) 1036 { 1037 u8 *prog = *pprog; 1038 1039 if (is_imm8(off)) { 1040 EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); 1041 } else { 1042 EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); 1043 } 1044 *pprog = prog; 1045 } 1046 1047 /* 1048 * Emit a REX byte if it will be necessary to address these registers 1049 */ 1050 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) 1051 { 1052 u8 *prog = *pprog; 1053 1054 if (is64) 1055 EMIT1(add_2mod(0x48, dst_reg, src_reg)); 1056 else if (is_ereg(dst_reg) || is_ereg(src_reg)) 1057 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 1058 *pprog = prog; 1059 } 1060 1061 /* 1062 * Similar version of maybe_emit_mod() for a single register 1063 */ 1064 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64) 1065 { 1066 u8 *prog = *pprog; 1067 1068 if (is64) 1069 EMIT1(add_1mod(0x48, reg)); 1070 else if (is_ereg(reg)) 1071 EMIT1(add_1mod(0x40, reg)); 1072 *pprog = prog; 1073 } 1074 1075 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 1076 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1077 { 1078 u8 *prog = *pprog; 1079 1080 switch (size) { 1081 case BPF_B: 1082 /* Emit 'movzx rax, byte ptr [rax + off]' */ 1083 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); 1084 break; 1085 case BPF_H: 1086 /* Emit 'movzx rax, word ptr [rax + off]' */ 1087 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); 1088 break; 1089 case BPF_W: 1090 /* Emit 'mov eax, dword ptr [rax+0x14]' */ 1091 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1092 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); 1093 else 1094 EMIT1(0x8B); 1095 break; 1096 case BPF_DW: 1097 /* Emit 'mov rax, qword ptr [rax+0x14]' */ 1098 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); 1099 break; 1100 } 1101 emit_insn_suffix(&prog, src_reg, dst_reg, off); 1102 *pprog = prog; 1103 } 1104 1105 /* LDSX: dst_reg = *(s8*)(src_reg + off) */ 1106 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1107 { 1108 u8 *prog = *pprog; 1109 1110 switch (size) { 1111 case BPF_B: 1112 /* Emit 'movsx rax, byte ptr [rax + off]' */ 1113 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE); 1114 break; 1115 case BPF_H: 1116 /* Emit 'movsx rax, word ptr [rax + off]' */ 1117 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF); 1118 break; 1119 case BPF_W: 1120 /* Emit 'movsx rax, dword ptr [rax+0x14]' */ 1121 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63); 1122 break; 1123 } 1124 emit_insn_suffix(&prog, src_reg, dst_reg, off); 1125 *pprog = prog; 1126 } 1127 1128 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1129 { 1130 u8 *prog = *pprog; 1131 1132 switch (size) { 1133 case BPF_B: 1134 /* movzx rax, byte ptr [rax + r12 + off] */ 1135 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6); 1136 break; 1137 case BPF_H: 1138 /* movzx rax, word ptr [rax + r12 + off] */ 1139 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7); 1140 break; 1141 case BPF_W: 1142 /* mov eax, dword ptr [rax + r12 + off] */ 1143 EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B); 1144 break; 1145 case BPF_DW: 1146 /* mov rax, qword ptr [rax + r12 + off] */ 1147 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B); 1148 break; 1149 } 1150 emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off); 1151 *pprog = prog; 1152 } 1153 1154 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1155 { 1156 emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); 1157 } 1158 1159 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1160 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1161 { 1162 u8 *prog = *pprog; 1163 1164 switch (size) { 1165 case BPF_B: 1166 /* Emit 'mov byte ptr [rax + off], al' */ 1167 if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) 1168 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ 1169 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); 1170 else 1171 EMIT1(0x88); 1172 break; 1173 case BPF_H: 1174 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1175 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); 1176 else 1177 EMIT2(0x66, 0x89); 1178 break; 1179 case BPF_W: 1180 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1181 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); 1182 else 1183 EMIT1(0x89); 1184 break; 1185 case BPF_DW: 1186 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); 1187 break; 1188 } 1189 emit_insn_suffix(&prog, dst_reg, src_reg, off); 1190 *pprog = prog; 1191 } 1192 1193 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */ 1194 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1195 { 1196 u8 *prog = *pprog; 1197 1198 switch (size) { 1199 case BPF_B: 1200 /* mov byte ptr [rax + r12 + off], al */ 1201 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88); 1202 break; 1203 case BPF_H: 1204 /* mov word ptr [rax + r12 + off], ax */ 1205 EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); 1206 break; 1207 case BPF_W: 1208 /* mov dword ptr [rax + r12 + 1], eax */ 1209 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); 1210 break; 1211 case BPF_DW: 1212 /* mov qword ptr [rax + r12 + 1], rax */ 1213 EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89); 1214 break; 1215 } 1216 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); 1217 *pprog = prog; 1218 } 1219 1220 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1221 { 1222 emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); 1223 } 1224 1225 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */ 1226 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm) 1227 { 1228 u8 *prog = *pprog; 1229 1230 switch (size) { 1231 case BPF_B: 1232 /* mov byte ptr [rax + r12 + off], imm8 */ 1233 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6); 1234 break; 1235 case BPF_H: 1236 /* mov word ptr [rax + r12 + off], imm16 */ 1237 EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); 1238 break; 1239 case BPF_W: 1240 /* mov dword ptr [rax + r12 + 1], imm32 */ 1241 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); 1242 break; 1243 case BPF_DW: 1244 /* mov qword ptr [rax + r12 + 1], imm32 */ 1245 EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7); 1246 break; 1247 } 1248 emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off); 1249 EMIT(imm, bpf_size_to_x86_bytes(size)); 1250 *pprog = prog; 1251 } 1252 1253 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm) 1254 { 1255 emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm); 1256 } 1257 1258 static int emit_atomic_rmw(u8 **pprog, u32 atomic_op, 1259 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) 1260 { 1261 u8 *prog = *pprog; 1262 1263 EMIT1(0xF0); /* lock prefix */ 1264 1265 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); 1266 1267 /* emit opcode */ 1268 switch (atomic_op) { 1269 case BPF_ADD: 1270 case BPF_AND: 1271 case BPF_OR: 1272 case BPF_XOR: 1273 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ 1274 EMIT1(simple_alu_opcodes[atomic_op]); 1275 break; 1276 case BPF_ADD | BPF_FETCH: 1277 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ 1278 EMIT2(0x0F, 0xC1); 1279 break; 1280 case BPF_XCHG: 1281 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 1282 EMIT1(0x87); 1283 break; 1284 case BPF_CMPXCHG: 1285 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 1286 EMIT2(0x0F, 0xB1); 1287 break; 1288 default: 1289 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 1290 return -EFAULT; 1291 } 1292 1293 emit_insn_suffix(&prog, dst_reg, src_reg, off); 1294 1295 *pprog = prog; 1296 return 0; 1297 } 1298 1299 static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size, 1300 u32 dst_reg, u32 src_reg, u32 index_reg, 1301 int off) 1302 { 1303 u8 *prog = *pprog; 1304 1305 EMIT1(0xF0); /* lock prefix */ 1306 switch (size) { 1307 case BPF_W: 1308 EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg)); 1309 break; 1310 case BPF_DW: 1311 EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg)); 1312 break; 1313 default: 1314 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 1315 return -EFAULT; 1316 } 1317 1318 /* emit opcode */ 1319 switch (atomic_op) { 1320 case BPF_ADD: 1321 case BPF_AND: 1322 case BPF_OR: 1323 case BPF_XOR: 1324 /* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */ 1325 EMIT1(simple_alu_opcodes[atomic_op]); 1326 break; 1327 case BPF_ADD | BPF_FETCH: 1328 /* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */ 1329 EMIT2(0x0F, 0xC1); 1330 break; 1331 case BPF_XCHG: 1332 /* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */ 1333 EMIT1(0x87); 1334 break; 1335 case BPF_CMPXCHG: 1336 /* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */ 1337 EMIT2(0x0F, 0xB1); 1338 break; 1339 default: 1340 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 1341 return -EFAULT; 1342 } 1343 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); 1344 *pprog = prog; 1345 return 0; 1346 } 1347 1348 static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg, 1349 u32 src_reg, s16 off, u8 bpf_size) 1350 { 1351 switch (atomic_op) { 1352 case BPF_LOAD_ACQ: 1353 /* dst_reg = smp_load_acquire(src_reg + off16) */ 1354 emit_ldx(pprog, bpf_size, dst_reg, src_reg, off); 1355 break; 1356 case BPF_STORE_REL: 1357 /* smp_store_release(dst_reg + off16, src_reg) */ 1358 emit_stx(pprog, bpf_size, dst_reg, src_reg, off); 1359 break; 1360 default: 1361 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n", 1362 atomic_op); 1363 return -EFAULT; 1364 } 1365 1366 return 0; 1367 } 1368 1369 static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size, 1370 u32 dst_reg, u32 src_reg, u32 index_reg, 1371 int off) 1372 { 1373 switch (atomic_op) { 1374 case BPF_LOAD_ACQ: 1375 /* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */ 1376 emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off); 1377 break; 1378 case BPF_STORE_REL: 1379 /* smp_store_release(dst_reg + idx_reg + off16, src_reg) */ 1380 emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off); 1381 break; 1382 default: 1383 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n", 1384 atomic_op); 1385 return -EFAULT; 1386 } 1387 1388 return 0; 1389 } 1390 1391 #define DONT_CLEAR 1 1392 1393 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) 1394 { 1395 u32 reg = x->fixup >> 8; 1396 1397 /* jump over faulting load and clear dest register */ 1398 if (reg != DONT_CLEAR) 1399 *(unsigned long *)((void *)regs + reg) = 0; 1400 regs->ip += x->fixup & 0xff; 1401 return true; 1402 } 1403 1404 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, 1405 bool *regs_used) 1406 { 1407 int i; 1408 1409 for (i = 1; i <= insn_cnt; i++, insn++) { 1410 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 1411 regs_used[0] = true; 1412 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 1413 regs_used[1] = true; 1414 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 1415 regs_used[2] = true; 1416 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 1417 regs_used[3] = true; 1418 } 1419 } 1420 1421 /* emit the 3-byte VEX prefix 1422 * 1423 * r: same as rex.r, extra bit for ModRM reg field 1424 * x: same as rex.x, extra bit for SIB index field 1425 * b: same as rex.b, extra bit for ModRM r/m, or SIB base 1426 * m: opcode map select, encoding escape bytes e.g. 0x0f38 1427 * w: same as rex.w (32 bit or 64 bit) or opcode specific 1428 * src_reg2: additional source reg (encoded as BPF reg) 1429 * l: vector length (128 bit or 256 bit) or reserved 1430 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3) 1431 */ 1432 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m, 1433 bool w, u8 src_reg2, bool l, u8 pp) 1434 { 1435 u8 *prog = *pprog; 1436 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */ 1437 u8 b1, b2; 1438 u8 vvvv = reg2hex[src_reg2]; 1439 1440 /* reg2hex gives only the lower 3 bit of vvvv */ 1441 if (is_ereg(src_reg2)) 1442 vvvv |= 1 << 3; 1443 1444 /* 1445 * 2nd byte of 3-byte VEX prefix 1446 * ~ means bit inverted encoding 1447 * 1448 * 7 0 1449 * +---+---+---+---+---+---+---+---+ 1450 * |~R |~X |~B | m | 1451 * +---+---+---+---+---+---+---+---+ 1452 */ 1453 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f); 1454 /* 1455 * 3rd byte of 3-byte VEX prefix 1456 * 1457 * 7 0 1458 * +---+---+---+---+---+---+---+---+ 1459 * | W | ~vvvv | L | pp | 1460 * +---+---+---+---+---+---+---+---+ 1461 */ 1462 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3); 1463 1464 EMIT3(b0, b1, b2); 1465 *pprog = prog; 1466 } 1467 1468 /* emit BMI2 shift instruction */ 1469 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op) 1470 { 1471 u8 *prog = *pprog; 1472 bool r = is_ereg(dst_reg); 1473 u8 m = 2; /* escape code 0f38 */ 1474 1475 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op); 1476 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg)); 1477 *pprog = prog; 1478 } 1479 1480 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr) 1481 { 1482 u8 *prog = *pprog; 1483 1484 /* movabs r9, priv_frame_ptr */ 1485 emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32, 1486 (u32) (__force long) priv_frame_ptr); 1487 1488 #ifdef CONFIG_SMP 1489 /* add <r9>, gs:[<off>] */ 1490 EMIT2(0x65, 0x4c); 1491 EMIT3(0x03, 0x0c, 0x25); 1492 EMIT((u32)(unsigned long)&this_cpu_off, 4); 1493 #endif 1494 1495 *pprog = prog; 1496 } 1497 1498 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) 1499 1500 #define __LOAD_TCC_PTR(off) \ 1501 EMIT3_off32(0x48, 0x8B, 0x85, off) 1502 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */ 1503 #define LOAD_TAIL_CALL_CNT_PTR(stack) \ 1504 __LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack)) 1505 1506 /* Memory size/value to protect private stack overflow/underflow */ 1507 #define PRIV_STACK_GUARD_SZ 8 1508 #define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL 1509 1510 static int emit_spectre_bhb_barrier(u8 **pprog, u8 *ip, 1511 struct bpf_prog *bpf_prog) 1512 { 1513 u8 *prog = *pprog; 1514 u8 *func; 1515 1516 if (cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP)) { 1517 /* The clearing sequence clobbers eax and ecx. */ 1518 EMIT1(0x50); /* push rax */ 1519 EMIT1(0x51); /* push rcx */ 1520 ip += 2; 1521 1522 func = (u8 *)clear_bhb_loop; 1523 ip += x86_call_depth_emit_accounting(&prog, func, ip); 1524 1525 if (emit_call(&prog, func, ip)) 1526 return -EINVAL; 1527 EMIT1(0x59); /* pop rcx */ 1528 EMIT1(0x58); /* pop rax */ 1529 } 1530 /* Insert IBHF instruction */ 1531 if ((cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP) && 1532 cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) || 1533 cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_HW)) { 1534 /* 1535 * Add an Indirect Branch History Fence (IBHF). IBHF acts as a 1536 * fence preventing branch history from before the fence from 1537 * affecting indirect branches after the fence. This is 1538 * specifically used in cBPF jitted code to prevent Intra-mode 1539 * BHI attacks. The IBHF instruction is designed to be a NOP on 1540 * hardware that doesn't need or support it. The REP and REX.W 1541 * prefixes are required by the microcode, and they also ensure 1542 * that the NOP is unlikely to be used in existing code. 1543 * 1544 * IBHF is not a valid instruction in 32-bit mode. 1545 */ 1546 EMIT5(0xF3, 0x48, 0x0F, 0x1E, 0xF8); /* ibhf */ 1547 } 1548 *pprog = prog; 1549 return 0; 1550 } 1551 1552 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image, 1553 int oldproglen, struct jit_context *ctx, bool jmp_padding) 1554 { 1555 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; 1556 struct bpf_insn *insn = bpf_prog->insnsi; 1557 bool callee_regs_used[4] = {}; 1558 int insn_cnt = bpf_prog->len; 1559 bool seen_exit = false; 1560 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; 1561 void __percpu *priv_frame_ptr = NULL; 1562 u64 arena_vm_start, user_vm_start; 1563 void __percpu *priv_stack_ptr; 1564 int i, excnt = 0; 1565 int ilen, proglen = 0; 1566 u8 *prog = temp; 1567 u32 stack_depth; 1568 int err; 1569 1570 stack_depth = bpf_prog->aux->stack_depth; 1571 priv_stack_ptr = bpf_prog->aux->priv_stack_ptr; 1572 if (priv_stack_ptr) { 1573 priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8); 1574 stack_depth = 0; 1575 } 1576 1577 arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena); 1578 user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena); 1579 1580 detect_reg_usage(insn, insn_cnt, callee_regs_used); 1581 1582 emit_prologue(&prog, image, stack_depth, 1583 bpf_prog_was_classic(bpf_prog), tail_call_reachable, 1584 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb); 1585 /* Exception callback will clobber callee regs for its own use, and 1586 * restore the original callee regs from main prog's stack frame. 1587 */ 1588 if (bpf_prog->aux->exception_boundary) { 1589 /* We also need to save r12, which is not mapped to any BPF 1590 * register, as we throw after entry into the kernel, which may 1591 * overwrite r12. 1592 */ 1593 push_r12(&prog); 1594 push_callee_regs(&prog, all_callee_regs_used); 1595 } else { 1596 if (arena_vm_start) 1597 push_r12(&prog); 1598 push_callee_regs(&prog, callee_regs_used); 1599 } 1600 if (arena_vm_start) 1601 emit_mov_imm64(&prog, X86_REG_R12, 1602 arena_vm_start >> 32, (u32) arena_vm_start); 1603 1604 if (priv_frame_ptr) 1605 emit_priv_frame_ptr(&prog, priv_frame_ptr); 1606 1607 ilen = prog - temp; 1608 if (rw_image) 1609 memcpy(rw_image + proglen, temp, ilen); 1610 proglen += ilen; 1611 addrs[0] = proglen; 1612 prog = temp; 1613 1614 for (i = 1; i <= insn_cnt; i++, insn++) { 1615 const s32 imm32 = insn->imm; 1616 u32 dst_reg = insn->dst_reg; 1617 u32 src_reg = insn->src_reg; 1618 u8 b2 = 0, b3 = 0; 1619 u8 *start_of_ldx; 1620 s64 jmp_offset; 1621 s16 insn_off; 1622 u8 jmp_cond; 1623 u8 *func; 1624 int nops; 1625 1626 if (priv_frame_ptr) { 1627 if (src_reg == BPF_REG_FP) 1628 src_reg = X86_REG_R9; 1629 1630 if (dst_reg == BPF_REG_FP) 1631 dst_reg = X86_REG_R9; 1632 } 1633 1634 switch (insn->code) { 1635 /* ALU */ 1636 case BPF_ALU | BPF_ADD | BPF_X: 1637 case BPF_ALU | BPF_SUB | BPF_X: 1638 case BPF_ALU | BPF_AND | BPF_X: 1639 case BPF_ALU | BPF_OR | BPF_X: 1640 case BPF_ALU | BPF_XOR | BPF_X: 1641 case BPF_ALU64 | BPF_ADD | BPF_X: 1642 case BPF_ALU64 | BPF_SUB | BPF_X: 1643 case BPF_ALU64 | BPF_AND | BPF_X: 1644 case BPF_ALU64 | BPF_OR | BPF_X: 1645 case BPF_ALU64 | BPF_XOR | BPF_X: 1646 maybe_emit_mod(&prog, dst_reg, src_reg, 1647 BPF_CLASS(insn->code) == BPF_ALU64); 1648 b2 = simple_alu_opcodes[BPF_OP(insn->code)]; 1649 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); 1650 break; 1651 1652 case BPF_ALU64 | BPF_MOV | BPF_X: 1653 if (insn_is_cast_user(insn)) { 1654 if (dst_reg != src_reg) 1655 /* 32-bit mov */ 1656 emit_mov_reg(&prog, false, dst_reg, src_reg); 1657 /* shl dst_reg, 32 */ 1658 maybe_emit_1mod(&prog, dst_reg, true); 1659 EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32); 1660 1661 /* or dst_reg, user_vm_start */ 1662 maybe_emit_1mod(&prog, dst_reg, true); 1663 if (is_axreg(dst_reg)) 1664 EMIT1_off32(0x0D, user_vm_start >> 32); 1665 else 1666 EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32); 1667 1668 /* rol dst_reg, 32 */ 1669 maybe_emit_1mod(&prog, dst_reg, true); 1670 EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32); 1671 1672 /* xor r11, r11 */ 1673 EMIT3(0x4D, 0x31, 0xDB); 1674 1675 /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */ 1676 maybe_emit_mod(&prog, dst_reg, dst_reg, false); 1677 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 1678 1679 /* cmove r11, dst_reg; if so, set dst_reg to zero */ 1680 /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */ 1681 maybe_emit_mod(&prog, AUX_REG, dst_reg, true); 1682 EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg)); 1683 break; 1684 } else if (insn_is_mov_percpu_addr(insn)) { 1685 /* mov <dst>, <src> (if necessary) */ 1686 EMIT_mov(dst_reg, src_reg); 1687 #ifdef CONFIG_SMP 1688 /* add <dst>, gs:[<off>] */ 1689 EMIT2(0x65, add_1mod(0x48, dst_reg)); 1690 EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25); 1691 EMIT((u32)(unsigned long)&this_cpu_off, 4); 1692 #endif 1693 break; 1694 } 1695 fallthrough; 1696 case BPF_ALU | BPF_MOV | BPF_X: 1697 if (insn->off == 0) 1698 emit_mov_reg(&prog, 1699 BPF_CLASS(insn->code) == BPF_ALU64, 1700 dst_reg, src_reg); 1701 else 1702 emit_movsx_reg(&prog, insn->off, 1703 BPF_CLASS(insn->code) == BPF_ALU64, 1704 dst_reg, src_reg); 1705 break; 1706 1707 /* neg dst */ 1708 case BPF_ALU | BPF_NEG: 1709 case BPF_ALU64 | BPF_NEG: 1710 maybe_emit_1mod(&prog, dst_reg, 1711 BPF_CLASS(insn->code) == BPF_ALU64); 1712 EMIT2(0xF7, add_1reg(0xD8, dst_reg)); 1713 break; 1714 1715 case BPF_ALU | BPF_ADD | BPF_K: 1716 case BPF_ALU | BPF_SUB | BPF_K: 1717 case BPF_ALU | BPF_AND | BPF_K: 1718 case BPF_ALU | BPF_OR | BPF_K: 1719 case BPF_ALU | BPF_XOR | BPF_K: 1720 case BPF_ALU64 | BPF_ADD | BPF_K: 1721 case BPF_ALU64 | BPF_SUB | BPF_K: 1722 case BPF_ALU64 | BPF_AND | BPF_K: 1723 case BPF_ALU64 | BPF_OR | BPF_K: 1724 case BPF_ALU64 | BPF_XOR | BPF_K: 1725 maybe_emit_1mod(&prog, dst_reg, 1726 BPF_CLASS(insn->code) == BPF_ALU64); 1727 1728 /* 1729 * b3 holds 'normal' opcode, b2 short form only valid 1730 * in case dst is eax/rax. 1731 */ 1732 switch (BPF_OP(insn->code)) { 1733 case BPF_ADD: 1734 b3 = 0xC0; 1735 b2 = 0x05; 1736 break; 1737 case BPF_SUB: 1738 b3 = 0xE8; 1739 b2 = 0x2D; 1740 break; 1741 case BPF_AND: 1742 b3 = 0xE0; 1743 b2 = 0x25; 1744 break; 1745 case BPF_OR: 1746 b3 = 0xC8; 1747 b2 = 0x0D; 1748 break; 1749 case BPF_XOR: 1750 b3 = 0xF0; 1751 b2 = 0x35; 1752 break; 1753 } 1754 1755 if (is_imm8(imm32)) 1756 EMIT3(0x83, add_1reg(b3, dst_reg), imm32); 1757 else if (is_axreg(dst_reg)) 1758 EMIT1_off32(b2, imm32); 1759 else 1760 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); 1761 break; 1762 1763 case BPF_ALU64 | BPF_MOV | BPF_K: 1764 case BPF_ALU | BPF_MOV | BPF_K: 1765 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, 1766 dst_reg, imm32); 1767 break; 1768 1769 case BPF_LD | BPF_IMM | BPF_DW: 1770 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); 1771 insn++; 1772 i++; 1773 break; 1774 1775 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ 1776 case BPF_ALU | BPF_MOD | BPF_X: 1777 case BPF_ALU | BPF_DIV | BPF_X: 1778 case BPF_ALU | BPF_MOD | BPF_K: 1779 case BPF_ALU | BPF_DIV | BPF_K: 1780 case BPF_ALU64 | BPF_MOD | BPF_X: 1781 case BPF_ALU64 | BPF_DIV | BPF_X: 1782 case BPF_ALU64 | BPF_MOD | BPF_K: 1783 case BPF_ALU64 | BPF_DIV | BPF_K: { 1784 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 1785 1786 if (dst_reg != BPF_REG_0) 1787 EMIT1(0x50); /* push rax */ 1788 if (dst_reg != BPF_REG_3) 1789 EMIT1(0x52); /* push rdx */ 1790 1791 if (BPF_SRC(insn->code) == BPF_X) { 1792 if (src_reg == BPF_REG_0 || 1793 src_reg == BPF_REG_3) { 1794 /* mov r11, src_reg */ 1795 EMIT_mov(AUX_REG, src_reg); 1796 src_reg = AUX_REG; 1797 } 1798 } else { 1799 /* mov r11, imm32 */ 1800 EMIT3_off32(0x49, 0xC7, 0xC3, imm32); 1801 src_reg = AUX_REG; 1802 } 1803 1804 if (dst_reg != BPF_REG_0) 1805 /* mov rax, dst_reg */ 1806 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg); 1807 1808 if (insn->off == 0) { 1809 /* 1810 * xor edx, edx 1811 * equivalent to 'xor rdx, rdx', but one byte less 1812 */ 1813 EMIT2(0x31, 0xd2); 1814 1815 /* div src_reg */ 1816 maybe_emit_1mod(&prog, src_reg, is64); 1817 EMIT2(0xF7, add_1reg(0xF0, src_reg)); 1818 } else { 1819 if (BPF_CLASS(insn->code) == BPF_ALU) 1820 EMIT1(0x99); /* cdq */ 1821 else 1822 EMIT2(0x48, 0x99); /* cqo */ 1823 1824 /* idiv src_reg */ 1825 maybe_emit_1mod(&prog, src_reg, is64); 1826 EMIT2(0xF7, add_1reg(0xF8, src_reg)); 1827 } 1828 1829 if (BPF_OP(insn->code) == BPF_MOD && 1830 dst_reg != BPF_REG_3) 1831 /* mov dst_reg, rdx */ 1832 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3); 1833 else if (BPF_OP(insn->code) == BPF_DIV && 1834 dst_reg != BPF_REG_0) 1835 /* mov dst_reg, rax */ 1836 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0); 1837 1838 if (dst_reg != BPF_REG_3) 1839 EMIT1(0x5A); /* pop rdx */ 1840 if (dst_reg != BPF_REG_0) 1841 EMIT1(0x58); /* pop rax */ 1842 break; 1843 } 1844 1845 case BPF_ALU | BPF_MUL | BPF_K: 1846 case BPF_ALU64 | BPF_MUL | BPF_K: 1847 maybe_emit_mod(&prog, dst_reg, dst_reg, 1848 BPF_CLASS(insn->code) == BPF_ALU64); 1849 1850 if (is_imm8(imm32)) 1851 /* imul dst_reg, dst_reg, imm8 */ 1852 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg), 1853 imm32); 1854 else 1855 /* imul dst_reg, dst_reg, imm32 */ 1856 EMIT2_off32(0x69, 1857 add_2reg(0xC0, dst_reg, dst_reg), 1858 imm32); 1859 break; 1860 1861 case BPF_ALU | BPF_MUL | BPF_X: 1862 case BPF_ALU64 | BPF_MUL | BPF_X: 1863 maybe_emit_mod(&prog, src_reg, dst_reg, 1864 BPF_CLASS(insn->code) == BPF_ALU64); 1865 1866 /* imul dst_reg, src_reg */ 1867 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg)); 1868 break; 1869 1870 /* Shifts */ 1871 case BPF_ALU | BPF_LSH | BPF_K: 1872 case BPF_ALU | BPF_RSH | BPF_K: 1873 case BPF_ALU | BPF_ARSH | BPF_K: 1874 case BPF_ALU64 | BPF_LSH | BPF_K: 1875 case BPF_ALU64 | BPF_RSH | BPF_K: 1876 case BPF_ALU64 | BPF_ARSH | BPF_K: 1877 maybe_emit_1mod(&prog, dst_reg, 1878 BPF_CLASS(insn->code) == BPF_ALU64); 1879 1880 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1881 if (imm32 == 1) 1882 EMIT2(0xD1, add_1reg(b3, dst_reg)); 1883 else 1884 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); 1885 break; 1886 1887 case BPF_ALU | BPF_LSH | BPF_X: 1888 case BPF_ALU | BPF_RSH | BPF_X: 1889 case BPF_ALU | BPF_ARSH | BPF_X: 1890 case BPF_ALU64 | BPF_LSH | BPF_X: 1891 case BPF_ALU64 | BPF_RSH | BPF_X: 1892 case BPF_ALU64 | BPF_ARSH | BPF_X: 1893 /* BMI2 shifts aren't better when shift count is already in rcx */ 1894 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) { 1895 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */ 1896 bool w = (BPF_CLASS(insn->code) == BPF_ALU64); 1897 u8 op; 1898 1899 switch (BPF_OP(insn->code)) { 1900 case BPF_LSH: 1901 op = 1; /* prefix 0x66 */ 1902 break; 1903 case BPF_RSH: 1904 op = 3; /* prefix 0xf2 */ 1905 break; 1906 case BPF_ARSH: 1907 op = 2; /* prefix 0xf3 */ 1908 break; 1909 } 1910 1911 emit_shiftx(&prog, dst_reg, src_reg, w, op); 1912 1913 break; 1914 } 1915 1916 if (src_reg != BPF_REG_4) { /* common case */ 1917 /* Check for bad case when dst_reg == rcx */ 1918 if (dst_reg == BPF_REG_4) { 1919 /* mov r11, dst_reg */ 1920 EMIT_mov(AUX_REG, dst_reg); 1921 dst_reg = AUX_REG; 1922 } else { 1923 EMIT1(0x51); /* push rcx */ 1924 } 1925 /* mov rcx, src_reg */ 1926 EMIT_mov(BPF_REG_4, src_reg); 1927 } 1928 1929 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ 1930 maybe_emit_1mod(&prog, dst_reg, 1931 BPF_CLASS(insn->code) == BPF_ALU64); 1932 1933 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1934 EMIT2(0xD3, add_1reg(b3, dst_reg)); 1935 1936 if (src_reg != BPF_REG_4) { 1937 if (insn->dst_reg == BPF_REG_4) 1938 /* mov dst_reg, r11 */ 1939 EMIT_mov(insn->dst_reg, AUX_REG); 1940 else 1941 EMIT1(0x59); /* pop rcx */ 1942 } 1943 1944 break; 1945 1946 case BPF_ALU | BPF_END | BPF_FROM_BE: 1947 case BPF_ALU64 | BPF_END | BPF_FROM_LE: 1948 switch (imm32) { 1949 case 16: 1950 /* Emit 'ror %ax, 8' to swap lower 2 bytes */ 1951 EMIT1(0x66); 1952 if (is_ereg(dst_reg)) 1953 EMIT1(0x41); 1954 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); 1955 1956 /* Emit 'movzwl eax, ax' */ 1957 if (is_ereg(dst_reg)) 1958 EMIT3(0x45, 0x0F, 0xB7); 1959 else 1960 EMIT2(0x0F, 0xB7); 1961 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1962 break; 1963 case 32: 1964 /* Emit 'bswap eax' to swap lower 4 bytes */ 1965 if (is_ereg(dst_reg)) 1966 EMIT2(0x41, 0x0F); 1967 else 1968 EMIT1(0x0F); 1969 EMIT1(add_1reg(0xC8, dst_reg)); 1970 break; 1971 case 64: 1972 /* Emit 'bswap rax' to swap 8 bytes */ 1973 EMIT3(add_1mod(0x48, dst_reg), 0x0F, 1974 add_1reg(0xC8, dst_reg)); 1975 break; 1976 } 1977 break; 1978 1979 case BPF_ALU | BPF_END | BPF_FROM_LE: 1980 switch (imm32) { 1981 case 16: 1982 /* 1983 * Emit 'movzwl eax, ax' to zero extend 16-bit 1984 * into 64 bit 1985 */ 1986 if (is_ereg(dst_reg)) 1987 EMIT3(0x45, 0x0F, 0xB7); 1988 else 1989 EMIT2(0x0F, 0xB7); 1990 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1991 break; 1992 case 32: 1993 /* Emit 'mov eax, eax' to clear upper 32-bits */ 1994 if (is_ereg(dst_reg)) 1995 EMIT1(0x45); 1996 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); 1997 break; 1998 case 64: 1999 /* nop */ 2000 break; 2001 } 2002 break; 2003 2004 /* speculation barrier */ 2005 case BPF_ST | BPF_NOSPEC: 2006 EMIT_LFENCE(); 2007 break; 2008 2009 /* ST: *(u8*)(dst_reg + off) = imm */ 2010 case BPF_ST | BPF_MEM | BPF_B: 2011 if (is_ereg(dst_reg)) 2012 EMIT2(0x41, 0xC6); 2013 else 2014 EMIT1(0xC6); 2015 goto st; 2016 case BPF_ST | BPF_MEM | BPF_H: 2017 if (is_ereg(dst_reg)) 2018 EMIT3(0x66, 0x41, 0xC7); 2019 else 2020 EMIT2(0x66, 0xC7); 2021 goto st; 2022 case BPF_ST | BPF_MEM | BPF_W: 2023 if (is_ereg(dst_reg)) 2024 EMIT2(0x41, 0xC7); 2025 else 2026 EMIT1(0xC7); 2027 goto st; 2028 case BPF_ST | BPF_MEM | BPF_DW: 2029 EMIT2(add_1mod(0x48, dst_reg), 0xC7); 2030 2031 st: if (is_imm8(insn->off)) 2032 EMIT2(add_1reg(0x40, dst_reg), insn->off); 2033 else 2034 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); 2035 2036 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); 2037 break; 2038 2039 /* STX: *(u8*)(dst_reg + off) = src_reg */ 2040 case BPF_STX | BPF_MEM | BPF_B: 2041 case BPF_STX | BPF_MEM | BPF_H: 2042 case BPF_STX | BPF_MEM | BPF_W: 2043 case BPF_STX | BPF_MEM | BPF_DW: 2044 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2045 break; 2046 2047 case BPF_ST | BPF_PROBE_MEM32 | BPF_B: 2048 case BPF_ST | BPF_PROBE_MEM32 | BPF_H: 2049 case BPF_ST | BPF_PROBE_MEM32 | BPF_W: 2050 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW: 2051 start_of_ldx = prog; 2052 emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm); 2053 goto populate_extable; 2054 2055 /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */ 2056 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B: 2057 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H: 2058 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W: 2059 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW: 2060 case BPF_STX | BPF_PROBE_MEM32 | BPF_B: 2061 case BPF_STX | BPF_PROBE_MEM32 | BPF_H: 2062 case BPF_STX | BPF_PROBE_MEM32 | BPF_W: 2063 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW: 2064 start_of_ldx = prog; 2065 if (BPF_CLASS(insn->code) == BPF_LDX) 2066 emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2067 else 2068 emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2069 populate_extable: 2070 { 2071 struct exception_table_entry *ex; 2072 u8 *_insn = image + proglen + (start_of_ldx - temp); 2073 s64 delta; 2074 2075 if (!bpf_prog->aux->extable) 2076 break; 2077 2078 if (excnt >= bpf_prog->aux->num_exentries) { 2079 pr_err("mem32 extable bug\n"); 2080 return -EFAULT; 2081 } 2082 ex = &bpf_prog->aux->extable[excnt++]; 2083 2084 delta = _insn - (u8 *)&ex->insn; 2085 /* switch ex to rw buffer for writes */ 2086 ex = (void *)rw_image + ((void *)ex - (void *)image); 2087 2088 ex->insn = delta; 2089 2090 ex->data = EX_TYPE_BPF; 2091 2092 ex->fixup = (prog - start_of_ldx) | 2093 ((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8); 2094 } 2095 break; 2096 2097 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 2098 case BPF_LDX | BPF_MEM | BPF_B: 2099 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 2100 case BPF_LDX | BPF_MEM | BPF_H: 2101 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 2102 case BPF_LDX | BPF_MEM | BPF_W: 2103 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 2104 case BPF_LDX | BPF_MEM | BPF_DW: 2105 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 2106 /* LDXS: dst_reg = *(s8*)(src_reg + off) */ 2107 case BPF_LDX | BPF_MEMSX | BPF_B: 2108 case BPF_LDX | BPF_MEMSX | BPF_H: 2109 case BPF_LDX | BPF_MEMSX | BPF_W: 2110 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: 2111 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: 2112 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: 2113 insn_off = insn->off; 2114 2115 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 2116 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 2117 /* Conservatively check that src_reg + insn->off is a kernel address: 2118 * src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE 2119 * and 2120 * src_reg + insn->off < VSYSCALL_ADDR 2121 */ 2122 2123 u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR; 2124 u8 *end_of_jmp; 2125 2126 /* movabsq r10, VSYSCALL_ADDR */ 2127 emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32, 2128 (u32)(long)VSYSCALL_ADDR); 2129 2130 /* mov src_reg, r11 */ 2131 EMIT_mov(AUX_REG, src_reg); 2132 2133 if (insn->off) { 2134 /* add r11, insn->off */ 2135 maybe_emit_1mod(&prog, AUX_REG, true); 2136 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off); 2137 } 2138 2139 /* sub r11, r10 */ 2140 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); 2141 EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); 2142 2143 /* movabsq r10, limit */ 2144 emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32, 2145 (u32)(long)limit); 2146 2147 /* cmp r10, r11 */ 2148 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); 2149 EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); 2150 2151 /* if unsigned '>', goto load */ 2152 EMIT2(X86_JA, 0); 2153 end_of_jmp = prog; 2154 2155 /* xor dst_reg, dst_reg */ 2156 emit_mov_imm32(&prog, false, dst_reg, 0); 2157 /* jmp byte_after_ldx */ 2158 EMIT2(0xEB, 0); 2159 2160 /* populate jmp_offset for JAE above to jump to start_of_ldx */ 2161 start_of_ldx = prog; 2162 end_of_jmp[-1] = start_of_ldx - end_of_jmp; 2163 } 2164 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || 2165 BPF_MODE(insn->code) == BPF_MEMSX) 2166 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 2167 else 2168 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 2169 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 2170 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 2171 struct exception_table_entry *ex; 2172 u8 *_insn = image + proglen + (start_of_ldx - temp); 2173 s64 delta; 2174 2175 /* populate jmp_offset for JMP above */ 2176 start_of_ldx[-1] = prog - start_of_ldx; 2177 2178 if (!bpf_prog->aux->extable) 2179 break; 2180 2181 if (excnt >= bpf_prog->aux->num_exentries) { 2182 pr_err("ex gen bug\n"); 2183 return -EFAULT; 2184 } 2185 ex = &bpf_prog->aux->extable[excnt++]; 2186 2187 delta = _insn - (u8 *)&ex->insn; 2188 if (!is_simm32(delta)) { 2189 pr_err("extable->insn doesn't fit into 32-bit\n"); 2190 return -EFAULT; 2191 } 2192 /* switch ex to rw buffer for writes */ 2193 ex = (void *)rw_image + ((void *)ex - (void *)image); 2194 2195 ex->insn = delta; 2196 2197 ex->data = EX_TYPE_BPF; 2198 2199 if (dst_reg > BPF_REG_9) { 2200 pr_err("verifier error\n"); 2201 return -EFAULT; 2202 } 2203 /* 2204 * Compute size of x86 insn and its target dest x86 register. 2205 * ex_handler_bpf() will use lower 8 bits to adjust 2206 * pt_regs->ip to jump over this x86 instruction 2207 * and upper bits to figure out which pt_regs to zero out. 2208 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" 2209 * of 4 bytes will be ignored and rbx will be zero inited. 2210 */ 2211 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8); 2212 } 2213 break; 2214 2215 case BPF_STX | BPF_ATOMIC | BPF_B: 2216 case BPF_STX | BPF_ATOMIC | BPF_H: 2217 if (!bpf_atomic_is_load_store(insn)) { 2218 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 2219 return -EFAULT; 2220 } 2221 fallthrough; 2222 case BPF_STX | BPF_ATOMIC | BPF_W: 2223 case BPF_STX | BPF_ATOMIC | BPF_DW: 2224 if (insn->imm == (BPF_AND | BPF_FETCH) || 2225 insn->imm == (BPF_OR | BPF_FETCH) || 2226 insn->imm == (BPF_XOR | BPF_FETCH)) { 2227 bool is64 = BPF_SIZE(insn->code) == BPF_DW; 2228 u32 real_src_reg = src_reg; 2229 u32 real_dst_reg = dst_reg; 2230 u8 *branch_target; 2231 2232 /* 2233 * Can't be implemented with a single x86 insn. 2234 * Need to do a CMPXCHG loop. 2235 */ 2236 2237 /* Will need RAX as a CMPXCHG operand so save R0 */ 2238 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); 2239 if (src_reg == BPF_REG_0) 2240 real_src_reg = BPF_REG_AX; 2241 if (dst_reg == BPF_REG_0) 2242 real_dst_reg = BPF_REG_AX; 2243 2244 branch_target = prog; 2245 /* Load old value */ 2246 emit_ldx(&prog, BPF_SIZE(insn->code), 2247 BPF_REG_0, real_dst_reg, insn->off); 2248 /* 2249 * Perform the (commutative) operation locally, 2250 * put the result in the AUX_REG. 2251 */ 2252 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); 2253 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64); 2254 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], 2255 add_2reg(0xC0, AUX_REG, real_src_reg)); 2256 /* Attempt to swap in new value */ 2257 err = emit_atomic_rmw(&prog, BPF_CMPXCHG, 2258 real_dst_reg, AUX_REG, 2259 insn->off, 2260 BPF_SIZE(insn->code)); 2261 if (WARN_ON(err)) 2262 return err; 2263 /* 2264 * ZF tells us whether we won the race. If it's 2265 * cleared we need to try again. 2266 */ 2267 EMIT2(X86_JNE, -(prog - branch_target) - 2); 2268 /* Return the pre-modification value */ 2269 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0); 2270 /* Restore R0 after clobbering RAX */ 2271 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); 2272 break; 2273 } 2274 2275 if (bpf_atomic_is_load_store(insn)) 2276 err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg, 2277 insn->off, BPF_SIZE(insn->code)); 2278 else 2279 err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg, 2280 insn->off, BPF_SIZE(insn->code)); 2281 if (err) 2282 return err; 2283 break; 2284 2285 case BPF_STX | BPF_PROBE_ATOMIC | BPF_B: 2286 case BPF_STX | BPF_PROBE_ATOMIC | BPF_H: 2287 if (!bpf_atomic_is_load_store(insn)) { 2288 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 2289 return -EFAULT; 2290 } 2291 fallthrough; 2292 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W: 2293 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW: 2294 start_of_ldx = prog; 2295 2296 if (bpf_atomic_is_load_store(insn)) 2297 err = emit_atomic_ld_st_index(&prog, insn->imm, 2298 BPF_SIZE(insn->code), dst_reg, 2299 src_reg, X86_REG_R12, insn->off); 2300 else 2301 err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code), 2302 dst_reg, src_reg, X86_REG_R12, 2303 insn->off); 2304 if (err) 2305 return err; 2306 goto populate_extable; 2307 2308 /* call */ 2309 case BPF_JMP | BPF_CALL: { 2310 u8 *ip = image + addrs[i - 1]; 2311 2312 func = (u8 *) __bpf_call_base + imm32; 2313 if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) { 2314 LOAD_TAIL_CALL_CNT_PTR(stack_depth); 2315 ip += 7; 2316 } 2317 if (!imm32) 2318 return -EINVAL; 2319 if (priv_frame_ptr) { 2320 push_r9(&prog); 2321 ip += 2; 2322 } 2323 ip += x86_call_depth_emit_accounting(&prog, func, ip); 2324 if (emit_call(&prog, func, ip)) 2325 return -EINVAL; 2326 if (priv_frame_ptr) 2327 pop_r9(&prog); 2328 break; 2329 } 2330 2331 case BPF_JMP | BPF_TAIL_CALL: 2332 if (imm32) 2333 emit_bpf_tail_call_direct(bpf_prog, 2334 &bpf_prog->aux->poke_tab[imm32 - 1], 2335 &prog, image + addrs[i - 1], 2336 callee_regs_used, 2337 stack_depth, 2338 ctx); 2339 else 2340 emit_bpf_tail_call_indirect(bpf_prog, 2341 &prog, 2342 callee_regs_used, 2343 stack_depth, 2344 image + addrs[i - 1], 2345 ctx); 2346 break; 2347 2348 /* cond jump */ 2349 case BPF_JMP | BPF_JEQ | BPF_X: 2350 case BPF_JMP | BPF_JNE | BPF_X: 2351 case BPF_JMP | BPF_JGT | BPF_X: 2352 case BPF_JMP | BPF_JLT | BPF_X: 2353 case BPF_JMP | BPF_JGE | BPF_X: 2354 case BPF_JMP | BPF_JLE | BPF_X: 2355 case BPF_JMP | BPF_JSGT | BPF_X: 2356 case BPF_JMP | BPF_JSLT | BPF_X: 2357 case BPF_JMP | BPF_JSGE | BPF_X: 2358 case BPF_JMP | BPF_JSLE | BPF_X: 2359 case BPF_JMP32 | BPF_JEQ | BPF_X: 2360 case BPF_JMP32 | BPF_JNE | BPF_X: 2361 case BPF_JMP32 | BPF_JGT | BPF_X: 2362 case BPF_JMP32 | BPF_JLT | BPF_X: 2363 case BPF_JMP32 | BPF_JGE | BPF_X: 2364 case BPF_JMP32 | BPF_JLE | BPF_X: 2365 case BPF_JMP32 | BPF_JSGT | BPF_X: 2366 case BPF_JMP32 | BPF_JSLT | BPF_X: 2367 case BPF_JMP32 | BPF_JSGE | BPF_X: 2368 case BPF_JMP32 | BPF_JSLE | BPF_X: 2369 /* cmp dst_reg, src_reg */ 2370 maybe_emit_mod(&prog, dst_reg, src_reg, 2371 BPF_CLASS(insn->code) == BPF_JMP); 2372 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); 2373 goto emit_cond_jmp; 2374 2375 case BPF_JMP | BPF_JSET | BPF_X: 2376 case BPF_JMP32 | BPF_JSET | BPF_X: 2377 /* test dst_reg, src_reg */ 2378 maybe_emit_mod(&prog, dst_reg, src_reg, 2379 BPF_CLASS(insn->code) == BPF_JMP); 2380 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); 2381 goto emit_cond_jmp; 2382 2383 case BPF_JMP | BPF_JSET | BPF_K: 2384 case BPF_JMP32 | BPF_JSET | BPF_K: 2385 /* test dst_reg, imm32 */ 2386 maybe_emit_1mod(&prog, dst_reg, 2387 BPF_CLASS(insn->code) == BPF_JMP); 2388 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); 2389 goto emit_cond_jmp; 2390 2391 case BPF_JMP | BPF_JEQ | BPF_K: 2392 case BPF_JMP | BPF_JNE | BPF_K: 2393 case BPF_JMP | BPF_JGT | BPF_K: 2394 case BPF_JMP | BPF_JLT | BPF_K: 2395 case BPF_JMP | BPF_JGE | BPF_K: 2396 case BPF_JMP | BPF_JLE | BPF_K: 2397 case BPF_JMP | BPF_JSGT | BPF_K: 2398 case BPF_JMP | BPF_JSLT | BPF_K: 2399 case BPF_JMP | BPF_JSGE | BPF_K: 2400 case BPF_JMP | BPF_JSLE | BPF_K: 2401 case BPF_JMP32 | BPF_JEQ | BPF_K: 2402 case BPF_JMP32 | BPF_JNE | BPF_K: 2403 case BPF_JMP32 | BPF_JGT | BPF_K: 2404 case BPF_JMP32 | BPF_JLT | BPF_K: 2405 case BPF_JMP32 | BPF_JGE | BPF_K: 2406 case BPF_JMP32 | BPF_JLE | BPF_K: 2407 case BPF_JMP32 | BPF_JSGT | BPF_K: 2408 case BPF_JMP32 | BPF_JSLT | BPF_K: 2409 case BPF_JMP32 | BPF_JSGE | BPF_K: 2410 case BPF_JMP32 | BPF_JSLE | BPF_K: 2411 /* test dst_reg, dst_reg to save one extra byte */ 2412 if (imm32 == 0) { 2413 maybe_emit_mod(&prog, dst_reg, dst_reg, 2414 BPF_CLASS(insn->code) == BPF_JMP); 2415 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 2416 goto emit_cond_jmp; 2417 } 2418 2419 /* cmp dst_reg, imm8/32 */ 2420 maybe_emit_1mod(&prog, dst_reg, 2421 BPF_CLASS(insn->code) == BPF_JMP); 2422 2423 if (is_imm8(imm32)) 2424 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); 2425 else 2426 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); 2427 2428 emit_cond_jmp: /* Convert BPF opcode to x86 */ 2429 switch (BPF_OP(insn->code)) { 2430 case BPF_JEQ: 2431 jmp_cond = X86_JE; 2432 break; 2433 case BPF_JSET: 2434 case BPF_JNE: 2435 jmp_cond = X86_JNE; 2436 break; 2437 case BPF_JGT: 2438 /* GT is unsigned '>', JA in x86 */ 2439 jmp_cond = X86_JA; 2440 break; 2441 case BPF_JLT: 2442 /* LT is unsigned '<', JB in x86 */ 2443 jmp_cond = X86_JB; 2444 break; 2445 case BPF_JGE: 2446 /* GE is unsigned '>=', JAE in x86 */ 2447 jmp_cond = X86_JAE; 2448 break; 2449 case BPF_JLE: 2450 /* LE is unsigned '<=', JBE in x86 */ 2451 jmp_cond = X86_JBE; 2452 break; 2453 case BPF_JSGT: 2454 /* Signed '>', GT in x86 */ 2455 jmp_cond = X86_JG; 2456 break; 2457 case BPF_JSLT: 2458 /* Signed '<', LT in x86 */ 2459 jmp_cond = X86_JL; 2460 break; 2461 case BPF_JSGE: 2462 /* Signed '>=', GE in x86 */ 2463 jmp_cond = X86_JGE; 2464 break; 2465 case BPF_JSLE: 2466 /* Signed '<=', LE in x86 */ 2467 jmp_cond = X86_JLE; 2468 break; 2469 default: /* to silence GCC warning */ 2470 return -EFAULT; 2471 } 2472 jmp_offset = addrs[i + insn->off] - addrs[i]; 2473 if (is_imm8_jmp_offset(jmp_offset)) { 2474 if (jmp_padding) { 2475 /* To keep the jmp_offset valid, the extra bytes are 2476 * padded before the jump insn, so we subtract the 2477 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. 2478 * 2479 * If the previous pass already emits an imm8 2480 * jmp_cond, then this BPF insn won't shrink, so 2481 * "nops" is 0. 2482 * 2483 * On the other hand, if the previous pass emits an 2484 * imm32 jmp_cond, the extra 4 bytes(*) is padded to 2485 * keep the image from shrinking further. 2486 * 2487 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond 2488 * is 2 bytes, so the size difference is 4 bytes. 2489 */ 2490 nops = INSN_SZ_DIFF - 2; 2491 if (nops != 0 && nops != 4) { 2492 pr_err("unexpected jmp_cond padding: %d bytes\n", 2493 nops); 2494 return -EFAULT; 2495 } 2496 emit_nops(&prog, nops); 2497 } 2498 EMIT2(jmp_cond, jmp_offset); 2499 } else if (is_simm32(jmp_offset)) { 2500 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 2501 } else { 2502 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 2503 return -EFAULT; 2504 } 2505 2506 break; 2507 2508 case BPF_JMP | BPF_JA: 2509 case BPF_JMP32 | BPF_JA: 2510 if (BPF_CLASS(insn->code) == BPF_JMP) { 2511 if (insn->off == -1) 2512 /* -1 jmp instructions will always jump 2513 * backwards two bytes. Explicitly handling 2514 * this case avoids wasting too many passes 2515 * when there are long sequences of replaced 2516 * dead code. 2517 */ 2518 jmp_offset = -2; 2519 else 2520 jmp_offset = addrs[i + insn->off] - addrs[i]; 2521 } else { 2522 if (insn->imm == -1) 2523 jmp_offset = -2; 2524 else 2525 jmp_offset = addrs[i + insn->imm] - addrs[i]; 2526 } 2527 2528 if (!jmp_offset) { 2529 /* 2530 * If jmp_padding is enabled, the extra nops will 2531 * be inserted. Otherwise, optimize out nop jumps. 2532 */ 2533 if (jmp_padding) { 2534 /* There are 3 possible conditions. 2535 * (1) This BPF_JA is already optimized out in 2536 * the previous run, so there is no need 2537 * to pad any extra byte (0 byte). 2538 * (2) The previous pass emits an imm8 jmp, 2539 * so we pad 2 bytes to match the previous 2540 * insn size. 2541 * (3) Similarly, the previous pass emits an 2542 * imm32 jmp, and 5 bytes is padded. 2543 */ 2544 nops = INSN_SZ_DIFF; 2545 if (nops != 0 && nops != 2 && nops != 5) { 2546 pr_err("unexpected nop jump padding: %d bytes\n", 2547 nops); 2548 return -EFAULT; 2549 } 2550 emit_nops(&prog, nops); 2551 } 2552 break; 2553 } 2554 emit_jmp: 2555 if (is_imm8_jmp_offset(jmp_offset)) { 2556 if (jmp_padding) { 2557 /* To avoid breaking jmp_offset, the extra bytes 2558 * are padded before the actual jmp insn, so 2559 * 2 bytes is subtracted from INSN_SZ_DIFF. 2560 * 2561 * If the previous pass already emits an imm8 2562 * jmp, there is nothing to pad (0 byte). 2563 * 2564 * If it emits an imm32 jmp (5 bytes) previously 2565 * and now an imm8 jmp (2 bytes), then we pad 2566 * (5 - 2 = 3) bytes to stop the image from 2567 * shrinking further. 2568 */ 2569 nops = INSN_SZ_DIFF - 2; 2570 if (nops != 0 && nops != 3) { 2571 pr_err("unexpected jump padding: %d bytes\n", 2572 nops); 2573 return -EFAULT; 2574 } 2575 emit_nops(&prog, INSN_SZ_DIFF - 2); 2576 } 2577 EMIT2(0xEB, jmp_offset); 2578 } else if (is_simm32(jmp_offset)) { 2579 EMIT1_off32(0xE9, jmp_offset); 2580 } else { 2581 pr_err("jmp gen bug %llx\n", jmp_offset); 2582 return -EFAULT; 2583 } 2584 break; 2585 2586 case BPF_JMP | BPF_EXIT: 2587 if (seen_exit) { 2588 jmp_offset = ctx->cleanup_addr - addrs[i]; 2589 goto emit_jmp; 2590 } 2591 seen_exit = true; 2592 /* Update cleanup_addr */ 2593 ctx->cleanup_addr = proglen; 2594 if (bpf_prog_was_classic(bpf_prog) && 2595 !capable(CAP_SYS_ADMIN)) { 2596 u8 *ip = image + addrs[i - 1]; 2597 2598 if (emit_spectre_bhb_barrier(&prog, ip, bpf_prog)) 2599 return -EINVAL; 2600 } 2601 if (bpf_prog->aux->exception_boundary) { 2602 pop_callee_regs(&prog, all_callee_regs_used); 2603 pop_r12(&prog); 2604 } else { 2605 pop_callee_regs(&prog, callee_regs_used); 2606 if (arena_vm_start) 2607 pop_r12(&prog); 2608 } 2609 EMIT1(0xC9); /* leave */ 2610 emit_return(&prog, image + addrs[i - 1] + (prog - temp)); 2611 break; 2612 2613 default: 2614 /* 2615 * By design x86-64 JIT should support all BPF instructions. 2616 * This error will be seen if new instruction was added 2617 * to the interpreter, but not to the JIT, or if there is 2618 * junk in bpf_prog. 2619 */ 2620 pr_err("bpf_jit: unknown opcode %02x\n", insn->code); 2621 return -EINVAL; 2622 } 2623 2624 ilen = prog - temp; 2625 if (ilen > BPF_MAX_INSN_SIZE) { 2626 pr_err("bpf_jit: fatal insn size error\n"); 2627 return -EFAULT; 2628 } 2629 2630 if (image) { 2631 /* 2632 * When populating the image, assert that: 2633 * 2634 * i) We do not write beyond the allocated space, and 2635 * ii) addrs[i] did not change from the prior run, in order 2636 * to validate assumptions made for computing branch 2637 * displacements. 2638 */ 2639 if (unlikely(proglen + ilen > oldproglen || 2640 proglen + ilen != addrs[i])) { 2641 pr_err("bpf_jit: fatal error\n"); 2642 return -EFAULT; 2643 } 2644 memcpy(rw_image + proglen, temp, ilen); 2645 } 2646 proglen += ilen; 2647 addrs[i] = proglen; 2648 prog = temp; 2649 } 2650 2651 if (image && excnt != bpf_prog->aux->num_exentries) { 2652 pr_err("extable is not populated\n"); 2653 return -EFAULT; 2654 } 2655 return proglen; 2656 } 2657 2658 static void clean_stack_garbage(const struct btf_func_model *m, 2659 u8 **pprog, int nr_stack_slots, 2660 int stack_size) 2661 { 2662 int arg_size, off; 2663 u8 *prog; 2664 2665 /* Generally speaking, the compiler will pass the arguments 2666 * on-stack with "push" instruction, which will take 8-byte 2667 * on the stack. In this case, there won't be garbage values 2668 * while we copy the arguments from origin stack frame to current 2669 * in BPF_DW. 2670 * 2671 * However, sometimes the compiler will only allocate 4-byte on 2672 * the stack for the arguments. For now, this case will only 2673 * happen if there is only one argument on-stack and its size 2674 * not more than 4 byte. In this case, there will be garbage 2675 * values on the upper 4-byte where we store the argument on 2676 * current stack frame. 2677 * 2678 * arguments on origin stack: 2679 * 2680 * stack_arg_1(4-byte) xxx(4-byte) 2681 * 2682 * what we copy: 2683 * 2684 * stack_arg_1(8-byte): stack_arg_1(origin) xxx 2685 * 2686 * and the xxx is the garbage values which we should clean here. 2687 */ 2688 if (nr_stack_slots != 1) 2689 return; 2690 2691 /* the size of the last argument */ 2692 arg_size = m->arg_size[m->nr_args - 1]; 2693 if (arg_size <= 4) { 2694 off = -(stack_size - 4); 2695 prog = *pprog; 2696 /* mov DWORD PTR [rbp + off], 0 */ 2697 if (!is_imm8(off)) 2698 EMIT2_off32(0xC7, 0x85, off); 2699 else 2700 EMIT3(0xC7, 0x45, off); 2701 EMIT(0, 4); 2702 *pprog = prog; 2703 } 2704 } 2705 2706 /* get the count of the regs that are used to pass arguments */ 2707 static int get_nr_used_regs(const struct btf_func_model *m) 2708 { 2709 int i, arg_regs, nr_used_regs = 0; 2710 2711 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2712 arg_regs = (m->arg_size[i] + 7) / 8; 2713 if (nr_used_regs + arg_regs <= 6) 2714 nr_used_regs += arg_regs; 2715 2716 if (nr_used_regs >= 6) 2717 break; 2718 } 2719 2720 return nr_used_regs; 2721 } 2722 2723 static void save_args(const struct btf_func_model *m, u8 **prog, 2724 int stack_size, bool for_call_origin) 2725 { 2726 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0; 2727 int i, j; 2728 2729 /* Store function arguments to stack. 2730 * For a function that accepts two pointers the sequence will be: 2731 * mov QWORD PTR [rbp-0x10],rdi 2732 * mov QWORD PTR [rbp-0x8],rsi 2733 */ 2734 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2735 arg_regs = (m->arg_size[i] + 7) / 8; 2736 2737 /* According to the research of Yonghong, struct members 2738 * should be all in register or all on the stack. 2739 * Meanwhile, the compiler will pass the argument on regs 2740 * if the remaining regs can hold the argument. 2741 * 2742 * Disorder of the args can happen. For example: 2743 * 2744 * struct foo_struct { 2745 * long a; 2746 * int b; 2747 * }; 2748 * int foo(char, char, char, char, char, struct foo_struct, 2749 * char); 2750 * 2751 * the arg1-5,arg7 will be passed by regs, and arg6 will 2752 * by stack. 2753 */ 2754 if (nr_regs + arg_regs > 6) { 2755 /* copy function arguments from origin stack frame 2756 * into current stack frame. 2757 * 2758 * The starting address of the arguments on-stack 2759 * is: 2760 * rbp + 8(push rbp) + 2761 * 8(return addr of origin call) + 2762 * 8(return addr of the caller) 2763 * which means: rbp + 24 2764 */ 2765 for (j = 0; j < arg_regs; j++) { 2766 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 2767 nr_stack_slots * 8 + 0x18); 2768 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0, 2769 -stack_size); 2770 2771 if (!nr_stack_slots) 2772 first_off = stack_size; 2773 stack_size -= 8; 2774 nr_stack_slots++; 2775 } 2776 } else { 2777 /* Only copy the arguments on-stack to current 2778 * 'stack_size' and ignore the regs, used to 2779 * prepare the arguments on-stack for origin call. 2780 */ 2781 if (for_call_origin) { 2782 nr_regs += arg_regs; 2783 continue; 2784 } 2785 2786 /* copy the arguments from regs into stack */ 2787 for (j = 0; j < arg_regs; j++) { 2788 emit_stx(prog, BPF_DW, BPF_REG_FP, 2789 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2790 -stack_size); 2791 stack_size -= 8; 2792 nr_regs++; 2793 } 2794 } 2795 } 2796 2797 clean_stack_garbage(m, prog, nr_stack_slots, first_off); 2798 } 2799 2800 static void restore_regs(const struct btf_func_model *m, u8 **prog, 2801 int stack_size) 2802 { 2803 int i, j, arg_regs, nr_regs = 0; 2804 2805 /* Restore function arguments from stack. 2806 * For a function that accepts two pointers the sequence will be: 2807 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] 2808 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] 2809 * 2810 * The logic here is similar to what we do in save_args() 2811 */ 2812 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2813 arg_regs = (m->arg_size[i] + 7) / 8; 2814 if (nr_regs + arg_regs <= 6) { 2815 for (j = 0; j < arg_regs; j++) { 2816 emit_ldx(prog, BPF_DW, 2817 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2818 BPF_REG_FP, 2819 -stack_size); 2820 stack_size -= 8; 2821 nr_regs++; 2822 } 2823 } else { 2824 stack_size -= 8 * arg_regs; 2825 } 2826 2827 if (nr_regs >= 6) 2828 break; 2829 } 2830 } 2831 2832 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, 2833 struct bpf_tramp_link *l, int stack_size, 2834 int run_ctx_off, bool save_ret, 2835 void *image, void *rw_image) 2836 { 2837 u8 *prog = *pprog; 2838 u8 *jmp_insn; 2839 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); 2840 struct bpf_prog *p = l->link.prog; 2841 u64 cookie = l->cookie; 2842 2843 /* mov rdi, cookie */ 2844 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie); 2845 2846 /* Prepare struct bpf_tramp_run_ctx. 2847 * 2848 * bpf_tramp_run_ctx is already preserved by 2849 * arch_prepare_bpf_trampoline(). 2850 * 2851 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi 2852 */ 2853 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off); 2854 2855 /* arg1: mov rdi, progs[i] */ 2856 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2857 /* arg2: lea rsi, [rbp - ctx_cookie_off] */ 2858 if (!is_imm8(-run_ctx_off)) 2859 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off); 2860 else 2861 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off); 2862 2863 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image))) 2864 return -EINVAL; 2865 /* remember prog start time returned by __bpf_prog_enter */ 2866 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); 2867 2868 /* if (__bpf_prog_enter*(prog) == 0) 2869 * goto skip_exec_of_prog; 2870 */ 2871 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ 2872 /* emit 2 nops that will be replaced with JE insn */ 2873 jmp_insn = prog; 2874 emit_nops(&prog, 2); 2875 2876 /* arg1: lea rdi, [rbp - stack_size] */ 2877 if (!is_imm8(-stack_size)) 2878 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size); 2879 else 2880 EMIT4(0x48, 0x8D, 0x7D, -stack_size); 2881 /* arg2: progs[i]->insnsi for interpreter */ 2882 if (!p->jited) 2883 emit_mov_imm64(&prog, BPF_REG_2, 2884 (long) p->insnsi >> 32, 2885 (u32) (long) p->insnsi); 2886 /* call JITed bpf program or interpreter */ 2887 if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image))) 2888 return -EINVAL; 2889 2890 /* 2891 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return 2892 * of the previous call which is then passed on the stack to 2893 * the next BPF program. 2894 * 2895 * BPF_TRAMP_FENTRY trampoline may need to return the return 2896 * value of BPF_PROG_TYPE_STRUCT_OPS prog. 2897 */ 2898 if (save_ret) 2899 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2900 2901 /* replace 2 nops with JE insn, since jmp target is known */ 2902 jmp_insn[0] = X86_JE; 2903 jmp_insn[1] = prog - jmp_insn - 2; 2904 2905 /* arg1: mov rdi, progs[i] */ 2906 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2907 /* arg2: mov rsi, rbx <- start time in nsec */ 2908 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); 2909 /* arg3: lea rdx, [rbp - run_ctx_off] */ 2910 if (!is_imm8(-run_ctx_off)) 2911 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off); 2912 else 2913 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off); 2914 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image))) 2915 return -EINVAL; 2916 2917 *pprog = prog; 2918 return 0; 2919 } 2920 2921 static void emit_align(u8 **pprog, u32 align) 2922 { 2923 u8 *target, *prog = *pprog; 2924 2925 target = PTR_ALIGN(prog, align); 2926 if (target != prog) 2927 emit_nops(&prog, target - prog); 2928 2929 *pprog = prog; 2930 } 2931 2932 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) 2933 { 2934 u8 *prog = *pprog; 2935 s64 offset; 2936 2937 offset = func - (ip + 2 + 4); 2938 if (!is_simm32(offset)) { 2939 pr_err("Target %p is out of range\n", func); 2940 return -EINVAL; 2941 } 2942 EMIT2_off32(0x0F, jmp_cond + 0x10, offset); 2943 *pprog = prog; 2944 return 0; 2945 } 2946 2947 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, 2948 struct bpf_tramp_links *tl, int stack_size, 2949 int run_ctx_off, bool save_ret, 2950 void *image, void *rw_image) 2951 { 2952 int i; 2953 u8 *prog = *pprog; 2954 2955 for (i = 0; i < tl->nr_links; i++) { 2956 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, 2957 run_ctx_off, save_ret, image, rw_image)) 2958 return -EINVAL; 2959 } 2960 *pprog = prog; 2961 return 0; 2962 } 2963 2964 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, 2965 struct bpf_tramp_links *tl, int stack_size, 2966 int run_ctx_off, u8 **branches, 2967 void *image, void *rw_image) 2968 { 2969 u8 *prog = *pprog; 2970 int i; 2971 2972 /* The first fmod_ret program will receive a garbage return value. 2973 * Set this to 0 to avoid confusing the program. 2974 */ 2975 emit_mov_imm32(&prog, false, BPF_REG_0, 0); 2976 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2977 for (i = 0; i < tl->nr_links; i++) { 2978 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true, 2979 image, rw_image)) 2980 return -EINVAL; 2981 2982 /* mod_ret prog stored return value into [rbp - 8]. Emit: 2983 * if (*(u64 *)(rbp - 8) != 0) 2984 * goto do_fexit; 2985 */ 2986 /* cmp QWORD PTR [rbp - 0x8], 0x0 */ 2987 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); 2988 2989 /* Save the location of the branch and Generate 6 nops 2990 * (4 bytes for an offset and 2 bytes for the jump) These nops 2991 * are replaced with a conditional jump once do_fexit (i.e. the 2992 * start of the fexit invocation) is finalized. 2993 */ 2994 branches[i] = prog; 2995 emit_nops(&prog, 4 + 2); 2996 } 2997 2998 *pprog = prog; 2999 return 0; 3000 } 3001 3002 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */ 3003 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack) \ 3004 __LOAD_TCC_PTR(-round_up(stack, 8) - 8) 3005 3006 /* Example: 3007 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); 3008 * its 'struct btf_func_model' will be nr_args=2 3009 * The assembly code when eth_type_trans is executing after trampoline: 3010 * 3011 * push rbp 3012 * mov rbp, rsp 3013 * sub rsp, 16 // space for skb and dev 3014 * push rbx // temp regs to pass start time 3015 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack 3016 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack 3017 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 3018 * mov rbx, rax // remember start time in bpf stats are enabled 3019 * lea rdi, [rbp - 16] // R1==ctx of bpf prog 3020 * call addr_of_jited_FENTRY_prog 3021 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 3022 * mov rsi, rbx // prog start time 3023 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 3024 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack 3025 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack 3026 * pop rbx 3027 * leave 3028 * ret 3029 * 3030 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be 3031 * replaced with 'call generated_bpf_trampoline'. When it returns 3032 * eth_type_trans will continue executing with original skb and dev pointers. 3033 * 3034 * The assembly code when eth_type_trans is called from trampoline: 3035 * 3036 * push rbp 3037 * mov rbp, rsp 3038 * sub rsp, 24 // space for skb, dev, return value 3039 * push rbx // temp regs to pass start time 3040 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack 3041 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack 3042 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 3043 * mov rbx, rax // remember start time if bpf stats are enabled 3044 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 3045 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev 3046 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 3047 * mov rsi, rbx // prog start time 3048 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 3049 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack 3050 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack 3051 * call eth_type_trans+5 // execute body of eth_type_trans 3052 * mov qword ptr [rbp - 8], rax // save return value 3053 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 3054 * mov rbx, rax // remember start time in bpf stats are enabled 3055 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 3056 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value 3057 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 3058 * mov rsi, rbx // prog start time 3059 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 3060 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value 3061 * pop rbx 3062 * leave 3063 * add rsp, 8 // skip eth_type_trans's frame 3064 * ret // return to its caller 3065 */ 3066 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image, 3067 void *rw_image_end, void *image, 3068 const struct btf_func_model *m, u32 flags, 3069 struct bpf_tramp_links *tlinks, 3070 void *func_addr) 3071 { 3072 int i, ret, nr_regs = m->nr_args, stack_size = 0; 3073 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off; 3074 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; 3075 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; 3076 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; 3077 void *orig_call = func_addr; 3078 u8 **branches = NULL; 3079 u8 *prog; 3080 bool save_ret; 3081 3082 /* 3083 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is 3084 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG 3085 * because @func_addr. 3086 */ 3087 WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) && 3088 (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET))); 3089 3090 /* extra registers for struct arguments */ 3091 for (i = 0; i < m->nr_args; i++) { 3092 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) 3093 nr_regs += (m->arg_size[i] + 7) / 8 - 1; 3094 } 3095 3096 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6 3097 * are passed through regs, the remains are through stack. 3098 */ 3099 if (nr_regs > MAX_BPF_FUNC_ARGS) 3100 return -ENOTSUPP; 3101 3102 /* Generated trampoline stack layout: 3103 * 3104 * RBP + 8 [ return address ] 3105 * RBP + 0 [ RBP ] 3106 * 3107 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or 3108 * BPF_TRAMP_F_RET_FENTRY_RET flags 3109 * 3110 * [ reg_argN ] always 3111 * [ ... ] 3112 * RBP - regs_off [ reg_arg1 ] program's ctx pointer 3113 * 3114 * RBP - nregs_off [ regs count ] always 3115 * 3116 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag 3117 * 3118 * RBP - rbx_off [ rbx value ] always 3119 * 3120 * RBP - run_ctx_off [ bpf_tramp_run_ctx ] 3121 * 3122 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG 3123 * [ ... ] 3124 * [ stack_arg2 ] 3125 * RBP - arg_stack_off [ stack_arg1 ] 3126 * RSP [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX 3127 */ 3128 3129 /* room for return value of orig_call or fentry prog */ 3130 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); 3131 if (save_ret) 3132 stack_size += 8; 3133 3134 stack_size += nr_regs * 8; 3135 regs_off = stack_size; 3136 3137 /* regs count */ 3138 stack_size += 8; 3139 nregs_off = stack_size; 3140 3141 if (flags & BPF_TRAMP_F_IP_ARG) 3142 stack_size += 8; /* room for IP address argument */ 3143 3144 ip_off = stack_size; 3145 3146 stack_size += 8; 3147 rbx_off = stack_size; 3148 3149 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7; 3150 run_ctx_off = stack_size; 3151 3152 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) { 3153 /* the space that used to pass arguments on-stack */ 3154 stack_size += (nr_regs - get_nr_used_regs(m)) * 8; 3155 /* make sure the stack pointer is 16-byte aligned if we 3156 * need pass arguments on stack, which means 3157 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)] 3158 * should be 16-byte aligned. Following code depend on 3159 * that stack_size is already 8-byte aligned. 3160 */ 3161 stack_size += (stack_size % 16) ? 0 : 8; 3162 } 3163 3164 arg_stack_off = stack_size; 3165 3166 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 3167 /* skip patched call instruction and point orig_call to actual 3168 * body of the kernel function. 3169 */ 3170 if (is_endbr(orig_call)) 3171 orig_call += ENDBR_INSN_SIZE; 3172 orig_call += X86_PATCH_SIZE; 3173 } 3174 3175 prog = rw_image; 3176 3177 if (flags & BPF_TRAMP_F_INDIRECT) { 3178 /* 3179 * Indirect call for bpf_struct_ops 3180 */ 3181 emit_cfi(&prog, image, 3182 cfi_get_func_hash(func_addr), 3183 cfi_get_func_arity(func_addr)); 3184 } else { 3185 /* 3186 * Direct-call fentry stub, as such it needs accounting for the 3187 * __fentry__ call. 3188 */ 3189 x86_call_depth_emit_accounting(&prog, NULL, image); 3190 } 3191 EMIT1(0x55); /* push rbp */ 3192 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 3193 if (!is_imm8(stack_size)) { 3194 /* sub rsp, stack_size */ 3195 EMIT3_off32(0x48, 0x81, 0xEC, stack_size); 3196 } else { 3197 /* sub rsp, stack_size */ 3198 EMIT4(0x48, 0x83, 0xEC, stack_size); 3199 } 3200 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) 3201 EMIT1(0x50); /* push rax */ 3202 /* mov QWORD PTR [rbp - rbx_off], rbx */ 3203 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off); 3204 3205 /* Store number of argument registers of the traced function: 3206 * mov rax, nr_regs 3207 * mov QWORD PTR [rbp - nregs_off], rax 3208 */ 3209 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs); 3210 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off); 3211 3212 if (flags & BPF_TRAMP_F_IP_ARG) { 3213 /* Store IP address of the traced function: 3214 * movabsq rax, func_addr 3215 * mov QWORD PTR [rbp - ip_off], rax 3216 */ 3217 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr); 3218 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off); 3219 } 3220 3221 save_args(m, &prog, regs_off, false); 3222 3223 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3224 /* arg1: mov rdi, im */ 3225 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 3226 if (emit_rsb_call(&prog, __bpf_tramp_enter, 3227 image + (prog - (u8 *)rw_image))) { 3228 ret = -EINVAL; 3229 goto cleanup; 3230 } 3231 } 3232 3233 if (fentry->nr_links) { 3234 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off, 3235 flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image)) 3236 return -EINVAL; 3237 } 3238 3239 if (fmod_ret->nr_links) { 3240 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *), 3241 GFP_KERNEL); 3242 if (!branches) 3243 return -ENOMEM; 3244 3245 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off, 3246 run_ctx_off, branches, image, rw_image)) { 3247 ret = -EINVAL; 3248 goto cleanup; 3249 } 3250 } 3251 3252 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3253 restore_regs(m, &prog, regs_off); 3254 save_args(m, &prog, arg_stack_off, true); 3255 3256 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { 3257 /* Before calling the original function, load the 3258 * tail_call_cnt_ptr from stack to rax. 3259 */ 3260 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size); 3261 } 3262 3263 if (flags & BPF_TRAMP_F_ORIG_STACK) { 3264 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8); 3265 EMIT2(0xff, 0xd3); /* call *rbx */ 3266 } else { 3267 /* call original function */ 3268 if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) { 3269 ret = -EINVAL; 3270 goto cleanup; 3271 } 3272 } 3273 /* remember return value in a stack for bpf prog to access */ 3274 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 3275 im->ip_after_call = image + (prog - (u8 *)rw_image); 3276 emit_nops(&prog, X86_PATCH_SIZE); 3277 } 3278 3279 if (fmod_ret->nr_links) { 3280 /* From Intel 64 and IA-32 Architectures Optimization 3281 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 3282 * Coding Rule 11: All branch targets should be 16-byte 3283 * aligned. 3284 */ 3285 emit_align(&prog, 16); 3286 /* Update the branches saved in invoke_bpf_mod_ret with the 3287 * aligned address of do_fexit. 3288 */ 3289 for (i = 0; i < fmod_ret->nr_links; i++) { 3290 emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image), 3291 image + (branches[i] - (u8 *)rw_image), X86_JNE); 3292 } 3293 } 3294 3295 if (fexit->nr_links) { 3296 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, 3297 false, image, rw_image)) { 3298 ret = -EINVAL; 3299 goto cleanup; 3300 } 3301 } 3302 3303 if (flags & BPF_TRAMP_F_RESTORE_REGS) 3304 restore_regs(m, &prog, regs_off); 3305 3306 /* This needs to be done regardless. If there were fmod_ret programs, 3307 * the return value is only updated on the stack and still needs to be 3308 * restored to R0. 3309 */ 3310 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3311 im->ip_epilogue = image + (prog - (u8 *)rw_image); 3312 /* arg1: mov rdi, im */ 3313 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 3314 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) { 3315 ret = -EINVAL; 3316 goto cleanup; 3317 } 3318 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { 3319 /* Before running the original function, load the 3320 * tail_call_cnt_ptr from stack to rax. 3321 */ 3322 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size); 3323 } 3324 3325 /* restore return value of orig_call or fentry prog back into RAX */ 3326 if (save_ret) 3327 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); 3328 3329 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off); 3330 EMIT1(0xC9); /* leave */ 3331 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 3332 /* skip our return address and return to parent */ 3333 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ 3334 } 3335 emit_return(&prog, image + (prog - (u8 *)rw_image)); 3336 /* Make sure the trampoline generation logic doesn't overflow */ 3337 if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) { 3338 ret = -EFAULT; 3339 goto cleanup; 3340 } 3341 ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY; 3342 3343 cleanup: 3344 kfree(branches); 3345 return ret; 3346 } 3347 3348 void *arch_alloc_bpf_trampoline(unsigned int size) 3349 { 3350 return bpf_prog_pack_alloc(size, jit_fill_hole); 3351 } 3352 3353 void arch_free_bpf_trampoline(void *image, unsigned int size) 3354 { 3355 bpf_prog_pack_free(image, size); 3356 } 3357 3358 int arch_protect_bpf_trampoline(void *image, unsigned int size) 3359 { 3360 return 0; 3361 } 3362 3363 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 3364 const struct btf_func_model *m, u32 flags, 3365 struct bpf_tramp_links *tlinks, 3366 void *func_addr) 3367 { 3368 void *rw_image, *tmp; 3369 int ret; 3370 u32 size = image_end - image; 3371 3372 /* rw_image doesn't need to be in module memory range, so we can 3373 * use kvmalloc. 3374 */ 3375 rw_image = kvmalloc(size, GFP_KERNEL); 3376 if (!rw_image) 3377 return -ENOMEM; 3378 3379 ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m, 3380 flags, tlinks, func_addr); 3381 if (ret < 0) 3382 goto out; 3383 3384 tmp = bpf_arch_text_copy(image, rw_image, size); 3385 if (IS_ERR(tmp)) 3386 ret = PTR_ERR(tmp); 3387 out: 3388 kvfree(rw_image); 3389 return ret; 3390 } 3391 3392 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 3393 struct bpf_tramp_links *tlinks, void *func_addr) 3394 { 3395 struct bpf_tramp_image im; 3396 void *image; 3397 int ret; 3398 3399 /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline(). 3400 * This will NOT cause fragmentation in direct map, as we do not 3401 * call set_memory_*() on this buffer. 3402 * 3403 * We cannot use kvmalloc here, because we need image to be in 3404 * module memory range. 3405 */ 3406 image = bpf_jit_alloc_exec(PAGE_SIZE); 3407 if (!image) 3408 return -ENOMEM; 3409 3410 ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image, 3411 m, flags, tlinks, func_addr); 3412 bpf_jit_free_exec(image); 3413 return ret; 3414 } 3415 3416 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf) 3417 { 3418 u8 *jg_reloc, *prog = *pprog; 3419 int pivot, err, jg_bytes = 1; 3420 s64 jg_offset; 3421 3422 if (a == b) { 3423 /* Leaf node of recursion, i.e. not a range of indices 3424 * anymore. 3425 */ 3426 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 3427 if (!is_simm32(progs[a])) 3428 return -1; 3429 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), 3430 progs[a]); 3431 err = emit_cond_near_jump(&prog, /* je func */ 3432 (void *)progs[a], image + (prog - buf), 3433 X86_JE); 3434 if (err) 3435 return err; 3436 3437 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf)); 3438 3439 *pprog = prog; 3440 return 0; 3441 } 3442 3443 /* Not a leaf node, so we pivot, and recursively descend into 3444 * the lower and upper ranges. 3445 */ 3446 pivot = (b - a) / 2; 3447 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 3448 if (!is_simm32(progs[a + pivot])) 3449 return -1; 3450 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); 3451 3452 if (pivot > 2) { /* jg upper_part */ 3453 /* Require near jump. */ 3454 jg_bytes = 4; 3455 EMIT2_off32(0x0F, X86_JG + 0x10, 0); 3456 } else { 3457 EMIT2(X86_JG, 0); 3458 } 3459 jg_reloc = prog; 3460 3461 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ 3462 progs, image, buf); 3463 if (err) 3464 return err; 3465 3466 /* From Intel 64 and IA-32 Architectures Optimization 3467 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 3468 * Coding Rule 11: All branch targets should be 16-byte 3469 * aligned. 3470 */ 3471 emit_align(&prog, 16); 3472 jg_offset = prog - jg_reloc; 3473 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); 3474 3475 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ 3476 b, progs, image, buf); 3477 if (err) 3478 return err; 3479 3480 *pprog = prog; 3481 return 0; 3482 } 3483 3484 static int cmp_ips(const void *a, const void *b) 3485 { 3486 const s64 *ipa = a; 3487 const s64 *ipb = b; 3488 3489 if (*ipa > *ipb) 3490 return 1; 3491 if (*ipa < *ipb) 3492 return -1; 3493 return 0; 3494 } 3495 3496 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs) 3497 { 3498 u8 *prog = buf; 3499 3500 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); 3501 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf); 3502 } 3503 3504 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size) 3505 { 3506 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3; 3507 u64 *stack_ptr; 3508 3509 for_each_possible_cpu(cpu) { 3510 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu); 3511 stack_ptr[0] = PRIV_STACK_GUARD_VAL; 3512 stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL; 3513 } 3514 } 3515 3516 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size, 3517 struct bpf_prog *prog) 3518 { 3519 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3; 3520 u64 *stack_ptr; 3521 3522 for_each_possible_cpu(cpu) { 3523 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu); 3524 if (stack_ptr[0] != PRIV_STACK_GUARD_VAL || 3525 stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) { 3526 pr_err("BPF private stack overflow/underflow detected for prog %sx\n", 3527 bpf_jit_get_prog_name(prog)); 3528 break; 3529 } 3530 } 3531 } 3532 3533 struct x64_jit_data { 3534 struct bpf_binary_header *rw_header; 3535 struct bpf_binary_header *header; 3536 int *addrs; 3537 u8 *image; 3538 int proglen; 3539 struct jit_context ctx; 3540 }; 3541 3542 #define MAX_PASSES 20 3543 #define PADDING_PASSES (MAX_PASSES - 5) 3544 3545 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 3546 { 3547 struct bpf_binary_header *rw_header = NULL; 3548 struct bpf_binary_header *header = NULL; 3549 struct bpf_prog *tmp, *orig_prog = prog; 3550 void __percpu *priv_stack_ptr = NULL; 3551 struct x64_jit_data *jit_data; 3552 int priv_stack_alloc_sz; 3553 int proglen, oldproglen = 0; 3554 struct jit_context ctx = {}; 3555 bool tmp_blinded = false; 3556 bool extra_pass = false; 3557 bool padding = false; 3558 u8 *rw_image = NULL; 3559 u8 *image = NULL; 3560 int *addrs; 3561 int pass; 3562 int i; 3563 3564 if (!prog->jit_requested) 3565 return orig_prog; 3566 3567 tmp = bpf_jit_blind_constants(prog); 3568 /* 3569 * If blinding was requested and we failed during blinding, 3570 * we must fall back to the interpreter. 3571 */ 3572 if (IS_ERR(tmp)) 3573 return orig_prog; 3574 if (tmp != prog) { 3575 tmp_blinded = true; 3576 prog = tmp; 3577 } 3578 3579 jit_data = prog->aux->jit_data; 3580 if (!jit_data) { 3581 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 3582 if (!jit_data) { 3583 prog = orig_prog; 3584 goto out; 3585 } 3586 prog->aux->jit_data = jit_data; 3587 } 3588 priv_stack_ptr = prog->aux->priv_stack_ptr; 3589 if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) { 3590 /* Allocate actual private stack size with verifier-calculated 3591 * stack size plus two memory guards to protect overflow and 3592 * underflow. 3593 */ 3594 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) + 3595 2 * PRIV_STACK_GUARD_SZ; 3596 priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL); 3597 if (!priv_stack_ptr) { 3598 prog = orig_prog; 3599 goto out_priv_stack; 3600 } 3601 3602 priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz); 3603 prog->aux->priv_stack_ptr = priv_stack_ptr; 3604 } 3605 addrs = jit_data->addrs; 3606 if (addrs) { 3607 ctx = jit_data->ctx; 3608 oldproglen = jit_data->proglen; 3609 image = jit_data->image; 3610 header = jit_data->header; 3611 rw_header = jit_data->rw_header; 3612 rw_image = (void *)rw_header + ((void *)image - (void *)header); 3613 extra_pass = true; 3614 padding = true; 3615 goto skip_init_addrs; 3616 } 3617 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); 3618 if (!addrs) { 3619 prog = orig_prog; 3620 goto out_addrs; 3621 } 3622 3623 /* 3624 * Before first pass, make a rough estimation of addrs[] 3625 * each BPF instruction is translated to less than 64 bytes 3626 */ 3627 for (proglen = 0, i = 0; i <= prog->len; i++) { 3628 proglen += 64; 3629 addrs[i] = proglen; 3630 } 3631 ctx.cleanup_addr = proglen; 3632 skip_init_addrs: 3633 3634 /* 3635 * JITed image shrinks with every pass and the loop iterates 3636 * until the image stops shrinking. Very large BPF programs 3637 * may converge on the last pass. In such case do one more 3638 * pass to emit the final image. 3639 */ 3640 for (pass = 0; pass < MAX_PASSES || image; pass++) { 3641 if (!padding && pass >= PADDING_PASSES) 3642 padding = true; 3643 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding); 3644 if (proglen <= 0) { 3645 out_image: 3646 image = NULL; 3647 if (header) { 3648 bpf_arch_text_copy(&header->size, &rw_header->size, 3649 sizeof(rw_header->size)); 3650 bpf_jit_binary_pack_free(header, rw_header); 3651 } 3652 /* Fall back to interpreter mode */ 3653 prog = orig_prog; 3654 if (extra_pass) { 3655 prog->bpf_func = NULL; 3656 prog->jited = 0; 3657 prog->jited_len = 0; 3658 } 3659 goto out_addrs; 3660 } 3661 if (image) { 3662 if (proglen != oldproglen) { 3663 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", 3664 proglen, oldproglen); 3665 goto out_image; 3666 } 3667 break; 3668 } 3669 if (proglen == oldproglen) { 3670 /* 3671 * The number of entries in extable is the number of BPF_LDX 3672 * insns that access kernel memory via "pointer to BTF type". 3673 * The verifier changed their opcode from LDX|MEM|size 3674 * to LDX|PROBE_MEM|size to make JITing easier. 3675 */ 3676 u32 align = __alignof__(struct exception_table_entry); 3677 u32 extable_size = prog->aux->num_exentries * 3678 sizeof(struct exception_table_entry); 3679 3680 /* allocate module memory for x86 insns and extable */ 3681 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size, 3682 &image, align, &rw_header, &rw_image, 3683 jit_fill_hole); 3684 if (!header) { 3685 prog = orig_prog; 3686 goto out_addrs; 3687 } 3688 prog->aux->extable = (void *) image + roundup(proglen, align); 3689 } 3690 oldproglen = proglen; 3691 cond_resched(); 3692 } 3693 3694 if (bpf_jit_enable > 1) 3695 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image); 3696 3697 if (image) { 3698 if (!prog->is_func || extra_pass) { 3699 /* 3700 * bpf_jit_binary_pack_finalize fails in two scenarios: 3701 * 1) header is not pointing to proper module memory; 3702 * 2) the arch doesn't support bpf_arch_text_copy(). 3703 * 3704 * Both cases are serious bugs and justify WARN_ON. 3705 */ 3706 if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) { 3707 /* header has been freed */ 3708 header = NULL; 3709 goto out_image; 3710 } 3711 3712 bpf_tail_call_direct_fixup(prog); 3713 } else { 3714 jit_data->addrs = addrs; 3715 jit_data->ctx = ctx; 3716 jit_data->proglen = proglen; 3717 jit_data->image = image; 3718 jit_data->header = header; 3719 jit_data->rw_header = rw_header; 3720 } 3721 /* 3722 * ctx.prog_offset is used when CFI preambles put code *before* 3723 * the function. See emit_cfi(). For FineIBT specifically this code 3724 * can also be executed and bpf_prog_kallsyms_add() will 3725 * generate an additional symbol to cover this, hence also 3726 * decrement proglen. 3727 */ 3728 prog->bpf_func = (void *)image + cfi_get_offset(); 3729 prog->jited = 1; 3730 prog->jited_len = proglen - cfi_get_offset(); 3731 } else { 3732 prog = orig_prog; 3733 } 3734 3735 if (!image || !prog->is_func || extra_pass) { 3736 if (image) 3737 bpf_prog_fill_jited_linfo(prog, addrs + 1); 3738 out_addrs: 3739 kvfree(addrs); 3740 if (!image && priv_stack_ptr) { 3741 free_percpu(priv_stack_ptr); 3742 prog->aux->priv_stack_ptr = NULL; 3743 } 3744 out_priv_stack: 3745 kfree(jit_data); 3746 prog->aux->jit_data = NULL; 3747 } 3748 out: 3749 if (tmp_blinded) 3750 bpf_jit_prog_release_other(prog, prog == orig_prog ? 3751 tmp : orig_prog); 3752 return prog; 3753 } 3754 3755 bool bpf_jit_supports_kfunc_call(void) 3756 { 3757 return true; 3758 } 3759 3760 void *bpf_arch_text_copy(void *dst, void *src, size_t len) 3761 { 3762 if (text_poke_copy(dst, src, len) == NULL) 3763 return ERR_PTR(-EINVAL); 3764 return dst; 3765 } 3766 3767 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ 3768 bool bpf_jit_supports_subprog_tailcalls(void) 3769 { 3770 return true; 3771 } 3772 3773 bool bpf_jit_supports_percpu_insn(void) 3774 { 3775 return true; 3776 } 3777 3778 void bpf_jit_free(struct bpf_prog *prog) 3779 { 3780 if (prog->jited) { 3781 struct x64_jit_data *jit_data = prog->aux->jit_data; 3782 struct bpf_binary_header *hdr; 3783 void __percpu *priv_stack_ptr; 3784 int priv_stack_alloc_sz; 3785 3786 /* 3787 * If we fail the final pass of JIT (from jit_subprogs), 3788 * the program may not be finalized yet. Call finalize here 3789 * before freeing it. 3790 */ 3791 if (jit_data) { 3792 bpf_jit_binary_pack_finalize(jit_data->header, 3793 jit_data->rw_header); 3794 kvfree(jit_data->addrs); 3795 kfree(jit_data); 3796 } 3797 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset(); 3798 hdr = bpf_jit_binary_pack_hdr(prog); 3799 bpf_jit_binary_pack_free(hdr, NULL); 3800 priv_stack_ptr = prog->aux->priv_stack_ptr; 3801 if (priv_stack_ptr) { 3802 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) + 3803 2 * PRIV_STACK_GUARD_SZ; 3804 priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog); 3805 free_percpu(prog->aux->priv_stack_ptr); 3806 } 3807 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); 3808 } 3809 3810 bpf_prog_unlock_free(prog); 3811 } 3812 3813 bool bpf_jit_supports_exceptions(void) 3814 { 3815 /* We unwind through both kernel frames (starting from within bpf_throw 3816 * call) and BPF frames. Therefore we require ORC unwinder to be enabled 3817 * to walk kernel frames and reach BPF frames in the stack trace. 3818 */ 3819 return IS_ENABLED(CONFIG_UNWINDER_ORC); 3820 } 3821 3822 bool bpf_jit_supports_private_stack(void) 3823 { 3824 return true; 3825 } 3826 3827 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie) 3828 { 3829 #if defined(CONFIG_UNWINDER_ORC) 3830 struct unwind_state state; 3831 unsigned long addr; 3832 3833 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state); 3834 unwind_next_frame(&state)) { 3835 addr = unwind_get_return_address(&state); 3836 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp)) 3837 break; 3838 } 3839 return; 3840 #endif 3841 } 3842 3843 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3844 struct bpf_prog *new, struct bpf_prog *old) 3845 { 3846 u8 *old_addr, *new_addr, *old_bypass_addr; 3847 int ret; 3848 3849 old_bypass_addr = old ? NULL : poke->bypass_addr; 3850 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; 3851 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; 3852 3853 /* 3854 * On program loading or teardown, the program's kallsym entry 3855 * might not be in place, so we use __bpf_arch_text_poke to skip 3856 * the kallsyms check. 3857 */ 3858 if (new) { 3859 ret = __bpf_arch_text_poke(poke->tailcall_target, 3860 BPF_MOD_JUMP, 3861 old_addr, new_addr); 3862 BUG_ON(ret < 0); 3863 if (!old) { 3864 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 3865 BPF_MOD_JUMP, 3866 poke->bypass_addr, 3867 NULL); 3868 BUG_ON(ret < 0); 3869 } 3870 } else { 3871 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 3872 BPF_MOD_JUMP, 3873 old_bypass_addr, 3874 poke->bypass_addr); 3875 BUG_ON(ret < 0); 3876 /* let other CPUs finish the execution of program 3877 * so that it will not possible to expose them 3878 * to invalid nop, stack unwind, nop state 3879 */ 3880 if (!ret) 3881 synchronize_rcu(); 3882 ret = __bpf_arch_text_poke(poke->tailcall_target, 3883 BPF_MOD_JUMP, 3884 old_addr, NULL); 3885 BUG_ON(ret < 0); 3886 } 3887 } 3888 3889 bool bpf_jit_supports_arena(void) 3890 { 3891 return true; 3892 } 3893 3894 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena) 3895 { 3896 if (!in_arena) 3897 return true; 3898 switch (insn->code) { 3899 case BPF_STX | BPF_ATOMIC | BPF_W: 3900 case BPF_STX | BPF_ATOMIC | BPF_DW: 3901 if (insn->imm == (BPF_AND | BPF_FETCH) || 3902 insn->imm == (BPF_OR | BPF_FETCH) || 3903 insn->imm == (BPF_XOR | BPF_FETCH)) 3904 return false; 3905 } 3906 return true; 3907 } 3908 3909 bool bpf_jit_supports_ptr_xchg(void) 3910 { 3911 return true; 3912 } 3913 3914 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */ 3915 u64 bpf_arch_uaddress_limit(void) 3916 { 3917 return 0; 3918 } 3919 3920 bool bpf_jit_supports_timed_may_goto(void) 3921 { 3922 return true; 3923 } 3924