xref: /linux/arch/x86/net/bpf_jit_comp.c (revision 0b8061c340b643e01da431dd60c75a41bb1d31ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 #include <asm/asm-prototypes.h>
19 
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 	if (len == 1)
23 		*ptr = bytes;
24 	else if (len == 2)
25 		*(u16 *)ptr = bytes;
26 	else {
27 		*(u32 *)ptr = bytes;
28 		barrier();
29 	}
30 	return ptr + len;
31 }
32 
33 #define EMIT(bytes, len) \
34 	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
35 
36 #define EMIT1(b1)		EMIT(b1, 1)
37 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40 
41 #define EMIT1_off32(b1, off) \
42 	do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49 
50 static bool is_imm8(int value)
51 {
52 	return value <= 127 && value >= -128;
53 }
54 
55 static bool is_simm32(s64 value)
56 {
57 	return value == (s64)(s32)value;
58 }
59 
60 static bool is_uimm32(u64 value)
61 {
62 	return value == (u64)(u32)value;
63 }
64 
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC)								 \
67 	do {										 \
68 		if (DST != SRC)								 \
69 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
70 	} while (0)
71 
72 static int bpf_size_to_x86_bytes(int bpf_size)
73 {
74 	if (bpf_size == BPF_W)
75 		return 4;
76 	else if (bpf_size == BPF_H)
77 		return 2;
78 	else if (bpf_size == BPF_B)
79 		return 1;
80 	else if (bpf_size == BPF_DW)
81 		return 4; /* imm32 */
82 	else
83 		return 0;
84 }
85 
86 /*
87  * List of x86 cond jumps opcodes (. + s8)
88  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89  */
90 #define X86_JB  0x72
91 #define X86_JAE 0x73
92 #define X86_JE  0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA  0x77
96 #define X86_JL  0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG  0x7F
100 
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
104 
105 /*
106  * The following table maps BPF registers to x86-64 registers.
107  *
108  * x86-64 register R12 is unused, since if used as base address
109  * register in load/store instructions, it always needs an
110  * extra byte of encoding and is callee saved.
111  *
112  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
113  * trampoline. x86-64 register R10 is used for blinding (if enabled).
114  */
115 static const int reg2hex[] = {
116 	[BPF_REG_0] = 0,  /* RAX */
117 	[BPF_REG_1] = 7,  /* RDI */
118 	[BPF_REG_2] = 6,  /* RSI */
119 	[BPF_REG_3] = 2,  /* RDX */
120 	[BPF_REG_4] = 1,  /* RCX */
121 	[BPF_REG_5] = 0,  /* R8  */
122 	[BPF_REG_6] = 3,  /* RBX callee saved */
123 	[BPF_REG_7] = 5,  /* R13 callee saved */
124 	[BPF_REG_8] = 6,  /* R14 callee saved */
125 	[BPF_REG_9] = 7,  /* R15 callee saved */
126 	[BPF_REG_FP] = 5, /* RBP readonly */
127 	[BPF_REG_AX] = 2, /* R10 temp register */
128 	[AUX_REG] = 3,    /* R11 temp register */
129 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
130 };
131 
132 static const int reg2pt_regs[] = {
133 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
134 	[BPF_REG_1] = offsetof(struct pt_regs, di),
135 	[BPF_REG_2] = offsetof(struct pt_regs, si),
136 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
137 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
138 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
139 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
140 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
141 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
142 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
143 };
144 
145 /*
146  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
147  * which need extra byte of encoding.
148  * rax,rcx,...,rbp have simpler encoding
149  */
150 static bool is_ereg(u32 reg)
151 {
152 	return (1 << reg) & (BIT(BPF_REG_5) |
153 			     BIT(AUX_REG) |
154 			     BIT(BPF_REG_7) |
155 			     BIT(BPF_REG_8) |
156 			     BIT(BPF_REG_9) |
157 			     BIT(X86_REG_R9) |
158 			     BIT(BPF_REG_AX));
159 }
160 
161 /*
162  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
163  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
164  * of encoding. al,cl,dl,bl have simpler encoding.
165  */
166 static bool is_ereg_8l(u32 reg)
167 {
168 	return is_ereg(reg) ||
169 	    (1 << reg) & (BIT(BPF_REG_1) |
170 			  BIT(BPF_REG_2) |
171 			  BIT(BPF_REG_FP));
172 }
173 
174 static bool is_axreg(u32 reg)
175 {
176 	return reg == BPF_REG_0;
177 }
178 
179 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
180 static u8 add_1mod(u8 byte, u32 reg)
181 {
182 	if (is_ereg(reg))
183 		byte |= 1;
184 	return byte;
185 }
186 
187 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
188 {
189 	if (is_ereg(r1))
190 		byte |= 1;
191 	if (is_ereg(r2))
192 		byte |= 4;
193 	return byte;
194 }
195 
196 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
197 static u8 add_1reg(u8 byte, u32 dst_reg)
198 {
199 	return byte + reg2hex[dst_reg];
200 }
201 
202 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
203 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
204 {
205 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
206 }
207 
208 /* Some 1-byte opcodes for binary ALU operations */
209 static u8 simple_alu_opcodes[] = {
210 	[BPF_ADD] = 0x01,
211 	[BPF_SUB] = 0x29,
212 	[BPF_AND] = 0x21,
213 	[BPF_OR] = 0x09,
214 	[BPF_XOR] = 0x31,
215 	[BPF_LSH] = 0xE0,
216 	[BPF_RSH] = 0xE8,
217 	[BPF_ARSH] = 0xF8,
218 };
219 
220 static void jit_fill_hole(void *area, unsigned int size)
221 {
222 	/* Fill whole space with INT3 instructions */
223 	memset(area, 0xcc, size);
224 }
225 
226 struct jit_context {
227 	int cleanup_addr; /* Epilogue code offset */
228 };
229 
230 /* Maximum number of bytes emitted while JITing one eBPF insn */
231 #define BPF_MAX_INSN_SIZE	128
232 #define BPF_INSN_SAFETY		64
233 
234 /* Number of bytes emit_patch() needs to generate instructions */
235 #define X86_PATCH_SIZE		5
236 /* Number of bytes that will be skipped on tailcall */
237 #define X86_TAIL_CALL_OFFSET	11
238 
239 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
240 {
241 	u8 *prog = *pprog;
242 	int cnt = 0;
243 
244 	if (callee_regs_used[0])
245 		EMIT1(0x53);         /* push rbx */
246 	if (callee_regs_used[1])
247 		EMIT2(0x41, 0x55);   /* push r13 */
248 	if (callee_regs_used[2])
249 		EMIT2(0x41, 0x56);   /* push r14 */
250 	if (callee_regs_used[3])
251 		EMIT2(0x41, 0x57);   /* push r15 */
252 	*pprog = prog;
253 }
254 
255 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
256 {
257 	u8 *prog = *pprog;
258 	int cnt = 0;
259 
260 	if (callee_regs_used[3])
261 		EMIT2(0x41, 0x5F);   /* pop r15 */
262 	if (callee_regs_used[2])
263 		EMIT2(0x41, 0x5E);   /* pop r14 */
264 	if (callee_regs_used[1])
265 		EMIT2(0x41, 0x5D);   /* pop r13 */
266 	if (callee_regs_used[0])
267 		EMIT1(0x5B);         /* pop rbx */
268 	*pprog = prog;
269 }
270 
271 /*
272  * Emit x86-64 prologue code for BPF program.
273  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
274  * while jumping to another program
275  */
276 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
277 			  bool tail_call_reachable, bool is_subprog)
278 {
279 	u8 *prog = *pprog;
280 	int cnt = X86_PATCH_SIZE;
281 
282 	/* BPF trampoline can be made to work without these nops,
283 	 * but let's waste 5 bytes for now and optimize later
284 	 */
285 	memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
286 	prog += cnt;
287 	if (!ebpf_from_cbpf) {
288 		if (tail_call_reachable && !is_subprog)
289 			EMIT2(0x31, 0xC0); /* xor eax, eax */
290 		else
291 			EMIT2(0x66, 0x90); /* nop2 */
292 	}
293 	EMIT1(0x55);             /* push rbp */
294 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
295 	/* sub rsp, rounded_stack_depth */
296 	if (stack_depth)
297 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
298 	if (tail_call_reachable)
299 		EMIT1(0x50);         /* push rax */
300 	*pprog = prog;
301 }
302 
303 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
304 {
305 	u8 *prog = *pprog;
306 	int cnt = 0;
307 	s64 offset;
308 
309 	offset = func - (ip + X86_PATCH_SIZE);
310 	if (!is_simm32(offset)) {
311 		pr_err("Target call %p is out of range\n", func);
312 		return -ERANGE;
313 	}
314 	EMIT1_off32(opcode, offset);
315 	*pprog = prog;
316 	return 0;
317 }
318 
319 static int emit_call(u8 **pprog, void *func, void *ip)
320 {
321 	return emit_patch(pprog, func, ip, 0xE8);
322 }
323 
324 static int emit_jump(u8 **pprog, void *func, void *ip)
325 {
326 	return emit_patch(pprog, func, ip, 0xE9);
327 }
328 
329 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
330 				void *old_addr, void *new_addr,
331 				const bool text_live)
332 {
333 	const u8 *nop_insn = ideal_nops[NOP_ATOMIC5];
334 	u8 old_insn[X86_PATCH_SIZE];
335 	u8 new_insn[X86_PATCH_SIZE];
336 	u8 *prog;
337 	int ret;
338 
339 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
340 	if (old_addr) {
341 		prog = old_insn;
342 		ret = t == BPF_MOD_CALL ?
343 		      emit_call(&prog, old_addr, ip) :
344 		      emit_jump(&prog, old_addr, ip);
345 		if (ret)
346 			return ret;
347 	}
348 
349 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
350 	if (new_addr) {
351 		prog = new_insn;
352 		ret = t == BPF_MOD_CALL ?
353 		      emit_call(&prog, new_addr, ip) :
354 		      emit_jump(&prog, new_addr, ip);
355 		if (ret)
356 			return ret;
357 	}
358 
359 	ret = -EBUSY;
360 	mutex_lock(&text_mutex);
361 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
362 		goto out;
363 	ret = 1;
364 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
365 		if (text_live)
366 			text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
367 		else
368 			memcpy(ip, new_insn, X86_PATCH_SIZE);
369 		ret = 0;
370 	}
371 out:
372 	mutex_unlock(&text_mutex);
373 	return ret;
374 }
375 
376 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
377 		       void *old_addr, void *new_addr)
378 {
379 	if (!is_kernel_text((long)ip) &&
380 	    !is_bpf_text_address((long)ip))
381 		/* BPF poking in modules is not supported */
382 		return -EINVAL;
383 
384 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
385 }
386 
387 static int get_pop_bytes(bool *callee_regs_used)
388 {
389 	int bytes = 0;
390 
391 	if (callee_regs_used[3])
392 		bytes += 2;
393 	if (callee_regs_used[2])
394 		bytes += 2;
395 	if (callee_regs_used[1])
396 		bytes += 2;
397 	if (callee_regs_used[0])
398 		bytes += 1;
399 
400 	return bytes;
401 }
402 
403 /*
404  * Generate the following code:
405  *
406  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
407  *   if (index >= array->map.max_entries)
408  *     goto out;
409  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
410  *     goto out;
411  *   prog = array->ptrs[index];
412  *   if (prog == NULL)
413  *     goto out;
414  *   goto *(prog->bpf_func + prologue_size);
415  * out:
416  */
417 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
418 					u32 stack_depth)
419 {
420 	int tcc_off = -4 - round_up(stack_depth, 8);
421 	u8 *prog = *pprog;
422 	int pop_bytes = 0;
423 	int off1 = 42;
424 	int off2 = 31;
425 	int off3 = 9;
426 	int cnt = 0;
427 
428 	/* count the additional bytes used for popping callee regs from stack
429 	 * that need to be taken into account for each of the offsets that
430 	 * are used for bailing out of the tail call
431 	 */
432 	pop_bytes = get_pop_bytes(callee_regs_used);
433 	off1 += pop_bytes;
434 	off2 += pop_bytes;
435 	off3 += pop_bytes;
436 
437 	if (stack_depth) {
438 		off1 += 7;
439 		off2 += 7;
440 		off3 += 7;
441 	}
442 
443 	/*
444 	 * rdi - pointer to ctx
445 	 * rsi - pointer to bpf_array
446 	 * rdx - index in bpf_array
447 	 */
448 
449 	/*
450 	 * if (index >= array->map.max_entries)
451 	 *	goto out;
452 	 */
453 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
454 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
455 	      offsetof(struct bpf_array, map.max_entries));
456 #define OFFSET1 (off1 + RETPOLINE_RCX_BPF_JIT_SIZE) /* Number of bytes to jump */
457 	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
458 
459 	/*
460 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
461 	 *	goto out;
462 	 */
463 	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
464 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
465 #define OFFSET2 (off2 + RETPOLINE_RCX_BPF_JIT_SIZE)
466 	EMIT2(X86_JA, OFFSET2);                   /* ja out */
467 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
468 	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
469 
470 	/* prog = array->ptrs[index]; */
471 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
472 		    offsetof(struct bpf_array, ptrs));
473 
474 	/*
475 	 * if (prog == NULL)
476 	 *	goto out;
477 	 */
478 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
479 #define OFFSET3 (off3 + RETPOLINE_RCX_BPF_JIT_SIZE)
480 	EMIT2(X86_JE, OFFSET3);                   /* je out */
481 
482 	*pprog = prog;
483 	pop_callee_regs(pprog, callee_regs_used);
484 	prog = *pprog;
485 
486 	EMIT1(0x58);                              /* pop rax */
487 	if (stack_depth)
488 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
489 			    round_up(stack_depth, 8));
490 
491 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
492 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
493 	      offsetof(struct bpf_prog, bpf_func));
494 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
495 	      X86_TAIL_CALL_OFFSET);
496 	/*
497 	 * Now we're ready to jump into next BPF program
498 	 * rdi == ctx (1st arg)
499 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
500 	 */
501 	RETPOLINE_RCX_BPF_JIT();
502 
503 	/* out: */
504 	*pprog = prog;
505 }
506 
507 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
508 				      u8 **pprog, int addr, u8 *image,
509 				      bool *callee_regs_used, u32 stack_depth)
510 {
511 	int tcc_off = -4 - round_up(stack_depth, 8);
512 	u8 *prog = *pprog;
513 	int pop_bytes = 0;
514 	int off1 = 20;
515 	int poke_off;
516 	int cnt = 0;
517 
518 	/* count the additional bytes used for popping callee regs to stack
519 	 * that need to be taken into account for jump offset that is used for
520 	 * bailing out from of the tail call when limit is reached
521 	 */
522 	pop_bytes = get_pop_bytes(callee_regs_used);
523 	off1 += pop_bytes;
524 
525 	/*
526 	 * total bytes for:
527 	 * - nop5/ jmpq $off
528 	 * - pop callee regs
529 	 * - sub rsp, $val if depth > 0
530 	 * - pop rax
531 	 */
532 	poke_off = X86_PATCH_SIZE + pop_bytes + 1;
533 	if (stack_depth) {
534 		poke_off += 7;
535 		off1 += 7;
536 	}
537 
538 	/*
539 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
540 	 *	goto out;
541 	 */
542 	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
543 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
544 	EMIT2(X86_JA, off1);                          /* ja out */
545 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
546 	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
547 
548 	poke->tailcall_bypass = image + (addr - poke_off - X86_PATCH_SIZE);
549 	poke->adj_off = X86_TAIL_CALL_OFFSET;
550 	poke->tailcall_target = image + (addr - X86_PATCH_SIZE);
551 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
552 
553 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
554 		  poke->tailcall_bypass);
555 
556 	*pprog = prog;
557 	pop_callee_regs(pprog, callee_regs_used);
558 	prog = *pprog;
559 	EMIT1(0x58);                                  /* pop rax */
560 	if (stack_depth)
561 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
562 
563 	memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
564 	prog += X86_PATCH_SIZE;
565 	/* out: */
566 
567 	*pprog = prog;
568 }
569 
570 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
571 {
572 	struct bpf_jit_poke_descriptor *poke;
573 	struct bpf_array *array;
574 	struct bpf_prog *target;
575 	int i, ret;
576 
577 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
578 		poke = &prog->aux->poke_tab[i];
579 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
580 
581 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
582 			continue;
583 
584 		array = container_of(poke->tail_call.map, struct bpf_array, map);
585 		mutex_lock(&array->aux->poke_mutex);
586 		target = array->ptrs[poke->tail_call.key];
587 		if (target) {
588 			/* Plain memcpy is used when image is not live yet
589 			 * and still not locked as read-only. Once poke
590 			 * location is active (poke->tailcall_target_stable),
591 			 * any parallel bpf_arch_text_poke() might occur
592 			 * still on the read-write image until we finally
593 			 * locked it as read-only. Both modifications on
594 			 * the given image are under text_mutex to avoid
595 			 * interference.
596 			 */
597 			ret = __bpf_arch_text_poke(poke->tailcall_target,
598 						   BPF_MOD_JUMP, NULL,
599 						   (u8 *)target->bpf_func +
600 						   poke->adj_off, false);
601 			BUG_ON(ret < 0);
602 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
603 						   BPF_MOD_JUMP,
604 						   (u8 *)poke->tailcall_target +
605 						   X86_PATCH_SIZE, NULL, false);
606 			BUG_ON(ret < 0);
607 		}
608 		WRITE_ONCE(poke->tailcall_target_stable, true);
609 		mutex_unlock(&array->aux->poke_mutex);
610 	}
611 }
612 
613 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
614 			   u32 dst_reg, const u32 imm32)
615 {
616 	u8 *prog = *pprog;
617 	u8 b1, b2, b3;
618 	int cnt = 0;
619 
620 	/*
621 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
622 	 * (which zero-extends imm32) to save 2 bytes.
623 	 */
624 	if (sign_propagate && (s32)imm32 < 0) {
625 		/* 'mov %rax, imm32' sign extends imm32 */
626 		b1 = add_1mod(0x48, dst_reg);
627 		b2 = 0xC7;
628 		b3 = 0xC0;
629 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
630 		goto done;
631 	}
632 
633 	/*
634 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
635 	 * to save 3 bytes.
636 	 */
637 	if (imm32 == 0) {
638 		if (is_ereg(dst_reg))
639 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
640 		b2 = 0x31; /* xor */
641 		b3 = 0xC0;
642 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
643 		goto done;
644 	}
645 
646 	/* mov %eax, imm32 */
647 	if (is_ereg(dst_reg))
648 		EMIT1(add_1mod(0x40, dst_reg));
649 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
650 done:
651 	*pprog = prog;
652 }
653 
654 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
655 			   const u32 imm32_hi, const u32 imm32_lo)
656 {
657 	u8 *prog = *pprog;
658 	int cnt = 0;
659 
660 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
661 		/*
662 		 * For emitting plain u32, where sign bit must not be
663 		 * propagated LLVM tends to load imm64 over mov32
664 		 * directly, so save couple of bytes by just doing
665 		 * 'mov %eax, imm32' instead.
666 		 */
667 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
668 	} else {
669 		/* movabsq %rax, imm64 */
670 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
671 		EMIT(imm32_lo, 4);
672 		EMIT(imm32_hi, 4);
673 	}
674 
675 	*pprog = prog;
676 }
677 
678 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
679 {
680 	u8 *prog = *pprog;
681 	int cnt = 0;
682 
683 	if (is64) {
684 		/* mov dst, src */
685 		EMIT_mov(dst_reg, src_reg);
686 	} else {
687 		/* mov32 dst, src */
688 		if (is_ereg(dst_reg) || is_ereg(src_reg))
689 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
690 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
691 	}
692 
693 	*pprog = prog;
694 }
695 
696 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
697 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
698 {
699 	u8 *prog = *pprog;
700 	int cnt = 0;
701 
702 	if (is_imm8(off)) {
703 		/* 1-byte signed displacement.
704 		 *
705 		 * If off == 0 we could skip this and save one extra byte, but
706 		 * special case of x86 R13 which always needs an offset is not
707 		 * worth the hassle
708 		 */
709 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
710 	} else {
711 		/* 4-byte signed displacement */
712 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
713 	}
714 	*pprog = prog;
715 }
716 
717 /*
718  * Emit a REX byte if it will be necessary to address these registers
719  */
720 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
721 {
722 	u8 *prog = *pprog;
723 	int cnt = 0;
724 
725 	if (is64)
726 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
727 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
728 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
729 	*pprog = prog;
730 }
731 
732 /* LDX: dst_reg = *(u8*)(src_reg + off) */
733 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
734 {
735 	u8 *prog = *pprog;
736 	int cnt = 0;
737 
738 	switch (size) {
739 	case BPF_B:
740 		/* Emit 'movzx rax, byte ptr [rax + off]' */
741 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
742 		break;
743 	case BPF_H:
744 		/* Emit 'movzx rax, word ptr [rax + off]' */
745 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
746 		break;
747 	case BPF_W:
748 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
749 		if (is_ereg(dst_reg) || is_ereg(src_reg))
750 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
751 		else
752 			EMIT1(0x8B);
753 		break;
754 	case BPF_DW:
755 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
756 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
757 		break;
758 	}
759 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
760 	*pprog = prog;
761 }
762 
763 /* STX: *(u8*)(dst_reg + off) = src_reg */
764 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
765 {
766 	u8 *prog = *pprog;
767 	int cnt = 0;
768 
769 	switch (size) {
770 	case BPF_B:
771 		/* Emit 'mov byte ptr [rax + off], al' */
772 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
773 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
774 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
775 		else
776 			EMIT1(0x88);
777 		break;
778 	case BPF_H:
779 		if (is_ereg(dst_reg) || is_ereg(src_reg))
780 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
781 		else
782 			EMIT2(0x66, 0x89);
783 		break;
784 	case BPF_W:
785 		if (is_ereg(dst_reg) || is_ereg(src_reg))
786 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
787 		else
788 			EMIT1(0x89);
789 		break;
790 	case BPF_DW:
791 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
792 		break;
793 	}
794 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
795 	*pprog = prog;
796 }
797 
798 static int emit_atomic(u8 **pprog, u8 atomic_op,
799 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
800 {
801 	u8 *prog = *pprog;
802 	int cnt = 0;
803 
804 	EMIT1(0xF0); /* lock prefix */
805 
806 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
807 
808 	/* emit opcode */
809 	switch (atomic_op) {
810 	case BPF_ADD:
811 	case BPF_SUB:
812 	case BPF_AND:
813 	case BPF_OR:
814 	case BPF_XOR:
815 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
816 		EMIT1(simple_alu_opcodes[atomic_op]);
817 		break;
818 	case BPF_ADD | BPF_FETCH:
819 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
820 		EMIT2(0x0F, 0xC1);
821 		break;
822 	case BPF_XCHG:
823 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
824 		EMIT1(0x87);
825 		break;
826 	case BPF_CMPXCHG:
827 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
828 		EMIT2(0x0F, 0xB1);
829 		break;
830 	default:
831 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
832 		return -EFAULT;
833 	}
834 
835 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
836 
837 	*pprog = prog;
838 	return 0;
839 }
840 
841 static bool ex_handler_bpf(const struct exception_table_entry *x,
842 			   struct pt_regs *regs, int trapnr,
843 			   unsigned long error_code, unsigned long fault_addr)
844 {
845 	u32 reg = x->fixup >> 8;
846 
847 	/* jump over faulting load and clear dest register */
848 	*(unsigned long *)((void *)regs + reg) = 0;
849 	regs->ip += x->fixup & 0xff;
850 	return true;
851 }
852 
853 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
854 			     bool *regs_used, bool *tail_call_seen)
855 {
856 	int i;
857 
858 	for (i = 1; i <= insn_cnt; i++, insn++) {
859 		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
860 			*tail_call_seen = true;
861 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
862 			regs_used[0] = true;
863 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
864 			regs_used[1] = true;
865 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
866 			regs_used[2] = true;
867 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
868 			regs_used[3] = true;
869 	}
870 }
871 
872 static int emit_nops(u8 **pprog, int len)
873 {
874 	u8 *prog = *pprog;
875 	int i, noplen, cnt = 0;
876 
877 	while (len > 0) {
878 		noplen = len;
879 
880 		if (noplen > ASM_NOP_MAX)
881 			noplen = ASM_NOP_MAX;
882 
883 		for (i = 0; i < noplen; i++)
884 			EMIT1(ideal_nops[noplen][i]);
885 		len -= noplen;
886 	}
887 
888 	*pprog = prog;
889 
890 	return cnt;
891 }
892 
893 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
894 
895 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
896 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
897 {
898 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
899 	struct bpf_insn *insn = bpf_prog->insnsi;
900 	bool callee_regs_used[4] = {};
901 	int insn_cnt = bpf_prog->len;
902 	bool tail_call_seen = false;
903 	bool seen_exit = false;
904 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
905 	int i, cnt = 0, excnt = 0;
906 	int ilen, proglen = 0;
907 	u8 *prog = temp;
908 	int err;
909 
910 	detect_reg_usage(insn, insn_cnt, callee_regs_used,
911 			 &tail_call_seen);
912 
913 	/* tail call's presence in current prog implies it is reachable */
914 	tail_call_reachable |= tail_call_seen;
915 
916 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
917 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
918 		      bpf_prog->aux->func_idx != 0);
919 	push_callee_regs(&prog, callee_regs_used);
920 
921 	ilen = prog - temp;
922 	if (image)
923 		memcpy(image + proglen, temp, ilen);
924 	proglen += ilen;
925 	addrs[0] = proglen;
926 	prog = temp;
927 
928 	for (i = 1; i <= insn_cnt; i++, insn++) {
929 		const s32 imm32 = insn->imm;
930 		u32 dst_reg = insn->dst_reg;
931 		u32 src_reg = insn->src_reg;
932 		u8 b2 = 0, b3 = 0;
933 		u8 *start_of_ldx;
934 		s64 jmp_offset;
935 		u8 jmp_cond;
936 		u8 *func;
937 		int nops;
938 
939 		switch (insn->code) {
940 			/* ALU */
941 		case BPF_ALU | BPF_ADD | BPF_X:
942 		case BPF_ALU | BPF_SUB | BPF_X:
943 		case BPF_ALU | BPF_AND | BPF_X:
944 		case BPF_ALU | BPF_OR | BPF_X:
945 		case BPF_ALU | BPF_XOR | BPF_X:
946 		case BPF_ALU64 | BPF_ADD | BPF_X:
947 		case BPF_ALU64 | BPF_SUB | BPF_X:
948 		case BPF_ALU64 | BPF_AND | BPF_X:
949 		case BPF_ALU64 | BPF_OR | BPF_X:
950 		case BPF_ALU64 | BPF_XOR | BPF_X:
951 			maybe_emit_mod(&prog, dst_reg, src_reg,
952 				       BPF_CLASS(insn->code) == BPF_ALU64);
953 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
954 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
955 			break;
956 
957 		case BPF_ALU64 | BPF_MOV | BPF_X:
958 		case BPF_ALU | BPF_MOV | BPF_X:
959 			emit_mov_reg(&prog,
960 				     BPF_CLASS(insn->code) == BPF_ALU64,
961 				     dst_reg, src_reg);
962 			break;
963 
964 			/* neg dst */
965 		case BPF_ALU | BPF_NEG:
966 		case BPF_ALU64 | BPF_NEG:
967 			if (BPF_CLASS(insn->code) == BPF_ALU64)
968 				EMIT1(add_1mod(0x48, dst_reg));
969 			else if (is_ereg(dst_reg))
970 				EMIT1(add_1mod(0x40, dst_reg));
971 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
972 			break;
973 
974 		case BPF_ALU | BPF_ADD | BPF_K:
975 		case BPF_ALU | BPF_SUB | BPF_K:
976 		case BPF_ALU | BPF_AND | BPF_K:
977 		case BPF_ALU | BPF_OR | BPF_K:
978 		case BPF_ALU | BPF_XOR | BPF_K:
979 		case BPF_ALU64 | BPF_ADD | BPF_K:
980 		case BPF_ALU64 | BPF_SUB | BPF_K:
981 		case BPF_ALU64 | BPF_AND | BPF_K:
982 		case BPF_ALU64 | BPF_OR | BPF_K:
983 		case BPF_ALU64 | BPF_XOR | BPF_K:
984 			if (BPF_CLASS(insn->code) == BPF_ALU64)
985 				EMIT1(add_1mod(0x48, dst_reg));
986 			else if (is_ereg(dst_reg))
987 				EMIT1(add_1mod(0x40, dst_reg));
988 
989 			/*
990 			 * b3 holds 'normal' opcode, b2 short form only valid
991 			 * in case dst is eax/rax.
992 			 */
993 			switch (BPF_OP(insn->code)) {
994 			case BPF_ADD:
995 				b3 = 0xC0;
996 				b2 = 0x05;
997 				break;
998 			case BPF_SUB:
999 				b3 = 0xE8;
1000 				b2 = 0x2D;
1001 				break;
1002 			case BPF_AND:
1003 				b3 = 0xE0;
1004 				b2 = 0x25;
1005 				break;
1006 			case BPF_OR:
1007 				b3 = 0xC8;
1008 				b2 = 0x0D;
1009 				break;
1010 			case BPF_XOR:
1011 				b3 = 0xF0;
1012 				b2 = 0x35;
1013 				break;
1014 			}
1015 
1016 			if (is_imm8(imm32))
1017 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1018 			else if (is_axreg(dst_reg))
1019 				EMIT1_off32(b2, imm32);
1020 			else
1021 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1022 			break;
1023 
1024 		case BPF_ALU64 | BPF_MOV | BPF_K:
1025 		case BPF_ALU | BPF_MOV | BPF_K:
1026 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1027 				       dst_reg, imm32);
1028 			break;
1029 
1030 		case BPF_LD | BPF_IMM | BPF_DW:
1031 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1032 			insn++;
1033 			i++;
1034 			break;
1035 
1036 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1037 		case BPF_ALU | BPF_MOD | BPF_X:
1038 		case BPF_ALU | BPF_DIV | BPF_X:
1039 		case BPF_ALU | BPF_MOD | BPF_K:
1040 		case BPF_ALU | BPF_DIV | BPF_K:
1041 		case BPF_ALU64 | BPF_MOD | BPF_X:
1042 		case BPF_ALU64 | BPF_DIV | BPF_X:
1043 		case BPF_ALU64 | BPF_MOD | BPF_K:
1044 		case BPF_ALU64 | BPF_DIV | BPF_K:
1045 			EMIT1(0x50); /* push rax */
1046 			EMIT1(0x52); /* push rdx */
1047 
1048 			if (BPF_SRC(insn->code) == BPF_X)
1049 				/* mov r11, src_reg */
1050 				EMIT_mov(AUX_REG, src_reg);
1051 			else
1052 				/* mov r11, imm32 */
1053 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1054 
1055 			/* mov rax, dst_reg */
1056 			EMIT_mov(BPF_REG_0, dst_reg);
1057 
1058 			/*
1059 			 * xor edx, edx
1060 			 * equivalent to 'xor rdx, rdx', but one byte less
1061 			 */
1062 			EMIT2(0x31, 0xd2);
1063 
1064 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1065 				/* div r11 */
1066 				EMIT3(0x49, 0xF7, 0xF3);
1067 			else
1068 				/* div r11d */
1069 				EMIT3(0x41, 0xF7, 0xF3);
1070 
1071 			if (BPF_OP(insn->code) == BPF_MOD)
1072 				/* mov r11, rdx */
1073 				EMIT3(0x49, 0x89, 0xD3);
1074 			else
1075 				/* mov r11, rax */
1076 				EMIT3(0x49, 0x89, 0xC3);
1077 
1078 			EMIT1(0x5A); /* pop rdx */
1079 			EMIT1(0x58); /* pop rax */
1080 
1081 			/* mov dst_reg, r11 */
1082 			EMIT_mov(dst_reg, AUX_REG);
1083 			break;
1084 
1085 		case BPF_ALU | BPF_MUL | BPF_K:
1086 		case BPF_ALU | BPF_MUL | BPF_X:
1087 		case BPF_ALU64 | BPF_MUL | BPF_K:
1088 		case BPF_ALU64 | BPF_MUL | BPF_X:
1089 		{
1090 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1091 
1092 			if (dst_reg != BPF_REG_0)
1093 				EMIT1(0x50); /* push rax */
1094 			if (dst_reg != BPF_REG_3)
1095 				EMIT1(0x52); /* push rdx */
1096 
1097 			/* mov r11, dst_reg */
1098 			EMIT_mov(AUX_REG, dst_reg);
1099 
1100 			if (BPF_SRC(insn->code) == BPF_X)
1101 				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
1102 			else
1103 				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
1104 
1105 			if (is64)
1106 				EMIT1(add_1mod(0x48, AUX_REG));
1107 			else if (is_ereg(AUX_REG))
1108 				EMIT1(add_1mod(0x40, AUX_REG));
1109 			/* mul(q) r11 */
1110 			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
1111 
1112 			if (dst_reg != BPF_REG_3)
1113 				EMIT1(0x5A); /* pop rdx */
1114 			if (dst_reg != BPF_REG_0) {
1115 				/* mov dst_reg, rax */
1116 				EMIT_mov(dst_reg, BPF_REG_0);
1117 				EMIT1(0x58); /* pop rax */
1118 			}
1119 			break;
1120 		}
1121 			/* Shifts */
1122 		case BPF_ALU | BPF_LSH | BPF_K:
1123 		case BPF_ALU | BPF_RSH | BPF_K:
1124 		case BPF_ALU | BPF_ARSH | BPF_K:
1125 		case BPF_ALU64 | BPF_LSH | BPF_K:
1126 		case BPF_ALU64 | BPF_RSH | BPF_K:
1127 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1128 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1129 				EMIT1(add_1mod(0x48, dst_reg));
1130 			else if (is_ereg(dst_reg))
1131 				EMIT1(add_1mod(0x40, dst_reg));
1132 
1133 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1134 			if (imm32 == 1)
1135 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1136 			else
1137 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1138 			break;
1139 
1140 		case BPF_ALU | BPF_LSH | BPF_X:
1141 		case BPF_ALU | BPF_RSH | BPF_X:
1142 		case BPF_ALU | BPF_ARSH | BPF_X:
1143 		case BPF_ALU64 | BPF_LSH | BPF_X:
1144 		case BPF_ALU64 | BPF_RSH | BPF_X:
1145 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1146 
1147 			/* Check for bad case when dst_reg == rcx */
1148 			if (dst_reg == BPF_REG_4) {
1149 				/* mov r11, dst_reg */
1150 				EMIT_mov(AUX_REG, dst_reg);
1151 				dst_reg = AUX_REG;
1152 			}
1153 
1154 			if (src_reg != BPF_REG_4) { /* common case */
1155 				EMIT1(0x51); /* push rcx */
1156 
1157 				/* mov rcx, src_reg */
1158 				EMIT_mov(BPF_REG_4, src_reg);
1159 			}
1160 
1161 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1162 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1163 				EMIT1(add_1mod(0x48, dst_reg));
1164 			else if (is_ereg(dst_reg))
1165 				EMIT1(add_1mod(0x40, dst_reg));
1166 
1167 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1168 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1169 
1170 			if (src_reg != BPF_REG_4)
1171 				EMIT1(0x59); /* pop rcx */
1172 
1173 			if (insn->dst_reg == BPF_REG_4)
1174 				/* mov dst_reg, r11 */
1175 				EMIT_mov(insn->dst_reg, AUX_REG);
1176 			break;
1177 
1178 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1179 			switch (imm32) {
1180 			case 16:
1181 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1182 				EMIT1(0x66);
1183 				if (is_ereg(dst_reg))
1184 					EMIT1(0x41);
1185 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1186 
1187 				/* Emit 'movzwl eax, ax' */
1188 				if (is_ereg(dst_reg))
1189 					EMIT3(0x45, 0x0F, 0xB7);
1190 				else
1191 					EMIT2(0x0F, 0xB7);
1192 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1193 				break;
1194 			case 32:
1195 				/* Emit 'bswap eax' to swap lower 4 bytes */
1196 				if (is_ereg(dst_reg))
1197 					EMIT2(0x41, 0x0F);
1198 				else
1199 					EMIT1(0x0F);
1200 				EMIT1(add_1reg(0xC8, dst_reg));
1201 				break;
1202 			case 64:
1203 				/* Emit 'bswap rax' to swap 8 bytes */
1204 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1205 				      add_1reg(0xC8, dst_reg));
1206 				break;
1207 			}
1208 			break;
1209 
1210 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1211 			switch (imm32) {
1212 			case 16:
1213 				/*
1214 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1215 				 * into 64 bit
1216 				 */
1217 				if (is_ereg(dst_reg))
1218 					EMIT3(0x45, 0x0F, 0xB7);
1219 				else
1220 					EMIT2(0x0F, 0xB7);
1221 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1222 				break;
1223 			case 32:
1224 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1225 				if (is_ereg(dst_reg))
1226 					EMIT1(0x45);
1227 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1228 				break;
1229 			case 64:
1230 				/* nop */
1231 				break;
1232 			}
1233 			break;
1234 
1235 			/* ST: *(u8*)(dst_reg + off) = imm */
1236 		case BPF_ST | BPF_MEM | BPF_B:
1237 			if (is_ereg(dst_reg))
1238 				EMIT2(0x41, 0xC6);
1239 			else
1240 				EMIT1(0xC6);
1241 			goto st;
1242 		case BPF_ST | BPF_MEM | BPF_H:
1243 			if (is_ereg(dst_reg))
1244 				EMIT3(0x66, 0x41, 0xC7);
1245 			else
1246 				EMIT2(0x66, 0xC7);
1247 			goto st;
1248 		case BPF_ST | BPF_MEM | BPF_W:
1249 			if (is_ereg(dst_reg))
1250 				EMIT2(0x41, 0xC7);
1251 			else
1252 				EMIT1(0xC7);
1253 			goto st;
1254 		case BPF_ST | BPF_MEM | BPF_DW:
1255 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1256 
1257 st:			if (is_imm8(insn->off))
1258 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1259 			else
1260 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1261 
1262 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1263 			break;
1264 
1265 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1266 		case BPF_STX | BPF_MEM | BPF_B:
1267 		case BPF_STX | BPF_MEM | BPF_H:
1268 		case BPF_STX | BPF_MEM | BPF_W:
1269 		case BPF_STX | BPF_MEM | BPF_DW:
1270 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1271 			break;
1272 
1273 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1274 		case BPF_LDX | BPF_MEM | BPF_B:
1275 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1276 		case BPF_LDX | BPF_MEM | BPF_H:
1277 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1278 		case BPF_LDX | BPF_MEM | BPF_W:
1279 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1280 		case BPF_LDX | BPF_MEM | BPF_DW:
1281 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1282 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1283 				/* test src_reg, src_reg */
1284 				maybe_emit_mod(&prog, src_reg, src_reg, true); /* always 1 byte */
1285 				EMIT2(0x85, add_2reg(0xC0, src_reg, src_reg));
1286 				/* jne start_of_ldx */
1287 				EMIT2(X86_JNE, 0);
1288 				/* xor dst_reg, dst_reg */
1289 				emit_mov_imm32(&prog, false, dst_reg, 0);
1290 				/* jmp byte_after_ldx */
1291 				EMIT2(0xEB, 0);
1292 
1293 				/* populate jmp_offset for JNE above */
1294 				temp[4] = prog - temp - 5 /* sizeof(test + jne) */;
1295 				start_of_ldx = prog;
1296 			}
1297 			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1298 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1299 				struct exception_table_entry *ex;
1300 				u8 *_insn = image + proglen;
1301 				s64 delta;
1302 
1303 				/* populate jmp_offset for JMP above */
1304 				start_of_ldx[-1] = prog - start_of_ldx;
1305 
1306 				if (!bpf_prog->aux->extable)
1307 					break;
1308 
1309 				if (excnt >= bpf_prog->aux->num_exentries) {
1310 					pr_err("ex gen bug\n");
1311 					return -EFAULT;
1312 				}
1313 				ex = &bpf_prog->aux->extable[excnt++];
1314 
1315 				delta = _insn - (u8 *)&ex->insn;
1316 				if (!is_simm32(delta)) {
1317 					pr_err("extable->insn doesn't fit into 32-bit\n");
1318 					return -EFAULT;
1319 				}
1320 				ex->insn = delta;
1321 
1322 				delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1323 				if (!is_simm32(delta)) {
1324 					pr_err("extable->handler doesn't fit into 32-bit\n");
1325 					return -EFAULT;
1326 				}
1327 				ex->handler = delta;
1328 
1329 				if (dst_reg > BPF_REG_9) {
1330 					pr_err("verifier error\n");
1331 					return -EFAULT;
1332 				}
1333 				/*
1334 				 * Compute size of x86 insn and its target dest x86 register.
1335 				 * ex_handler_bpf() will use lower 8 bits to adjust
1336 				 * pt_regs->ip to jump over this x86 instruction
1337 				 * and upper bits to figure out which pt_regs to zero out.
1338 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1339 				 * of 4 bytes will be ignored and rbx will be zero inited.
1340 				 */
1341 				ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1342 			}
1343 			break;
1344 
1345 		case BPF_STX | BPF_ATOMIC | BPF_W:
1346 		case BPF_STX | BPF_ATOMIC | BPF_DW:
1347 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1348 			    insn->imm == (BPF_OR | BPF_FETCH) ||
1349 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1350 				u8 *branch_target;
1351 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1352 
1353 				/*
1354 				 * Can't be implemented with a single x86 insn.
1355 				 * Need to do a CMPXCHG loop.
1356 				 */
1357 
1358 				/* Will need RAX as a CMPXCHG operand so save R0 */
1359 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1360 				branch_target = prog;
1361 				/* Load old value */
1362 				emit_ldx(&prog, BPF_SIZE(insn->code),
1363 					 BPF_REG_0, dst_reg, insn->off);
1364 				/*
1365 				 * Perform the (commutative) operation locally,
1366 				 * put the result in the AUX_REG.
1367 				 */
1368 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1369 				maybe_emit_mod(&prog, AUX_REG, src_reg, is64);
1370 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1371 				      add_2reg(0xC0, AUX_REG, src_reg));
1372 				/* Attempt to swap in new value */
1373 				err = emit_atomic(&prog, BPF_CMPXCHG,
1374 						  dst_reg, AUX_REG, insn->off,
1375 						  BPF_SIZE(insn->code));
1376 				if (WARN_ON(err))
1377 					return err;
1378 				/*
1379 				 * ZF tells us whether we won the race. If it's
1380 				 * cleared we need to try again.
1381 				 */
1382 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1383 				/* Return the pre-modification value */
1384 				emit_mov_reg(&prog, is64, src_reg, BPF_REG_0);
1385 				/* Restore R0 after clobbering RAX */
1386 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1387 				break;
1388 
1389 			}
1390 
1391 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1392 						  insn->off, BPF_SIZE(insn->code));
1393 			if (err)
1394 				return err;
1395 			break;
1396 
1397 			/* call */
1398 		case BPF_JMP | BPF_CALL:
1399 			func = (u8 *) __bpf_call_base + imm32;
1400 			if (tail_call_reachable) {
1401 				EMIT3_off32(0x48, 0x8B, 0x85,
1402 					    -(bpf_prog->aux->stack_depth + 8));
1403 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1404 					return -EINVAL;
1405 			} else {
1406 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1407 					return -EINVAL;
1408 			}
1409 			break;
1410 
1411 		case BPF_JMP | BPF_TAIL_CALL:
1412 			if (imm32)
1413 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1414 							  &prog, addrs[i], image,
1415 							  callee_regs_used,
1416 							  bpf_prog->aux->stack_depth);
1417 			else
1418 				emit_bpf_tail_call_indirect(&prog,
1419 							    callee_regs_used,
1420 							    bpf_prog->aux->stack_depth);
1421 			break;
1422 
1423 			/* cond jump */
1424 		case BPF_JMP | BPF_JEQ | BPF_X:
1425 		case BPF_JMP | BPF_JNE | BPF_X:
1426 		case BPF_JMP | BPF_JGT | BPF_X:
1427 		case BPF_JMP | BPF_JLT | BPF_X:
1428 		case BPF_JMP | BPF_JGE | BPF_X:
1429 		case BPF_JMP | BPF_JLE | BPF_X:
1430 		case BPF_JMP | BPF_JSGT | BPF_X:
1431 		case BPF_JMP | BPF_JSLT | BPF_X:
1432 		case BPF_JMP | BPF_JSGE | BPF_X:
1433 		case BPF_JMP | BPF_JSLE | BPF_X:
1434 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1435 		case BPF_JMP32 | BPF_JNE | BPF_X:
1436 		case BPF_JMP32 | BPF_JGT | BPF_X:
1437 		case BPF_JMP32 | BPF_JLT | BPF_X:
1438 		case BPF_JMP32 | BPF_JGE | BPF_X:
1439 		case BPF_JMP32 | BPF_JLE | BPF_X:
1440 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1441 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1442 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1443 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1444 			/* cmp dst_reg, src_reg */
1445 			maybe_emit_mod(&prog, dst_reg, src_reg,
1446 				       BPF_CLASS(insn->code) == BPF_JMP);
1447 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1448 			goto emit_cond_jmp;
1449 
1450 		case BPF_JMP | BPF_JSET | BPF_X:
1451 		case BPF_JMP32 | BPF_JSET | BPF_X:
1452 			/* test dst_reg, src_reg */
1453 			maybe_emit_mod(&prog, dst_reg, src_reg,
1454 				       BPF_CLASS(insn->code) == BPF_JMP);
1455 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1456 			goto emit_cond_jmp;
1457 
1458 		case BPF_JMP | BPF_JSET | BPF_K:
1459 		case BPF_JMP32 | BPF_JSET | BPF_K:
1460 			/* test dst_reg, imm32 */
1461 			if (BPF_CLASS(insn->code) == BPF_JMP)
1462 				EMIT1(add_1mod(0x48, dst_reg));
1463 			else if (is_ereg(dst_reg))
1464 				EMIT1(add_1mod(0x40, dst_reg));
1465 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1466 			goto emit_cond_jmp;
1467 
1468 		case BPF_JMP | BPF_JEQ | BPF_K:
1469 		case BPF_JMP | BPF_JNE | BPF_K:
1470 		case BPF_JMP | BPF_JGT | BPF_K:
1471 		case BPF_JMP | BPF_JLT | BPF_K:
1472 		case BPF_JMP | BPF_JGE | BPF_K:
1473 		case BPF_JMP | BPF_JLE | BPF_K:
1474 		case BPF_JMP | BPF_JSGT | BPF_K:
1475 		case BPF_JMP | BPF_JSLT | BPF_K:
1476 		case BPF_JMP | BPF_JSGE | BPF_K:
1477 		case BPF_JMP | BPF_JSLE | BPF_K:
1478 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1479 		case BPF_JMP32 | BPF_JNE | BPF_K:
1480 		case BPF_JMP32 | BPF_JGT | BPF_K:
1481 		case BPF_JMP32 | BPF_JLT | BPF_K:
1482 		case BPF_JMP32 | BPF_JGE | BPF_K:
1483 		case BPF_JMP32 | BPF_JLE | BPF_K:
1484 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1485 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1486 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1487 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1488 			/* test dst_reg, dst_reg to save one extra byte */
1489 			if (imm32 == 0) {
1490 				maybe_emit_mod(&prog, dst_reg, dst_reg,
1491 					       BPF_CLASS(insn->code) == BPF_JMP);
1492 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1493 				goto emit_cond_jmp;
1494 			}
1495 
1496 			/* cmp dst_reg, imm8/32 */
1497 			if (BPF_CLASS(insn->code) == BPF_JMP)
1498 				EMIT1(add_1mod(0x48, dst_reg));
1499 			else if (is_ereg(dst_reg))
1500 				EMIT1(add_1mod(0x40, dst_reg));
1501 
1502 			if (is_imm8(imm32))
1503 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1504 			else
1505 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1506 
1507 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1508 			switch (BPF_OP(insn->code)) {
1509 			case BPF_JEQ:
1510 				jmp_cond = X86_JE;
1511 				break;
1512 			case BPF_JSET:
1513 			case BPF_JNE:
1514 				jmp_cond = X86_JNE;
1515 				break;
1516 			case BPF_JGT:
1517 				/* GT is unsigned '>', JA in x86 */
1518 				jmp_cond = X86_JA;
1519 				break;
1520 			case BPF_JLT:
1521 				/* LT is unsigned '<', JB in x86 */
1522 				jmp_cond = X86_JB;
1523 				break;
1524 			case BPF_JGE:
1525 				/* GE is unsigned '>=', JAE in x86 */
1526 				jmp_cond = X86_JAE;
1527 				break;
1528 			case BPF_JLE:
1529 				/* LE is unsigned '<=', JBE in x86 */
1530 				jmp_cond = X86_JBE;
1531 				break;
1532 			case BPF_JSGT:
1533 				/* Signed '>', GT in x86 */
1534 				jmp_cond = X86_JG;
1535 				break;
1536 			case BPF_JSLT:
1537 				/* Signed '<', LT in x86 */
1538 				jmp_cond = X86_JL;
1539 				break;
1540 			case BPF_JSGE:
1541 				/* Signed '>=', GE in x86 */
1542 				jmp_cond = X86_JGE;
1543 				break;
1544 			case BPF_JSLE:
1545 				/* Signed '<=', LE in x86 */
1546 				jmp_cond = X86_JLE;
1547 				break;
1548 			default: /* to silence GCC warning */
1549 				return -EFAULT;
1550 			}
1551 			jmp_offset = addrs[i + insn->off] - addrs[i];
1552 			if (is_imm8(jmp_offset)) {
1553 				if (jmp_padding) {
1554 					/* To keep the jmp_offset valid, the extra bytes are
1555 					 * padded before the jump insn, so we substract the
1556 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1557 					 *
1558 					 * If the previous pass already emits an imm8
1559 					 * jmp_cond, then this BPF insn won't shrink, so
1560 					 * "nops" is 0.
1561 					 *
1562 					 * On the other hand, if the previous pass emits an
1563 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1564 					 * keep the image from shrinking further.
1565 					 *
1566 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1567 					 *     is 2 bytes, so the size difference is 4 bytes.
1568 					 */
1569 					nops = INSN_SZ_DIFF - 2;
1570 					if (nops != 0 && nops != 4) {
1571 						pr_err("unexpected jmp_cond padding: %d bytes\n",
1572 						       nops);
1573 						return -EFAULT;
1574 					}
1575 					cnt += emit_nops(&prog, nops);
1576 				}
1577 				EMIT2(jmp_cond, jmp_offset);
1578 			} else if (is_simm32(jmp_offset)) {
1579 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1580 			} else {
1581 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1582 				return -EFAULT;
1583 			}
1584 
1585 			break;
1586 
1587 		case BPF_JMP | BPF_JA:
1588 			if (insn->off == -1)
1589 				/* -1 jmp instructions will always jump
1590 				 * backwards two bytes. Explicitly handling
1591 				 * this case avoids wasting too many passes
1592 				 * when there are long sequences of replaced
1593 				 * dead code.
1594 				 */
1595 				jmp_offset = -2;
1596 			else
1597 				jmp_offset = addrs[i + insn->off] - addrs[i];
1598 
1599 			if (!jmp_offset) {
1600 				/*
1601 				 * If jmp_padding is enabled, the extra nops will
1602 				 * be inserted. Otherwise, optimize out nop jumps.
1603 				 */
1604 				if (jmp_padding) {
1605 					/* There are 3 possible conditions.
1606 					 * (1) This BPF_JA is already optimized out in
1607 					 *     the previous run, so there is no need
1608 					 *     to pad any extra byte (0 byte).
1609 					 * (2) The previous pass emits an imm8 jmp,
1610 					 *     so we pad 2 bytes to match the previous
1611 					 *     insn size.
1612 					 * (3) Similarly, the previous pass emits an
1613 					 *     imm32 jmp, and 5 bytes is padded.
1614 					 */
1615 					nops = INSN_SZ_DIFF;
1616 					if (nops != 0 && nops != 2 && nops != 5) {
1617 						pr_err("unexpected nop jump padding: %d bytes\n",
1618 						       nops);
1619 						return -EFAULT;
1620 					}
1621 					cnt += emit_nops(&prog, nops);
1622 				}
1623 				break;
1624 			}
1625 emit_jmp:
1626 			if (is_imm8(jmp_offset)) {
1627 				if (jmp_padding) {
1628 					/* To avoid breaking jmp_offset, the extra bytes
1629 					 * are padded before the actual jmp insn, so
1630 					 * 2 bytes is substracted from INSN_SZ_DIFF.
1631 					 *
1632 					 * If the previous pass already emits an imm8
1633 					 * jmp, there is nothing to pad (0 byte).
1634 					 *
1635 					 * If it emits an imm32 jmp (5 bytes) previously
1636 					 * and now an imm8 jmp (2 bytes), then we pad
1637 					 * (5 - 2 = 3) bytes to stop the image from
1638 					 * shrinking further.
1639 					 */
1640 					nops = INSN_SZ_DIFF - 2;
1641 					if (nops != 0 && nops != 3) {
1642 						pr_err("unexpected jump padding: %d bytes\n",
1643 						       nops);
1644 						return -EFAULT;
1645 					}
1646 					cnt += emit_nops(&prog, INSN_SZ_DIFF - 2);
1647 				}
1648 				EMIT2(0xEB, jmp_offset);
1649 			} else if (is_simm32(jmp_offset)) {
1650 				EMIT1_off32(0xE9, jmp_offset);
1651 			} else {
1652 				pr_err("jmp gen bug %llx\n", jmp_offset);
1653 				return -EFAULT;
1654 			}
1655 			break;
1656 
1657 		case BPF_JMP | BPF_EXIT:
1658 			if (seen_exit) {
1659 				jmp_offset = ctx->cleanup_addr - addrs[i];
1660 				goto emit_jmp;
1661 			}
1662 			seen_exit = true;
1663 			/* Update cleanup_addr */
1664 			ctx->cleanup_addr = proglen;
1665 			pop_callee_regs(&prog, callee_regs_used);
1666 			EMIT1(0xC9);         /* leave */
1667 			EMIT1(0xC3);         /* ret */
1668 			break;
1669 
1670 		default:
1671 			/*
1672 			 * By design x86-64 JIT should support all BPF instructions.
1673 			 * This error will be seen if new instruction was added
1674 			 * to the interpreter, but not to the JIT, or if there is
1675 			 * junk in bpf_prog.
1676 			 */
1677 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1678 			return -EINVAL;
1679 		}
1680 
1681 		ilen = prog - temp;
1682 		if (ilen > BPF_MAX_INSN_SIZE) {
1683 			pr_err("bpf_jit: fatal insn size error\n");
1684 			return -EFAULT;
1685 		}
1686 
1687 		if (image) {
1688 			if (unlikely(proglen + ilen > oldproglen)) {
1689 				pr_err("bpf_jit: fatal error\n");
1690 				return -EFAULT;
1691 			}
1692 			memcpy(image + proglen, temp, ilen);
1693 		}
1694 		proglen += ilen;
1695 		addrs[i] = proglen;
1696 		prog = temp;
1697 	}
1698 
1699 	if (image && excnt != bpf_prog->aux->num_exentries) {
1700 		pr_err("extable is not populated\n");
1701 		return -EFAULT;
1702 	}
1703 	return proglen;
1704 }
1705 
1706 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1707 		      int stack_size)
1708 {
1709 	int i;
1710 	/* Store function arguments to stack.
1711 	 * For a function that accepts two pointers the sequence will be:
1712 	 * mov QWORD PTR [rbp-0x10],rdi
1713 	 * mov QWORD PTR [rbp-0x8],rsi
1714 	 */
1715 	for (i = 0; i < min(nr_args, 6); i++)
1716 		emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1717 			 BPF_REG_FP,
1718 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1719 			 -(stack_size - i * 8));
1720 }
1721 
1722 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1723 			 int stack_size)
1724 {
1725 	int i;
1726 
1727 	/* Restore function arguments from stack.
1728 	 * For a function that accepts two pointers the sequence will be:
1729 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1730 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1731 	 */
1732 	for (i = 0; i < min(nr_args, 6); i++)
1733 		emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1734 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1735 			 BPF_REG_FP,
1736 			 -(stack_size - i * 8));
1737 }
1738 
1739 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1740 			   struct bpf_prog *p, int stack_size, bool mod_ret)
1741 {
1742 	u8 *prog = *pprog;
1743 	u8 *jmp_insn;
1744 	int cnt = 0;
1745 
1746 	/* arg1: mov rdi, progs[i] */
1747 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1748 	if (emit_call(&prog,
1749 		      p->aux->sleepable ? __bpf_prog_enter_sleepable :
1750 		      __bpf_prog_enter, prog))
1751 			return -EINVAL;
1752 	/* remember prog start time returned by __bpf_prog_enter */
1753 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1754 
1755 	/* if (__bpf_prog_enter*(prog) == 0)
1756 	 *	goto skip_exec_of_prog;
1757 	 */
1758 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1759 	/* emit 2 nops that will be replaced with JE insn */
1760 	jmp_insn = prog;
1761 	emit_nops(&prog, 2);
1762 
1763 	/* arg1: lea rdi, [rbp - stack_size] */
1764 	EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1765 	/* arg2: progs[i]->insnsi for interpreter */
1766 	if (!p->jited)
1767 		emit_mov_imm64(&prog, BPF_REG_2,
1768 			       (long) p->insnsi >> 32,
1769 			       (u32) (long) p->insnsi);
1770 	/* call JITed bpf program or interpreter */
1771 	if (emit_call(&prog, p->bpf_func, prog))
1772 		return -EINVAL;
1773 
1774 	/* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1775 	 * of the previous call which is then passed on the stack to
1776 	 * the next BPF program.
1777 	 */
1778 	if (mod_ret)
1779 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1780 
1781 	/* replace 2 nops with JE insn, since jmp target is known */
1782 	jmp_insn[0] = X86_JE;
1783 	jmp_insn[1] = prog - jmp_insn - 2;
1784 
1785 	/* arg1: mov rdi, progs[i] */
1786 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1787 	/* arg2: mov rsi, rbx <- start time in nsec */
1788 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1789 	if (emit_call(&prog,
1790 		      p->aux->sleepable ? __bpf_prog_exit_sleepable :
1791 		      __bpf_prog_exit, prog))
1792 			return -EINVAL;
1793 
1794 	*pprog = prog;
1795 	return 0;
1796 }
1797 
1798 static void emit_align(u8 **pprog, u32 align)
1799 {
1800 	u8 *target, *prog = *pprog;
1801 
1802 	target = PTR_ALIGN(prog, align);
1803 	if (target != prog)
1804 		emit_nops(&prog, target - prog);
1805 
1806 	*pprog = prog;
1807 }
1808 
1809 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1810 {
1811 	u8 *prog = *pprog;
1812 	int cnt = 0;
1813 	s64 offset;
1814 
1815 	offset = func - (ip + 2 + 4);
1816 	if (!is_simm32(offset)) {
1817 		pr_err("Target %p is out of range\n", func);
1818 		return -EINVAL;
1819 	}
1820 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1821 	*pprog = prog;
1822 	return 0;
1823 }
1824 
1825 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1826 		      struct bpf_tramp_progs *tp, int stack_size)
1827 {
1828 	int i;
1829 	u8 *prog = *pprog;
1830 
1831 	for (i = 0; i < tp->nr_progs; i++) {
1832 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, false))
1833 			return -EINVAL;
1834 	}
1835 	*pprog = prog;
1836 	return 0;
1837 }
1838 
1839 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1840 			      struct bpf_tramp_progs *tp, int stack_size,
1841 			      u8 **branches)
1842 {
1843 	u8 *prog = *pprog;
1844 	int i, cnt = 0;
1845 
1846 	/* The first fmod_ret program will receive a garbage return value.
1847 	 * Set this to 0 to avoid confusing the program.
1848 	 */
1849 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1850 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1851 	for (i = 0; i < tp->nr_progs; i++) {
1852 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true))
1853 			return -EINVAL;
1854 
1855 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
1856 		 * if (*(u64 *)(rbp - 8) !=  0)
1857 		 *	goto do_fexit;
1858 		 */
1859 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
1860 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1861 
1862 		/* Save the location of the branch and Generate 6 nops
1863 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
1864 		 * are replaced with a conditional jump once do_fexit (i.e. the
1865 		 * start of the fexit invocation) is finalized.
1866 		 */
1867 		branches[i] = prog;
1868 		emit_nops(&prog, 4 + 2);
1869 	}
1870 
1871 	*pprog = prog;
1872 	return 0;
1873 }
1874 
1875 /* Example:
1876  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1877  * its 'struct btf_func_model' will be nr_args=2
1878  * The assembly code when eth_type_trans is executing after trampoline:
1879  *
1880  * push rbp
1881  * mov rbp, rsp
1882  * sub rsp, 16                     // space for skb and dev
1883  * push rbx                        // temp regs to pass start time
1884  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1885  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1886  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1887  * mov rbx, rax                    // remember start time in bpf stats are enabled
1888  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1889  * call addr_of_jited_FENTRY_prog
1890  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1891  * mov rsi, rbx                    // prog start time
1892  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1893  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1894  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1895  * pop rbx
1896  * leave
1897  * ret
1898  *
1899  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1900  * replaced with 'call generated_bpf_trampoline'. When it returns
1901  * eth_type_trans will continue executing with original skb and dev pointers.
1902  *
1903  * The assembly code when eth_type_trans is called from trampoline:
1904  *
1905  * push rbp
1906  * mov rbp, rsp
1907  * sub rsp, 24                     // space for skb, dev, return value
1908  * push rbx                        // temp regs to pass start time
1909  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1910  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1911  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1912  * mov rbx, rax                    // remember start time if bpf stats are enabled
1913  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1914  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1915  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1916  * mov rsi, rbx                    // prog start time
1917  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1918  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1919  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1920  * call eth_type_trans+5           // execute body of eth_type_trans
1921  * mov qword ptr [rbp - 8], rax    // save return value
1922  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1923  * mov rbx, rax                    // remember start time in bpf stats are enabled
1924  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1925  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1926  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1927  * mov rsi, rbx                    // prog start time
1928  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1929  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1930  * pop rbx
1931  * leave
1932  * add rsp, 8                      // skip eth_type_trans's frame
1933  * ret                             // return to its caller
1934  */
1935 int arch_prepare_bpf_trampoline(void *image, void *image_end,
1936 				const struct btf_func_model *m, u32 flags,
1937 				struct bpf_tramp_progs *tprogs,
1938 				void *orig_call)
1939 {
1940 	int ret, i, cnt = 0, nr_args = m->nr_args;
1941 	int stack_size = nr_args * 8;
1942 	struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY];
1943 	struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT];
1944 	struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN];
1945 	u8 **branches = NULL;
1946 	u8 *prog;
1947 
1948 	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1949 	if (nr_args > 6)
1950 		return -ENOTSUPP;
1951 
1952 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1953 	    (flags & BPF_TRAMP_F_SKIP_FRAME))
1954 		return -EINVAL;
1955 
1956 	if (flags & BPF_TRAMP_F_CALL_ORIG)
1957 		stack_size += 8; /* room for return value of orig_call */
1958 
1959 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1960 		/* skip patched call instruction and point orig_call to actual
1961 		 * body of the kernel function.
1962 		 */
1963 		orig_call += X86_PATCH_SIZE;
1964 
1965 	prog = image;
1966 
1967 	EMIT1(0x55);		 /* push rbp */
1968 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1969 	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1970 	EMIT1(0x53);		 /* push rbx */
1971 
1972 	save_regs(m, &prog, nr_args, stack_size);
1973 
1974 	if (fentry->nr_progs)
1975 		if (invoke_bpf(m, &prog, fentry, stack_size))
1976 			return -EINVAL;
1977 
1978 	if (fmod_ret->nr_progs) {
1979 		branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *),
1980 				   GFP_KERNEL);
1981 		if (!branches)
1982 			return -ENOMEM;
1983 
1984 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size,
1985 				       branches)) {
1986 			ret = -EINVAL;
1987 			goto cleanup;
1988 		}
1989 	}
1990 
1991 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1992 		if (fentry->nr_progs || fmod_ret->nr_progs)
1993 			restore_regs(m, &prog, nr_args, stack_size);
1994 
1995 		/* call original function */
1996 		if (emit_call(&prog, orig_call, prog)) {
1997 			ret = -EINVAL;
1998 			goto cleanup;
1999 		}
2000 		/* remember return value in a stack for bpf prog to access */
2001 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2002 	}
2003 
2004 	if (fmod_ret->nr_progs) {
2005 		/* From Intel 64 and IA-32 Architectures Optimization
2006 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2007 		 * Coding Rule 11: All branch targets should be 16-byte
2008 		 * aligned.
2009 		 */
2010 		emit_align(&prog, 16);
2011 		/* Update the branches saved in invoke_bpf_mod_ret with the
2012 		 * aligned address of do_fexit.
2013 		 */
2014 		for (i = 0; i < fmod_ret->nr_progs; i++)
2015 			emit_cond_near_jump(&branches[i], prog, branches[i],
2016 					    X86_JNE);
2017 	}
2018 
2019 	if (fexit->nr_progs)
2020 		if (invoke_bpf(m, &prog, fexit, stack_size)) {
2021 			ret = -EINVAL;
2022 			goto cleanup;
2023 		}
2024 
2025 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2026 		restore_regs(m, &prog, nr_args, stack_size);
2027 
2028 	/* This needs to be done regardless. If there were fmod_ret programs,
2029 	 * the return value is only updated on the stack and still needs to be
2030 	 * restored to R0.
2031 	 */
2032 	if (flags & BPF_TRAMP_F_CALL_ORIG)
2033 		/* restore original return value back into RAX */
2034 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2035 
2036 	EMIT1(0x5B); /* pop rbx */
2037 	EMIT1(0xC9); /* leave */
2038 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2039 		/* skip our return address and return to parent */
2040 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2041 	EMIT1(0xC3); /* ret */
2042 	/* Make sure the trampoline generation logic doesn't overflow */
2043 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2044 		ret = -EFAULT;
2045 		goto cleanup;
2046 	}
2047 	ret = prog - (u8 *)image;
2048 
2049 cleanup:
2050 	kfree(branches);
2051 	return ret;
2052 }
2053 
2054 static int emit_fallback_jump(u8 **pprog)
2055 {
2056 	u8 *prog = *pprog;
2057 	int err = 0;
2058 
2059 #ifdef CONFIG_RETPOLINE
2060 	/* Note that this assumes the the compiler uses external
2061 	 * thunks for indirect calls. Both clang and GCC use the same
2062 	 * naming convention for external thunks.
2063 	 */
2064 	err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
2065 #else
2066 	int cnt = 0;
2067 
2068 	EMIT2(0xFF, 0xE2);	/* jmp rdx */
2069 #endif
2070 	*pprog = prog;
2071 	return err;
2072 }
2073 
2074 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
2075 {
2076 	u8 *jg_reloc, *prog = *pprog;
2077 	int pivot, err, jg_bytes = 1, cnt = 0;
2078 	s64 jg_offset;
2079 
2080 	if (a == b) {
2081 		/* Leaf node of recursion, i.e. not a range of indices
2082 		 * anymore.
2083 		 */
2084 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2085 		if (!is_simm32(progs[a]))
2086 			return -1;
2087 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2088 			    progs[a]);
2089 		err = emit_cond_near_jump(&prog,	/* je func */
2090 					  (void *)progs[a], prog,
2091 					  X86_JE);
2092 		if (err)
2093 			return err;
2094 
2095 		err = emit_fallback_jump(&prog);	/* jmp thunk/indirect */
2096 		if (err)
2097 			return err;
2098 
2099 		*pprog = prog;
2100 		return 0;
2101 	}
2102 
2103 	/* Not a leaf node, so we pivot, and recursively descend into
2104 	 * the lower and upper ranges.
2105 	 */
2106 	pivot = (b - a) / 2;
2107 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2108 	if (!is_simm32(progs[a + pivot]))
2109 		return -1;
2110 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2111 
2112 	if (pivot > 2) {				/* jg upper_part */
2113 		/* Require near jump. */
2114 		jg_bytes = 4;
2115 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2116 	} else {
2117 		EMIT2(X86_JG, 0);
2118 	}
2119 	jg_reloc = prog;
2120 
2121 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2122 				  progs);
2123 	if (err)
2124 		return err;
2125 
2126 	/* From Intel 64 and IA-32 Architectures Optimization
2127 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2128 	 * Coding Rule 11: All branch targets should be 16-byte
2129 	 * aligned.
2130 	 */
2131 	emit_align(&prog, 16);
2132 	jg_offset = prog - jg_reloc;
2133 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2134 
2135 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2136 				  b, progs);
2137 	if (err)
2138 		return err;
2139 
2140 	*pprog = prog;
2141 	return 0;
2142 }
2143 
2144 static int cmp_ips(const void *a, const void *b)
2145 {
2146 	const s64 *ipa = a;
2147 	const s64 *ipb = b;
2148 
2149 	if (*ipa > *ipb)
2150 		return 1;
2151 	if (*ipa < *ipb)
2152 		return -1;
2153 	return 0;
2154 }
2155 
2156 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
2157 {
2158 	u8 *prog = image;
2159 
2160 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2161 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
2162 }
2163 
2164 struct x64_jit_data {
2165 	struct bpf_binary_header *header;
2166 	int *addrs;
2167 	u8 *image;
2168 	int proglen;
2169 	struct jit_context ctx;
2170 };
2171 
2172 #define MAX_PASSES 20
2173 #define PADDING_PASSES (MAX_PASSES - 5)
2174 
2175 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2176 {
2177 	struct bpf_binary_header *header = NULL;
2178 	struct bpf_prog *tmp, *orig_prog = prog;
2179 	struct x64_jit_data *jit_data;
2180 	int proglen, oldproglen = 0;
2181 	struct jit_context ctx = {};
2182 	bool tmp_blinded = false;
2183 	bool extra_pass = false;
2184 	bool padding = false;
2185 	u8 *image = NULL;
2186 	int *addrs;
2187 	int pass;
2188 	int i;
2189 
2190 	if (!prog->jit_requested)
2191 		return orig_prog;
2192 
2193 	tmp = bpf_jit_blind_constants(prog);
2194 	/*
2195 	 * If blinding was requested and we failed during blinding,
2196 	 * we must fall back to the interpreter.
2197 	 */
2198 	if (IS_ERR(tmp))
2199 		return orig_prog;
2200 	if (tmp != prog) {
2201 		tmp_blinded = true;
2202 		prog = tmp;
2203 	}
2204 
2205 	jit_data = prog->aux->jit_data;
2206 	if (!jit_data) {
2207 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2208 		if (!jit_data) {
2209 			prog = orig_prog;
2210 			goto out;
2211 		}
2212 		prog->aux->jit_data = jit_data;
2213 	}
2214 	addrs = jit_data->addrs;
2215 	if (addrs) {
2216 		ctx = jit_data->ctx;
2217 		oldproglen = jit_data->proglen;
2218 		image = jit_data->image;
2219 		header = jit_data->header;
2220 		extra_pass = true;
2221 		padding = true;
2222 		goto skip_init_addrs;
2223 	}
2224 	addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2225 	if (!addrs) {
2226 		prog = orig_prog;
2227 		goto out_addrs;
2228 	}
2229 
2230 	/*
2231 	 * Before first pass, make a rough estimation of addrs[]
2232 	 * each BPF instruction is translated to less than 64 bytes
2233 	 */
2234 	for (proglen = 0, i = 0; i <= prog->len; i++) {
2235 		proglen += 64;
2236 		addrs[i] = proglen;
2237 	}
2238 	ctx.cleanup_addr = proglen;
2239 skip_init_addrs:
2240 
2241 	/*
2242 	 * JITed image shrinks with every pass and the loop iterates
2243 	 * until the image stops shrinking. Very large BPF programs
2244 	 * may converge on the last pass. In such case do one more
2245 	 * pass to emit the final image.
2246 	 */
2247 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2248 		if (!padding && pass >= PADDING_PASSES)
2249 			padding = true;
2250 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx, padding);
2251 		if (proglen <= 0) {
2252 out_image:
2253 			image = NULL;
2254 			if (header)
2255 				bpf_jit_binary_free(header);
2256 			prog = orig_prog;
2257 			goto out_addrs;
2258 		}
2259 		if (image) {
2260 			if (proglen != oldproglen) {
2261 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2262 				       proglen, oldproglen);
2263 				goto out_image;
2264 			}
2265 			break;
2266 		}
2267 		if (proglen == oldproglen) {
2268 			/*
2269 			 * The number of entries in extable is the number of BPF_LDX
2270 			 * insns that access kernel memory via "pointer to BTF type".
2271 			 * The verifier changed their opcode from LDX|MEM|size
2272 			 * to LDX|PROBE_MEM|size to make JITing easier.
2273 			 */
2274 			u32 align = __alignof__(struct exception_table_entry);
2275 			u32 extable_size = prog->aux->num_exentries *
2276 				sizeof(struct exception_table_entry);
2277 
2278 			/* allocate module memory for x86 insns and extable */
2279 			header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
2280 						      &image, align, jit_fill_hole);
2281 			if (!header) {
2282 				prog = orig_prog;
2283 				goto out_addrs;
2284 			}
2285 			prog->aux->extable = (void *) image + roundup(proglen, align);
2286 		}
2287 		oldproglen = proglen;
2288 		cond_resched();
2289 	}
2290 
2291 	if (bpf_jit_enable > 1)
2292 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
2293 
2294 	if (image) {
2295 		if (!prog->is_func || extra_pass) {
2296 			bpf_tail_call_direct_fixup(prog);
2297 			bpf_jit_binary_lock_ro(header);
2298 		} else {
2299 			jit_data->addrs = addrs;
2300 			jit_data->ctx = ctx;
2301 			jit_data->proglen = proglen;
2302 			jit_data->image = image;
2303 			jit_data->header = header;
2304 		}
2305 		prog->bpf_func = (void *)image;
2306 		prog->jited = 1;
2307 		prog->jited_len = proglen;
2308 	} else {
2309 		prog = orig_prog;
2310 	}
2311 
2312 	if (!image || !prog->is_func || extra_pass) {
2313 		if (image)
2314 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2315 out_addrs:
2316 		kfree(addrs);
2317 		kfree(jit_data);
2318 		prog->aux->jit_data = NULL;
2319 	}
2320 out:
2321 	if (tmp_blinded)
2322 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2323 					   tmp : orig_prog);
2324 	return prog;
2325 }
2326