xref: /linux/arch/x86/net/bpf_jit_comp.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bitfield.h>
12 #include <linux/bpf.h>
13 #include <linux/memory.h>
14 #include <linux/sort.h>
15 #include <asm/extable.h>
16 #include <asm/ftrace.h>
17 #include <asm/set_memory.h>
18 #include <asm/nospec-branch.h>
19 #include <asm/text-patching.h>
20 #include <asm/unwind.h>
21 #include <asm/cfi.h>
22 
23 static bool all_callee_regs_used[4] = {true, true, true, true};
24 
25 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
26 {
27 	if (len == 1)
28 		*ptr = bytes;
29 	else if (len == 2)
30 		*(u16 *)ptr = bytes;
31 	else {
32 		*(u32 *)ptr = bytes;
33 		barrier();
34 	}
35 	return ptr + len;
36 }
37 
38 #define EMIT(bytes, len) \
39 	do { prog = emit_code(prog, bytes, len); } while (0)
40 
41 #define EMIT1(b1)		EMIT(b1, 1)
42 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
43 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
44 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
45 #define EMIT5(b1, b2, b3, b4, b5) \
46 	do { EMIT1(b1); EMIT4(b2, b3, b4, b5); } while (0)
47 
48 #define EMIT1_off32(b1, off) \
49 	do { EMIT1(b1); EMIT(off, 4); } while (0)
50 #define EMIT2_off32(b1, b2, off) \
51 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
52 #define EMIT3_off32(b1, b2, b3, off) \
53 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
54 #define EMIT4_off32(b1, b2, b3, b4, off) \
55 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
56 
57 #ifdef CONFIG_X86_KERNEL_IBT
58 #define EMIT_ENDBR()		EMIT(gen_endbr(), 4)
59 #define EMIT_ENDBR_POISON()	EMIT(gen_endbr_poison(), 4)
60 #else
61 #define EMIT_ENDBR()
62 #define EMIT_ENDBR_POISON()
63 #endif
64 
65 static bool is_imm8(int value)
66 {
67 	return value <= 127 && value >= -128;
68 }
69 
70 /*
71  * Let us limit the positive offset to be <= 123.
72  * This is to ensure eventual jit convergence For the following patterns:
73  * ...
74  * pass4, final_proglen=4391:
75  *   ...
76  *   20e:    48 85 ff                test   rdi,rdi
77  *   211:    74 7d                   je     0x290
78  *   213:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
79  *   ...
80  *   289:    48 85 ff                test   rdi,rdi
81  *   28c:    74 17                   je     0x2a5
82  *   28e:    e9 7f ff ff ff          jmp    0x212
83  *   293:    bf 03 00 00 00          mov    edi,0x3
84  * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
85  * and insn at 0x28e is 5-byte jmp insn with offset -129.
86  *
87  * pass5, final_proglen=4392:
88  *   ...
89  *   20e:    48 85 ff                test   rdi,rdi
90  *   211:    0f 84 80 00 00 00       je     0x297
91  *   217:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
92  *   ...
93  *   28d:    48 85 ff                test   rdi,rdi
94  *   290:    74 1a                   je     0x2ac
95  *   292:    eb 84                   jmp    0x218
96  *   294:    bf 03 00 00 00          mov    edi,0x3
97  * Note that insn at 0x211 is 6-byte cond jump insn now since its offset
98  * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
99  * At the same time, insn at 0x292 is a 2-byte insn since its offset is
100  * -124.
101  *
102  * pass6 will repeat the same code as in pass4 and this will prevent
103  * eventual convergence.
104  *
105  * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
106  * cycle in the above. In the above example je offset <= 0x7c should work.
107  *
108  * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
109  * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
110  * avoid no convergence issue.
111  *
112  * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
113  * to maximum 123 (0x7b). This way, the jit pass can eventually converge.
114  */
115 static bool is_imm8_jmp_offset(int value)
116 {
117 	return value <= 123 && value >= -128;
118 }
119 
120 static bool is_simm32(s64 value)
121 {
122 	return value == (s64)(s32)value;
123 }
124 
125 static bool is_uimm32(u64 value)
126 {
127 	return value == (u64)(u32)value;
128 }
129 
130 /* mov dst, src */
131 #define EMIT_mov(DST, SRC)								 \
132 	do {										 \
133 		if (DST != SRC)								 \
134 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
135 	} while (0)
136 
137 static int bpf_size_to_x86_bytes(int bpf_size)
138 {
139 	if (bpf_size == BPF_W)
140 		return 4;
141 	else if (bpf_size == BPF_H)
142 		return 2;
143 	else if (bpf_size == BPF_B)
144 		return 1;
145 	else if (bpf_size == BPF_DW)
146 		return 4; /* imm32 */
147 	else
148 		return 0;
149 }
150 
151 /*
152  * List of x86 cond jumps opcodes (. + s8)
153  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
154  */
155 #define X86_JB  0x72
156 #define X86_JAE 0x73
157 #define X86_JE  0x74
158 #define X86_JNE 0x75
159 #define X86_JBE 0x76
160 #define X86_JA  0x77
161 #define X86_JL  0x7C
162 #define X86_JGE 0x7D
163 #define X86_JLE 0x7E
164 #define X86_JG  0x7F
165 
166 /* Pick a register outside of BPF range for JIT internal work */
167 #define AUX_REG (MAX_BPF_JIT_REG + 1)
168 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
169 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
170 
171 /*
172  * The following table maps BPF registers to x86-64 registers.
173  *
174  * x86-64 register R12 is unused, since if used as base address
175  * register in load/store instructions, it always needs an
176  * extra byte of encoding and is callee saved.
177  *
178  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
179  * trampoline. x86-64 register R10 is used for blinding (if enabled).
180  */
181 static const int reg2hex[] = {
182 	[BPF_REG_0] = 0,  /* RAX */
183 	[BPF_REG_1] = 7,  /* RDI */
184 	[BPF_REG_2] = 6,  /* RSI */
185 	[BPF_REG_3] = 2,  /* RDX */
186 	[BPF_REG_4] = 1,  /* RCX */
187 	[BPF_REG_5] = 0,  /* R8  */
188 	[BPF_REG_6] = 3,  /* RBX callee saved */
189 	[BPF_REG_7] = 5,  /* R13 callee saved */
190 	[BPF_REG_8] = 6,  /* R14 callee saved */
191 	[BPF_REG_9] = 7,  /* R15 callee saved */
192 	[BPF_REG_FP] = 5, /* RBP readonly */
193 	[BPF_REG_AX] = 2, /* R10 temp register */
194 	[AUX_REG] = 3,    /* R11 temp register */
195 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
196 	[X86_REG_R12] = 4, /* R12 callee saved */
197 };
198 
199 static const int reg2pt_regs[] = {
200 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
201 	[BPF_REG_1] = offsetof(struct pt_regs, di),
202 	[BPF_REG_2] = offsetof(struct pt_regs, si),
203 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
204 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
205 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
206 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
207 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
208 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
209 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
210 };
211 
212 /*
213  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
214  * which need extra byte of encoding.
215  * rax,rcx,...,rbp have simpler encoding
216  */
217 static bool is_ereg(u32 reg)
218 {
219 	return (1 << reg) & (BIT(BPF_REG_5) |
220 			     BIT(AUX_REG) |
221 			     BIT(BPF_REG_7) |
222 			     BIT(BPF_REG_8) |
223 			     BIT(BPF_REG_9) |
224 			     BIT(X86_REG_R9) |
225 			     BIT(X86_REG_R12) |
226 			     BIT(BPF_REG_AX));
227 }
228 
229 /*
230  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
231  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
232  * of encoding. al,cl,dl,bl have simpler encoding.
233  */
234 static bool is_ereg_8l(u32 reg)
235 {
236 	return is_ereg(reg) ||
237 	    (1 << reg) & (BIT(BPF_REG_1) |
238 			  BIT(BPF_REG_2) |
239 			  BIT(BPF_REG_FP));
240 }
241 
242 static bool is_axreg(u32 reg)
243 {
244 	return reg == BPF_REG_0;
245 }
246 
247 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
248 static u8 add_1mod(u8 byte, u32 reg)
249 {
250 	if (is_ereg(reg))
251 		byte |= 1;
252 	return byte;
253 }
254 
255 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
256 {
257 	if (is_ereg(r1))
258 		byte |= 1;
259 	if (is_ereg(r2))
260 		byte |= 4;
261 	return byte;
262 }
263 
264 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
265 {
266 	if (is_ereg(r1))
267 		byte |= 1;
268 	if (is_ereg(index))
269 		byte |= 2;
270 	if (is_ereg(r2))
271 		byte |= 4;
272 	return byte;
273 }
274 
275 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
276 static u8 add_1reg(u8 byte, u32 dst_reg)
277 {
278 	return byte + reg2hex[dst_reg];
279 }
280 
281 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
282 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
283 {
284 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
285 }
286 
287 /* Some 1-byte opcodes for binary ALU operations */
288 static u8 simple_alu_opcodes[] = {
289 	[BPF_ADD] = 0x01,
290 	[BPF_SUB] = 0x29,
291 	[BPF_AND] = 0x21,
292 	[BPF_OR] = 0x09,
293 	[BPF_XOR] = 0x31,
294 	[BPF_LSH] = 0xE0,
295 	[BPF_RSH] = 0xE8,
296 	[BPF_ARSH] = 0xF8,
297 };
298 
299 static void jit_fill_hole(void *area, unsigned int size)
300 {
301 	/* Fill whole space with INT3 instructions */
302 	memset(area, 0xcc, size);
303 }
304 
305 int bpf_arch_text_invalidate(void *dst, size_t len)
306 {
307 	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
308 }
309 
310 struct jit_context {
311 	int cleanup_addr; /* Epilogue code offset */
312 
313 	/*
314 	 * Program specific offsets of labels in the code; these rely on the
315 	 * JIT doing at least 2 passes, recording the position on the first
316 	 * pass, only to generate the correct offset on the second pass.
317 	 */
318 	int tail_call_direct_label;
319 	int tail_call_indirect_label;
320 };
321 
322 /* Maximum number of bytes emitted while JITing one eBPF insn */
323 #define BPF_MAX_INSN_SIZE	128
324 #define BPF_INSN_SAFETY		64
325 
326 /* Number of bytes emit_patch() needs to generate instructions */
327 #define X86_PATCH_SIZE		5
328 /* Number of bytes that will be skipped on tailcall */
329 #define X86_TAIL_CALL_OFFSET	(12 + ENDBR_INSN_SIZE)
330 
331 static void push_r9(u8 **pprog)
332 {
333 	u8 *prog = *pprog;
334 
335 	EMIT2(0x41, 0x51);   /* push r9 */
336 	*pprog = prog;
337 }
338 
339 static void pop_r9(u8 **pprog)
340 {
341 	u8 *prog = *pprog;
342 
343 	EMIT2(0x41, 0x59);   /* pop r9 */
344 	*pprog = prog;
345 }
346 
347 static void push_r12(u8 **pprog)
348 {
349 	u8 *prog = *pprog;
350 
351 	EMIT2(0x41, 0x54);   /* push r12 */
352 	*pprog = prog;
353 }
354 
355 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
356 {
357 	u8 *prog = *pprog;
358 
359 	if (callee_regs_used[0])
360 		EMIT1(0x53);         /* push rbx */
361 	if (callee_regs_used[1])
362 		EMIT2(0x41, 0x55);   /* push r13 */
363 	if (callee_regs_used[2])
364 		EMIT2(0x41, 0x56);   /* push r14 */
365 	if (callee_regs_used[3])
366 		EMIT2(0x41, 0x57);   /* push r15 */
367 	*pprog = prog;
368 }
369 
370 static void pop_r12(u8 **pprog)
371 {
372 	u8 *prog = *pprog;
373 
374 	EMIT2(0x41, 0x5C);   /* pop r12 */
375 	*pprog = prog;
376 }
377 
378 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
379 {
380 	u8 *prog = *pprog;
381 
382 	if (callee_regs_used[3])
383 		EMIT2(0x41, 0x5F);   /* pop r15 */
384 	if (callee_regs_used[2])
385 		EMIT2(0x41, 0x5E);   /* pop r14 */
386 	if (callee_regs_used[1])
387 		EMIT2(0x41, 0x5D);   /* pop r13 */
388 	if (callee_regs_used[0])
389 		EMIT1(0x5B);         /* pop rbx */
390 	*pprog = prog;
391 }
392 
393 static void emit_nops(u8 **pprog, int len)
394 {
395 	u8 *prog = *pprog;
396 	int i, noplen;
397 
398 	while (len > 0) {
399 		noplen = len;
400 
401 		if (noplen > ASM_NOP_MAX)
402 			noplen = ASM_NOP_MAX;
403 
404 		for (i = 0; i < noplen; i++)
405 			EMIT1(x86_nops[noplen][i]);
406 		len -= noplen;
407 	}
408 
409 	*pprog = prog;
410 }
411 
412 /*
413  * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
414  * in arch/x86/kernel/alternative.c
415  */
416 static int emit_call(u8 **prog, void *func, void *ip);
417 
418 static void emit_fineibt(u8 **pprog, u8 *ip, u32 hash, int arity)
419 {
420 	u8 *prog = *pprog;
421 
422 	EMIT_ENDBR();
423 	EMIT3_off32(0x41, 0x81, 0xea, hash);		/* subl $hash, %r10d	*/
424 	if (cfi_bhi) {
425 		emit_call(&prog, __bhi_args[arity], ip + 11);
426 	} else {
427 		EMIT2(0x75, 0xf9);			/* jne.d8 .-7		*/
428 		EMIT3(0x0f, 0x1f, 0x00);		/* nop3			*/
429 	}
430 	EMIT_ENDBR_POISON();
431 
432 	*pprog = prog;
433 }
434 
435 static void emit_kcfi(u8 **pprog, u32 hash)
436 {
437 	u8 *prog = *pprog;
438 
439 	EMIT1_off32(0xb8, hash);			/* movl $hash, %eax	*/
440 #ifdef CONFIG_CALL_PADDING
441 	EMIT1(0x90);
442 	EMIT1(0x90);
443 	EMIT1(0x90);
444 	EMIT1(0x90);
445 	EMIT1(0x90);
446 	EMIT1(0x90);
447 	EMIT1(0x90);
448 	EMIT1(0x90);
449 	EMIT1(0x90);
450 	EMIT1(0x90);
451 	EMIT1(0x90);
452 #endif
453 	EMIT_ENDBR();
454 
455 	*pprog = prog;
456 }
457 
458 static void emit_cfi(u8 **pprog, u8 *ip, u32 hash, int arity)
459 {
460 	u8 *prog = *pprog;
461 
462 	switch (cfi_mode) {
463 	case CFI_FINEIBT:
464 		emit_fineibt(&prog, ip, hash, arity);
465 		break;
466 
467 	case CFI_KCFI:
468 		emit_kcfi(&prog, hash);
469 		break;
470 
471 	default:
472 		EMIT_ENDBR();
473 		break;
474 	}
475 
476 	*pprog = prog;
477 }
478 
479 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
480 {
481 	u8 *prog = *pprog;
482 
483 	if (!is_subprog) {
484 		/* cmp rax, MAX_TAIL_CALL_CNT */
485 		EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
486 		EMIT2(X86_JA, 6);        /* ja 6 */
487 		/* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
488 		 * case1: entry of main prog.
489 		 * case2: tail callee of main prog.
490 		 */
491 		EMIT1(0x50);             /* push rax */
492 		/* Make rax as tail_call_cnt_ptr. */
493 		EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
494 		EMIT2(0xEB, 1);          /* jmp 1 */
495 		/* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
496 		 * case: tail callee of subprog.
497 		 */
498 		EMIT1(0x50);             /* push rax */
499 		/* push tail_call_cnt_ptr */
500 		EMIT1(0x50);             /* push rax */
501 	} else { /* is_subprog */
502 		/* rax is tail_call_cnt_ptr. */
503 		EMIT1(0x50);             /* push rax */
504 		EMIT1(0x50);             /* push rax */
505 	}
506 
507 	*pprog = prog;
508 }
509 
510 /*
511  * Emit x86-64 prologue code for BPF program.
512  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
513  * while jumping to another program
514  */
515 static void emit_prologue(u8 **pprog, u8 *ip, u32 stack_depth, bool ebpf_from_cbpf,
516 			  bool tail_call_reachable, bool is_subprog,
517 			  bool is_exception_cb)
518 {
519 	u8 *prog = *pprog;
520 
521 	if (is_subprog) {
522 		emit_cfi(&prog, ip, cfi_bpf_subprog_hash, 5);
523 	} else {
524 		emit_cfi(&prog, ip, cfi_bpf_hash, 1);
525 	}
526 	/* BPF trampoline can be made to work without these nops,
527 	 * but let's waste 5 bytes for now and optimize later
528 	 */
529 	emit_nops(&prog, X86_PATCH_SIZE);
530 	if (!ebpf_from_cbpf) {
531 		if (tail_call_reachable && !is_subprog)
532 			/* When it's the entry of the whole tailcall context,
533 			 * zeroing rax means initialising tail_call_cnt.
534 			 */
535 			EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
536 		else
537 			/* Keep the same instruction layout. */
538 			emit_nops(&prog, 3);     /* nop3 */
539 	}
540 	/* Exception callback receives FP as third parameter */
541 	if (is_exception_cb) {
542 		EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
543 		EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
544 		/* The main frame must have exception_boundary as true, so we
545 		 * first restore those callee-saved regs from stack, before
546 		 * reusing the stack frame.
547 		 */
548 		pop_callee_regs(&prog, all_callee_regs_used);
549 		pop_r12(&prog);
550 		/* Reset the stack frame. */
551 		EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
552 	} else {
553 		EMIT1(0x55);             /* push rbp */
554 		EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
555 	}
556 
557 	/* X86_TAIL_CALL_OFFSET is here */
558 	EMIT_ENDBR();
559 
560 	/* sub rsp, rounded_stack_depth */
561 	if (stack_depth)
562 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
563 	if (tail_call_reachable)
564 		emit_prologue_tail_call(&prog, is_subprog);
565 	*pprog = prog;
566 }
567 
568 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
569 {
570 	u8 *prog = *pprog;
571 	s64 offset;
572 
573 	offset = func - (ip + X86_PATCH_SIZE);
574 	if (!is_simm32(offset)) {
575 		pr_err("Target call %p is out of range\n", func);
576 		return -ERANGE;
577 	}
578 	EMIT1_off32(opcode, offset);
579 	*pprog = prog;
580 	return 0;
581 }
582 
583 static int emit_call(u8 **pprog, void *func, void *ip)
584 {
585 	return emit_patch(pprog, func, ip, 0xE8);
586 }
587 
588 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
589 {
590 	OPTIMIZER_HIDE_VAR(func);
591 	ip += x86_call_depth_emit_accounting(pprog, func, ip);
592 	return emit_patch(pprog, func, ip, 0xE8);
593 }
594 
595 static int emit_jump(u8 **pprog, void *func, void *ip)
596 {
597 	return emit_patch(pprog, func, ip, 0xE9);
598 }
599 
600 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
601 				void *old_addr, void *new_addr)
602 {
603 	const u8 *nop_insn = x86_nops[5];
604 	u8 old_insn[X86_PATCH_SIZE];
605 	u8 new_insn[X86_PATCH_SIZE];
606 	u8 *prog;
607 	int ret;
608 
609 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
610 	if (old_addr) {
611 		prog = old_insn;
612 		ret = t == BPF_MOD_CALL ?
613 		      emit_call(&prog, old_addr, ip) :
614 		      emit_jump(&prog, old_addr, ip);
615 		if (ret)
616 			return ret;
617 	}
618 
619 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
620 	if (new_addr) {
621 		prog = new_insn;
622 		ret = t == BPF_MOD_CALL ?
623 		      emit_call(&prog, new_addr, ip) :
624 		      emit_jump(&prog, new_addr, ip);
625 		if (ret)
626 			return ret;
627 	}
628 
629 	ret = -EBUSY;
630 	mutex_lock(&text_mutex);
631 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
632 		goto out;
633 	ret = 1;
634 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
635 		smp_text_poke_single(ip, new_insn, X86_PATCH_SIZE, NULL);
636 		ret = 0;
637 	}
638 out:
639 	mutex_unlock(&text_mutex);
640 	return ret;
641 }
642 
643 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
644 		       void *old_addr, void *new_addr)
645 {
646 	if (!is_kernel_text((long)ip) &&
647 	    !is_bpf_text_address((long)ip))
648 		/* BPF poking in modules is not supported */
649 		return -EINVAL;
650 
651 	/*
652 	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
653 	 * with an ENDBR instruction.
654 	 */
655 	if (is_endbr(ip))
656 		ip += ENDBR_INSN_SIZE;
657 
658 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
659 }
660 
661 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
662 
663 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
664 {
665 	u8 *prog = *pprog;
666 
667 	if (cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) {
668 		OPTIMIZER_HIDE_VAR(reg);
669 		emit_jump(&prog, its_static_thunk(reg), ip);
670 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
671 		EMIT_LFENCE();
672 		EMIT2(0xFF, 0xE0 + reg);
673 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
674 		OPTIMIZER_HIDE_VAR(reg);
675 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
676 			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
677 		else
678 			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
679 	} else {
680 		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
681 		if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
682 			EMIT1(0xCC);		/* int3 */
683 	}
684 
685 	*pprog = prog;
686 }
687 
688 static void emit_return(u8 **pprog, u8 *ip)
689 {
690 	u8 *prog = *pprog;
691 
692 	if (cpu_wants_rethunk()) {
693 		emit_jump(&prog, x86_return_thunk, ip);
694 	} else {
695 		EMIT1(0xC3);		/* ret */
696 		if (IS_ENABLED(CONFIG_MITIGATION_SLS))
697 			EMIT1(0xCC);	/* int3 */
698 	}
699 
700 	*pprog = prog;
701 }
702 
703 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack)	(-16 - round_up(stack, 8))
704 
705 /*
706  * Generate the following code:
707  *
708  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
709  *   if (index >= array->map.max_entries)
710  *     goto out;
711  *   if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
712  *     goto out;
713  *   prog = array->ptrs[index];
714  *   if (prog == NULL)
715  *     goto out;
716  *   goto *(prog->bpf_func + prologue_size);
717  * out:
718  */
719 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
720 					u8 **pprog, bool *callee_regs_used,
721 					u32 stack_depth, u8 *ip,
722 					struct jit_context *ctx)
723 {
724 	int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
725 	u8 *prog = *pprog, *start = *pprog;
726 	int offset;
727 
728 	/*
729 	 * rdi - pointer to ctx
730 	 * rsi - pointer to bpf_array
731 	 * rdx - index in bpf_array
732 	 */
733 
734 	/*
735 	 * if (index >= array->map.max_entries)
736 	 *	goto out;
737 	 */
738 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
739 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
740 	      offsetof(struct bpf_array, map.max_entries));
741 
742 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
743 	EMIT2(X86_JBE, offset);                   /* jbe out */
744 
745 	/*
746 	 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
747 	 *	goto out;
748 	 */
749 	EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
750 	EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
751 
752 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
753 	EMIT2(X86_JAE, offset);                   /* jae out */
754 
755 	/* prog = array->ptrs[index]; */
756 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
757 		    offsetof(struct bpf_array, ptrs));
758 
759 	/*
760 	 * if (prog == NULL)
761 	 *	goto out;
762 	 */
763 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
764 
765 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
766 	EMIT2(X86_JE, offset);                    /* je out */
767 
768 	/* Inc tail_call_cnt if the slot is populated. */
769 	EMIT4(0x48, 0x83, 0x00, 0x01);            /* add qword ptr [rax], 1 */
770 
771 	if (bpf_prog->aux->exception_boundary) {
772 		pop_callee_regs(&prog, all_callee_regs_used);
773 		pop_r12(&prog);
774 	} else {
775 		pop_callee_regs(&prog, callee_regs_used);
776 		if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
777 			pop_r12(&prog);
778 	}
779 
780 	/* Pop tail_call_cnt_ptr. */
781 	EMIT1(0x58);                              /* pop rax */
782 	/* Pop tail_call_cnt, if it's main prog.
783 	 * Pop tail_call_cnt_ptr, if it's subprog.
784 	 */
785 	EMIT1(0x58);                              /* pop rax */
786 	if (stack_depth)
787 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
788 			    round_up(stack_depth, 8));
789 
790 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
791 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
792 	      offsetof(struct bpf_prog, bpf_func));
793 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
794 	      X86_TAIL_CALL_OFFSET);
795 	/*
796 	 * Now we're ready to jump into next BPF program
797 	 * rdi == ctx (1st arg)
798 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
799 	 */
800 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
801 
802 	/* out: */
803 	ctx->tail_call_indirect_label = prog - start;
804 	*pprog = prog;
805 }
806 
807 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
808 				      struct bpf_jit_poke_descriptor *poke,
809 				      u8 **pprog, u8 *ip,
810 				      bool *callee_regs_used, u32 stack_depth,
811 				      struct jit_context *ctx)
812 {
813 	int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
814 	u8 *prog = *pprog, *start = *pprog;
815 	int offset;
816 
817 	/*
818 	 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
819 	 *	goto out;
820 	 */
821 	EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off);   /* mov rax, qword ptr [rbp - tcc_ptr_off] */
822 	EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT);   /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
823 
824 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
825 	EMIT2(X86_JAE, offset);                       /* jae out */
826 
827 	poke->tailcall_bypass = ip + (prog - start);
828 	poke->adj_off = X86_TAIL_CALL_OFFSET;
829 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
830 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
831 
832 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
833 		  poke->tailcall_bypass);
834 
835 	/* Inc tail_call_cnt if the slot is populated. */
836 	EMIT4(0x48, 0x83, 0x00, 0x01);                /* add qword ptr [rax], 1 */
837 
838 	if (bpf_prog->aux->exception_boundary) {
839 		pop_callee_regs(&prog, all_callee_regs_used);
840 		pop_r12(&prog);
841 	} else {
842 		pop_callee_regs(&prog, callee_regs_used);
843 		if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
844 			pop_r12(&prog);
845 	}
846 
847 	/* Pop tail_call_cnt_ptr. */
848 	EMIT1(0x58);                                  /* pop rax */
849 	/* Pop tail_call_cnt, if it's main prog.
850 	 * Pop tail_call_cnt_ptr, if it's subprog.
851 	 */
852 	EMIT1(0x58);                                  /* pop rax */
853 	if (stack_depth)
854 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
855 
856 	emit_nops(&prog, X86_PATCH_SIZE);
857 
858 	/* out: */
859 	ctx->tail_call_direct_label = prog - start;
860 
861 	*pprog = prog;
862 }
863 
864 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
865 {
866 	struct bpf_jit_poke_descriptor *poke;
867 	struct bpf_array *array;
868 	struct bpf_prog *target;
869 	int i, ret;
870 
871 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
872 		poke = &prog->aux->poke_tab[i];
873 		if (poke->aux && poke->aux != prog->aux)
874 			continue;
875 
876 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
877 
878 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
879 			continue;
880 
881 		array = container_of(poke->tail_call.map, struct bpf_array, map);
882 		mutex_lock(&array->aux->poke_mutex);
883 		target = array->ptrs[poke->tail_call.key];
884 		if (target) {
885 			ret = __bpf_arch_text_poke(poke->tailcall_target,
886 						   BPF_MOD_JUMP, NULL,
887 						   (u8 *)target->bpf_func +
888 						   poke->adj_off);
889 			BUG_ON(ret < 0);
890 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
891 						   BPF_MOD_JUMP,
892 						   (u8 *)poke->tailcall_target +
893 						   X86_PATCH_SIZE, NULL);
894 			BUG_ON(ret < 0);
895 		}
896 		WRITE_ONCE(poke->tailcall_target_stable, true);
897 		mutex_unlock(&array->aux->poke_mutex);
898 	}
899 }
900 
901 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
902 			   u32 dst_reg, const u32 imm32)
903 {
904 	u8 *prog = *pprog;
905 	u8 b1, b2, b3;
906 
907 	/*
908 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
909 	 * (which zero-extends imm32) to save 2 bytes.
910 	 */
911 	if (sign_propagate && (s32)imm32 < 0) {
912 		/* 'mov %rax, imm32' sign extends imm32 */
913 		b1 = add_1mod(0x48, dst_reg);
914 		b2 = 0xC7;
915 		b3 = 0xC0;
916 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
917 		goto done;
918 	}
919 
920 	/*
921 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
922 	 * to save 3 bytes.
923 	 */
924 	if (imm32 == 0) {
925 		if (is_ereg(dst_reg))
926 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
927 		b2 = 0x31; /* xor */
928 		b3 = 0xC0;
929 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
930 		goto done;
931 	}
932 
933 	/* mov %eax, imm32 */
934 	if (is_ereg(dst_reg))
935 		EMIT1(add_1mod(0x40, dst_reg));
936 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
937 done:
938 	*pprog = prog;
939 }
940 
941 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
942 			   const u32 imm32_hi, const u32 imm32_lo)
943 {
944 	u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
945 	u8 *prog = *pprog;
946 
947 	if (is_uimm32(imm64)) {
948 		/*
949 		 * For emitting plain u32, where sign bit must not be
950 		 * propagated LLVM tends to load imm64 over mov32
951 		 * directly, so save couple of bytes by just doing
952 		 * 'mov %eax, imm32' instead.
953 		 */
954 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
955 	} else if (is_simm32(imm64)) {
956 		emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
957 	} else {
958 		/* movabsq rax, imm64 */
959 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
960 		EMIT(imm32_lo, 4);
961 		EMIT(imm32_hi, 4);
962 	}
963 
964 	*pprog = prog;
965 }
966 
967 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
968 {
969 	u8 *prog = *pprog;
970 
971 	if (is64) {
972 		/* mov dst, src */
973 		EMIT_mov(dst_reg, src_reg);
974 	} else {
975 		/* mov32 dst, src */
976 		if (is_ereg(dst_reg) || is_ereg(src_reg))
977 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
978 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
979 	}
980 
981 	*pprog = prog;
982 }
983 
984 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
985 			   u32 src_reg)
986 {
987 	u8 *prog = *pprog;
988 
989 	if (is64) {
990 		/* movs[b,w,l]q dst, src */
991 		if (num_bits == 8)
992 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
993 			      add_2reg(0xC0, src_reg, dst_reg));
994 		else if (num_bits == 16)
995 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
996 			      add_2reg(0xC0, src_reg, dst_reg));
997 		else if (num_bits == 32)
998 			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
999 			      add_2reg(0xC0, src_reg, dst_reg));
1000 	} else {
1001 		/* movs[b,w]l dst, src */
1002 		if (num_bits == 8) {
1003 			EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
1004 			      add_2reg(0xC0, src_reg, dst_reg));
1005 		} else if (num_bits == 16) {
1006 			if (is_ereg(dst_reg) || is_ereg(src_reg))
1007 				EMIT1(add_2mod(0x40, src_reg, dst_reg));
1008 			EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
1009 			      add_2reg(0xC0, src_reg, dst_reg));
1010 		}
1011 	}
1012 
1013 	*pprog = prog;
1014 }
1015 
1016 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
1017 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
1018 {
1019 	u8 *prog = *pprog;
1020 
1021 	if (is_imm8(off)) {
1022 		/* 1-byte signed displacement.
1023 		 *
1024 		 * If off == 0 we could skip this and save one extra byte, but
1025 		 * special case of x86 R13 which always needs an offset is not
1026 		 * worth the hassle
1027 		 */
1028 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
1029 	} else {
1030 		/* 4-byte signed displacement */
1031 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
1032 	}
1033 	*pprog = prog;
1034 }
1035 
1036 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
1037 {
1038 	u8 *prog = *pprog;
1039 
1040 	if (is_imm8(off)) {
1041 		EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1042 	} else {
1043 		EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1044 	}
1045 	*pprog = prog;
1046 }
1047 
1048 /*
1049  * Emit a REX byte if it will be necessary to address these registers
1050  */
1051 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
1052 {
1053 	u8 *prog = *pprog;
1054 
1055 	if (is64)
1056 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
1057 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
1058 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
1059 	*pprog = prog;
1060 }
1061 
1062 /*
1063  * Similar version of maybe_emit_mod() for a single register
1064  */
1065 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
1066 {
1067 	u8 *prog = *pprog;
1068 
1069 	if (is64)
1070 		EMIT1(add_1mod(0x48, reg));
1071 	else if (is_ereg(reg))
1072 		EMIT1(add_1mod(0x40, reg));
1073 	*pprog = prog;
1074 }
1075 
1076 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1077 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1078 {
1079 	u8 *prog = *pprog;
1080 
1081 	switch (size) {
1082 	case BPF_B:
1083 		/* Emit 'movzx rax, byte ptr [rax + off]' */
1084 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1085 		break;
1086 	case BPF_H:
1087 		/* Emit 'movzx rax, word ptr [rax + off]' */
1088 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1089 		break;
1090 	case BPF_W:
1091 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
1092 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1093 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1094 		else
1095 			EMIT1(0x8B);
1096 		break;
1097 	case BPF_DW:
1098 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
1099 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1100 		break;
1101 	}
1102 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
1103 	*pprog = prog;
1104 }
1105 
1106 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
1107 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1108 {
1109 	u8 *prog = *pprog;
1110 
1111 	switch (size) {
1112 	case BPF_B:
1113 		/* Emit 'movsx rax, byte ptr [rax + off]' */
1114 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1115 		break;
1116 	case BPF_H:
1117 		/* Emit 'movsx rax, word ptr [rax + off]' */
1118 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1119 		break;
1120 	case BPF_W:
1121 		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
1122 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1123 		break;
1124 	}
1125 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
1126 	*pprog = prog;
1127 }
1128 
1129 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1130 {
1131 	u8 *prog = *pprog;
1132 
1133 	switch (size) {
1134 	case BPF_B:
1135 		/* movzx rax, byte ptr [rax + r12 + off] */
1136 		EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1137 		break;
1138 	case BPF_H:
1139 		/* movzx rax, word ptr [rax + r12 + off] */
1140 		EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1141 		break;
1142 	case BPF_W:
1143 		/* mov eax, dword ptr [rax + r12 + off] */
1144 		EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1145 		break;
1146 	case BPF_DW:
1147 		/* mov rax, qword ptr [rax + r12 + off] */
1148 		EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1149 		break;
1150 	}
1151 	emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1152 	*pprog = prog;
1153 }
1154 
1155 static void emit_ldsx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1156 {
1157 	u8 *prog = *pprog;
1158 
1159 	switch (size) {
1160 	case BPF_B:
1161 		/* movsx rax, byte ptr [rax + r12 + off] */
1162 		EMIT3(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x0F, 0xBE);
1163 		break;
1164 	case BPF_H:
1165 		/* movsx rax, word ptr [rax + r12 + off] */
1166 		EMIT3(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x0F, 0xBF);
1167 		break;
1168 	case BPF_W:
1169 		/* movsx rax, dword ptr [rax + r12 + off] */
1170 		EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x63);
1171 		break;
1172 	}
1173 	emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1174 	*pprog = prog;
1175 }
1176 
1177 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1178 {
1179 	emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1180 }
1181 
1182 static void emit_ldsx_r12(u8 **prog, u32 size, u32 dst_reg, u32 src_reg, int off)
1183 {
1184 	emit_ldsx_index(prog, size, dst_reg, src_reg, X86_REG_R12, off);
1185 }
1186 
1187 /* STX: *(u8*)(dst_reg + off) = src_reg */
1188 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1189 {
1190 	u8 *prog = *pprog;
1191 
1192 	switch (size) {
1193 	case BPF_B:
1194 		/* Emit 'mov byte ptr [rax + off], al' */
1195 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1196 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1197 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1198 		else
1199 			EMIT1(0x88);
1200 		break;
1201 	case BPF_H:
1202 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1203 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1204 		else
1205 			EMIT2(0x66, 0x89);
1206 		break;
1207 	case BPF_W:
1208 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1209 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1210 		else
1211 			EMIT1(0x89);
1212 		break;
1213 	case BPF_DW:
1214 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1215 		break;
1216 	}
1217 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1218 	*pprog = prog;
1219 }
1220 
1221 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
1222 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1223 {
1224 	u8 *prog = *pprog;
1225 
1226 	switch (size) {
1227 	case BPF_B:
1228 		/* mov byte ptr [rax + r12 + off], al */
1229 		EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1230 		break;
1231 	case BPF_H:
1232 		/* mov word ptr [rax + r12 + off], ax */
1233 		EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1234 		break;
1235 	case BPF_W:
1236 		/* mov dword ptr [rax + r12 + 1], eax */
1237 		EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1238 		break;
1239 	case BPF_DW:
1240 		/* mov qword ptr [rax + r12 + 1], rax */
1241 		EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1242 		break;
1243 	}
1244 	emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1245 	*pprog = prog;
1246 }
1247 
1248 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1249 {
1250 	emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1251 }
1252 
1253 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
1254 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1255 {
1256 	u8 *prog = *pprog;
1257 
1258 	switch (size) {
1259 	case BPF_B:
1260 		/* mov byte ptr [rax + r12 + off], imm8 */
1261 		EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1262 		break;
1263 	case BPF_H:
1264 		/* mov word ptr [rax + r12 + off], imm16 */
1265 		EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1266 		break;
1267 	case BPF_W:
1268 		/* mov dword ptr [rax + r12 + 1], imm32 */
1269 		EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1270 		break;
1271 	case BPF_DW:
1272 		/* mov qword ptr [rax + r12 + 1], imm32 */
1273 		EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1274 		break;
1275 	}
1276 	emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1277 	EMIT(imm, bpf_size_to_x86_bytes(size));
1278 	*pprog = prog;
1279 }
1280 
1281 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1282 {
1283 	emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1284 }
1285 
1286 static int emit_atomic_rmw(u8 **pprog, u32 atomic_op,
1287 			   u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1288 {
1289 	u8 *prog = *pprog;
1290 
1291 	EMIT1(0xF0); /* lock prefix */
1292 
1293 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1294 
1295 	/* emit opcode */
1296 	switch (atomic_op) {
1297 	case BPF_ADD:
1298 	case BPF_AND:
1299 	case BPF_OR:
1300 	case BPF_XOR:
1301 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1302 		EMIT1(simple_alu_opcodes[atomic_op]);
1303 		break;
1304 	case BPF_ADD | BPF_FETCH:
1305 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1306 		EMIT2(0x0F, 0xC1);
1307 		break;
1308 	case BPF_XCHG:
1309 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1310 		EMIT1(0x87);
1311 		break;
1312 	case BPF_CMPXCHG:
1313 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1314 		EMIT2(0x0F, 0xB1);
1315 		break;
1316 	default:
1317 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1318 		return -EFAULT;
1319 	}
1320 
1321 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1322 
1323 	*pprog = prog;
1324 	return 0;
1325 }
1326 
1327 static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size,
1328 				 u32 dst_reg, u32 src_reg, u32 index_reg,
1329 				 int off)
1330 {
1331 	u8 *prog = *pprog;
1332 
1333 	EMIT1(0xF0); /* lock prefix */
1334 	switch (size) {
1335 	case BPF_W:
1336 		EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1337 		break;
1338 	case BPF_DW:
1339 		EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1340 		break;
1341 	default:
1342 		pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
1343 		return -EFAULT;
1344 	}
1345 
1346 	/* emit opcode */
1347 	switch (atomic_op) {
1348 	case BPF_ADD:
1349 	case BPF_AND:
1350 	case BPF_OR:
1351 	case BPF_XOR:
1352 		/* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1353 		EMIT1(simple_alu_opcodes[atomic_op]);
1354 		break;
1355 	case BPF_ADD | BPF_FETCH:
1356 		/* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1357 		EMIT2(0x0F, 0xC1);
1358 		break;
1359 	case BPF_XCHG:
1360 		/* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1361 		EMIT1(0x87);
1362 		break;
1363 	case BPF_CMPXCHG:
1364 		/* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1365 		EMIT2(0x0F, 0xB1);
1366 		break;
1367 	default:
1368 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1369 		return -EFAULT;
1370 	}
1371 	emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1372 	*pprog = prog;
1373 	return 0;
1374 }
1375 
1376 static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg,
1377 			     u32 src_reg, s16 off, u8 bpf_size)
1378 {
1379 	switch (atomic_op) {
1380 	case BPF_LOAD_ACQ:
1381 		/* dst_reg = smp_load_acquire(src_reg + off16) */
1382 		emit_ldx(pprog, bpf_size, dst_reg, src_reg, off);
1383 		break;
1384 	case BPF_STORE_REL:
1385 		/* smp_store_release(dst_reg + off16, src_reg) */
1386 		emit_stx(pprog, bpf_size, dst_reg, src_reg, off);
1387 		break;
1388 	default:
1389 		pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1390 		       atomic_op);
1391 		return -EFAULT;
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size,
1398 				   u32 dst_reg, u32 src_reg, u32 index_reg,
1399 				   int off)
1400 {
1401 	switch (atomic_op) {
1402 	case BPF_LOAD_ACQ:
1403 		/* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */
1404 		emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1405 		break;
1406 	case BPF_STORE_REL:
1407 		/* smp_store_release(dst_reg + idx_reg + off16, src_reg) */
1408 		emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1409 		break;
1410 	default:
1411 		pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1412 		       atomic_op);
1413 		return -EFAULT;
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 /*
1420  * Metadata encoding for exception handling in JITed code.
1421  *
1422  * Format of `fixup` and `data` fields in `struct exception_table_entry`:
1423  *
1424  * Bit layout of `fixup` (32-bit):
1425  *
1426  * +-----------+--------+-----------+---------+----------+
1427  * | 31        | 30-24  |   23-16   |   15-8  |    7-0   |
1428  * |           |        |           |         |          |
1429  * | ARENA_ACC | Unused | ARENA_REG | DST_REG | INSN_LEN |
1430  * +-----------+--------+-----------+---------+----------+
1431  *
1432  * - INSN_LEN (8 bits): Length of faulting insn (max x86 insn = 15 bytes (fits in 8 bits)).
1433  * - DST_REG  (8 bits): Offset of dst_reg from reg2pt_regs[] (max offset = 112 (fits in 8 bits)).
1434  *                      This is set to DONT_CLEAR if the insn is a store.
1435  * - ARENA_REG (8 bits): Offset of the register that is used to calculate the
1436  *                       address for load/store when accessing the arena region.
1437  * - ARENA_ACCESS (1 bit): This bit is set when the faulting instruction accessed the arena region.
1438  *
1439  * Bit layout of `data` (32-bit):
1440  *
1441  * +--------------+--------+--------------+
1442  * |	31-16	  |  15-8  |     7-0      |
1443  * |              |	   |              |
1444  * | ARENA_OFFSET | Unused |  EX_TYPE_BPF |
1445  * +--------------+--------+--------------+
1446  *
1447  * - ARENA_OFFSET (16 bits): Offset used to calculate the address for load/store when
1448  *                           accessing the arena region.
1449  */
1450 
1451 #define DONT_CLEAR 1
1452 #define FIXUP_INSN_LEN_MASK	GENMASK(7, 0)
1453 #define FIXUP_REG_MASK		GENMASK(15, 8)
1454 #define FIXUP_ARENA_REG_MASK	GENMASK(23, 16)
1455 #define FIXUP_ARENA_ACCESS	BIT(31)
1456 #define DATA_ARENA_OFFSET_MASK	GENMASK(31, 16)
1457 
1458 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1459 {
1460 	u32 reg = FIELD_GET(FIXUP_REG_MASK, x->fixup);
1461 	u32 insn_len = FIELD_GET(FIXUP_INSN_LEN_MASK, x->fixup);
1462 	bool is_arena = !!(x->fixup & FIXUP_ARENA_ACCESS);
1463 	bool is_write = (reg == DONT_CLEAR);
1464 	unsigned long addr;
1465 	s16 off;
1466 	u32 arena_reg;
1467 
1468 	if (is_arena) {
1469 		arena_reg = FIELD_GET(FIXUP_ARENA_REG_MASK, x->fixup);
1470 		off = FIELD_GET(DATA_ARENA_OFFSET_MASK, x->data);
1471 		addr = *(unsigned long *)((void *)regs + arena_reg) + off;
1472 		bpf_prog_report_arena_violation(is_write, addr, regs->ip);
1473 	}
1474 
1475 	/* jump over faulting load and clear dest register */
1476 	if (reg != DONT_CLEAR)
1477 		*(unsigned long *)((void *)regs + reg) = 0;
1478 	regs->ip += insn_len;
1479 
1480 	return true;
1481 }
1482 
1483 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1484 			     bool *regs_used)
1485 {
1486 	int i;
1487 
1488 	for (i = 1; i <= insn_cnt; i++, insn++) {
1489 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1490 			regs_used[0] = true;
1491 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1492 			regs_used[1] = true;
1493 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1494 			regs_used[2] = true;
1495 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1496 			regs_used[3] = true;
1497 	}
1498 }
1499 
1500 /* emit the 3-byte VEX prefix
1501  *
1502  * r: same as rex.r, extra bit for ModRM reg field
1503  * x: same as rex.x, extra bit for SIB index field
1504  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1505  * m: opcode map select, encoding escape bytes e.g. 0x0f38
1506  * w: same as rex.w (32 bit or 64 bit) or opcode specific
1507  * src_reg2: additional source reg (encoded as BPF reg)
1508  * l: vector length (128 bit or 256 bit) or reserved
1509  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1510  */
1511 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1512 		      bool w, u8 src_reg2, bool l, u8 pp)
1513 {
1514 	u8 *prog = *pprog;
1515 	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1516 	u8 b1, b2;
1517 	u8 vvvv = reg2hex[src_reg2];
1518 
1519 	/* reg2hex gives only the lower 3 bit of vvvv */
1520 	if (is_ereg(src_reg2))
1521 		vvvv |= 1 << 3;
1522 
1523 	/*
1524 	 * 2nd byte of 3-byte VEX prefix
1525 	 * ~ means bit inverted encoding
1526 	 *
1527 	 *    7                           0
1528 	 *  +---+---+---+---+---+---+---+---+
1529 	 *  |~R |~X |~B |         m         |
1530 	 *  +---+---+---+---+---+---+---+---+
1531 	 */
1532 	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1533 	/*
1534 	 * 3rd byte of 3-byte VEX prefix
1535 	 *
1536 	 *    7                           0
1537 	 *  +---+---+---+---+---+---+---+---+
1538 	 *  | W |     ~vvvv     | L |   pp  |
1539 	 *  +---+---+---+---+---+---+---+---+
1540 	 */
1541 	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1542 
1543 	EMIT3(b0, b1, b2);
1544 	*pprog = prog;
1545 }
1546 
1547 /* emit BMI2 shift instruction */
1548 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1549 {
1550 	u8 *prog = *pprog;
1551 	bool r = is_ereg(dst_reg);
1552 	u8 m = 2; /* escape code 0f38 */
1553 
1554 	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1555 	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1556 	*pprog = prog;
1557 }
1558 
1559 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr)
1560 {
1561 	u8 *prog = *pprog;
1562 
1563 	/* movabs r9, priv_frame_ptr */
1564 	emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32,
1565 		       (u32) (__force long) priv_frame_ptr);
1566 
1567 #ifdef CONFIG_SMP
1568 	/* add <r9>, gs:[<off>] */
1569 	EMIT2(0x65, 0x4c);
1570 	EMIT3(0x03, 0x0c, 0x25);
1571 	EMIT((u32)(unsigned long)&this_cpu_off, 4);
1572 #endif
1573 
1574 	*pprog = prog;
1575 }
1576 
1577 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1578 
1579 #define __LOAD_TCC_PTR(off)			\
1580 	EMIT3_off32(0x48, 0x8B, 0x85, off)
1581 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1582 #define LOAD_TAIL_CALL_CNT_PTR(stack)				\
1583 	__LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1584 
1585 /* Memory size/value to protect private stack overflow/underflow */
1586 #define PRIV_STACK_GUARD_SZ    8
1587 #define PRIV_STACK_GUARD_VAL   0xEB9F12345678eb9fULL
1588 
1589 static int emit_spectre_bhb_barrier(u8 **pprog, u8 *ip,
1590 				    struct bpf_prog *bpf_prog)
1591 {
1592 	u8 *prog = *pprog;
1593 	u8 *func;
1594 
1595 	if (cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP)) {
1596 		/* The clearing sequence clobbers eax and ecx. */
1597 		EMIT1(0x50); /* push rax */
1598 		EMIT1(0x51); /* push rcx */
1599 		ip += 2;
1600 
1601 		func = (u8 *)clear_bhb_loop;
1602 		ip += x86_call_depth_emit_accounting(&prog, func, ip);
1603 
1604 		if (emit_call(&prog, func, ip))
1605 			return -EINVAL;
1606 		EMIT1(0x59); /* pop rcx */
1607 		EMIT1(0x58); /* pop rax */
1608 	}
1609 	/* Insert IBHF instruction */
1610 	if ((cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP) &&
1611 	     cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) ||
1612 	    cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_HW)) {
1613 		/*
1614 		 * Add an Indirect Branch History Fence (IBHF). IBHF acts as a
1615 		 * fence preventing branch history from before the fence from
1616 		 * affecting indirect branches after the fence. This is
1617 		 * specifically used in cBPF jitted code to prevent Intra-mode
1618 		 * BHI attacks. The IBHF instruction is designed to be a NOP on
1619 		 * hardware that doesn't need or support it.  The REP and REX.W
1620 		 * prefixes are required by the microcode, and they also ensure
1621 		 * that the NOP is unlikely to be used in existing code.
1622 		 *
1623 		 * IBHF is not a valid instruction in 32-bit mode.
1624 		 */
1625 		EMIT5(0xF3, 0x48, 0x0F, 0x1E, 0xF8); /* ibhf */
1626 	}
1627 	*pprog = prog;
1628 	return 0;
1629 }
1630 
1631 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1632 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
1633 {
1634 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1635 	struct bpf_insn *insn = bpf_prog->insnsi;
1636 	bool callee_regs_used[4] = {};
1637 	int insn_cnt = bpf_prog->len;
1638 	bool seen_exit = false;
1639 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1640 	void __percpu *priv_frame_ptr = NULL;
1641 	u64 arena_vm_start, user_vm_start;
1642 	void __percpu *priv_stack_ptr;
1643 	int i, excnt = 0;
1644 	int ilen, proglen = 0;
1645 	u8 *prog = temp;
1646 	u32 stack_depth;
1647 	int err;
1648 
1649 	stack_depth = bpf_prog->aux->stack_depth;
1650 	priv_stack_ptr = bpf_prog->aux->priv_stack_ptr;
1651 	if (priv_stack_ptr) {
1652 		priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8);
1653 		stack_depth = 0;
1654 	}
1655 
1656 	arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1657 	user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1658 
1659 	detect_reg_usage(insn, insn_cnt, callee_regs_used);
1660 
1661 	emit_prologue(&prog, image, stack_depth,
1662 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1663 		      bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1664 	/* Exception callback will clobber callee regs for its own use, and
1665 	 * restore the original callee regs from main prog's stack frame.
1666 	 */
1667 	if (bpf_prog->aux->exception_boundary) {
1668 		/* We also need to save r12, which is not mapped to any BPF
1669 		 * register, as we throw after entry into the kernel, which may
1670 		 * overwrite r12.
1671 		 */
1672 		push_r12(&prog);
1673 		push_callee_regs(&prog, all_callee_regs_used);
1674 	} else {
1675 		if (arena_vm_start)
1676 			push_r12(&prog);
1677 		push_callee_regs(&prog, callee_regs_used);
1678 	}
1679 	if (arena_vm_start)
1680 		emit_mov_imm64(&prog, X86_REG_R12,
1681 			       arena_vm_start >> 32, (u32) arena_vm_start);
1682 
1683 	if (priv_frame_ptr)
1684 		emit_priv_frame_ptr(&prog, priv_frame_ptr);
1685 
1686 	ilen = prog - temp;
1687 	if (rw_image)
1688 		memcpy(rw_image + proglen, temp, ilen);
1689 	proglen += ilen;
1690 	addrs[0] = proglen;
1691 	prog = temp;
1692 
1693 	for (i = 1; i <= insn_cnt; i++, insn++) {
1694 		const s32 imm32 = insn->imm;
1695 		u32 dst_reg = insn->dst_reg;
1696 		u32 src_reg = insn->src_reg;
1697 		u8 b2 = 0, b3 = 0;
1698 		u8 *start_of_ldx;
1699 		s64 jmp_offset;
1700 		s16 insn_off;
1701 		u8 jmp_cond;
1702 		u8 *func;
1703 		int nops;
1704 
1705 		if (priv_frame_ptr) {
1706 			if (src_reg == BPF_REG_FP)
1707 				src_reg = X86_REG_R9;
1708 
1709 			if (dst_reg == BPF_REG_FP)
1710 				dst_reg = X86_REG_R9;
1711 		}
1712 
1713 		switch (insn->code) {
1714 			/* ALU */
1715 		case BPF_ALU | BPF_ADD | BPF_X:
1716 		case BPF_ALU | BPF_SUB | BPF_X:
1717 		case BPF_ALU | BPF_AND | BPF_X:
1718 		case BPF_ALU | BPF_OR | BPF_X:
1719 		case BPF_ALU | BPF_XOR | BPF_X:
1720 		case BPF_ALU64 | BPF_ADD | BPF_X:
1721 		case BPF_ALU64 | BPF_SUB | BPF_X:
1722 		case BPF_ALU64 | BPF_AND | BPF_X:
1723 		case BPF_ALU64 | BPF_OR | BPF_X:
1724 		case BPF_ALU64 | BPF_XOR | BPF_X:
1725 			maybe_emit_mod(&prog, dst_reg, src_reg,
1726 				       BPF_CLASS(insn->code) == BPF_ALU64);
1727 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1728 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1729 			break;
1730 
1731 		case BPF_ALU64 | BPF_MOV | BPF_X:
1732 			if (insn_is_cast_user(insn)) {
1733 				if (dst_reg != src_reg)
1734 					/* 32-bit mov */
1735 					emit_mov_reg(&prog, false, dst_reg, src_reg);
1736 				/* shl dst_reg, 32 */
1737 				maybe_emit_1mod(&prog, dst_reg, true);
1738 				EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1739 
1740 				/* or dst_reg, user_vm_start */
1741 				maybe_emit_1mod(&prog, dst_reg, true);
1742 				if (is_axreg(dst_reg))
1743 					EMIT1_off32(0x0D,  user_vm_start >> 32);
1744 				else
1745 					EMIT2_off32(0x81, add_1reg(0xC8, dst_reg),  user_vm_start >> 32);
1746 
1747 				/* rol dst_reg, 32 */
1748 				maybe_emit_1mod(&prog, dst_reg, true);
1749 				EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1750 
1751 				/* xor r11, r11 */
1752 				EMIT3(0x4D, 0x31, 0xDB);
1753 
1754 				/* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1755 				maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1756 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1757 
1758 				/* cmove r11, dst_reg; if so, set dst_reg to zero */
1759 				/* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1760 				maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1761 				EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1762 				break;
1763 			} else if (insn_is_mov_percpu_addr(insn)) {
1764 				/* mov <dst>, <src> (if necessary) */
1765 				EMIT_mov(dst_reg, src_reg);
1766 #ifdef CONFIG_SMP
1767 				/* add <dst>, gs:[<off>] */
1768 				EMIT2(0x65, add_1mod(0x48, dst_reg));
1769 				EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1770 				EMIT((u32)(unsigned long)&this_cpu_off, 4);
1771 #endif
1772 				break;
1773 			}
1774 			fallthrough;
1775 		case BPF_ALU | BPF_MOV | BPF_X:
1776 			if (insn->off == 0)
1777 				emit_mov_reg(&prog,
1778 					     BPF_CLASS(insn->code) == BPF_ALU64,
1779 					     dst_reg, src_reg);
1780 			else
1781 				emit_movsx_reg(&prog, insn->off,
1782 					       BPF_CLASS(insn->code) == BPF_ALU64,
1783 					       dst_reg, src_reg);
1784 			break;
1785 
1786 			/* neg dst */
1787 		case BPF_ALU | BPF_NEG:
1788 		case BPF_ALU64 | BPF_NEG:
1789 			maybe_emit_1mod(&prog, dst_reg,
1790 					BPF_CLASS(insn->code) == BPF_ALU64);
1791 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1792 			break;
1793 
1794 		case BPF_ALU | BPF_ADD | BPF_K:
1795 		case BPF_ALU | BPF_SUB | BPF_K:
1796 		case BPF_ALU | BPF_AND | BPF_K:
1797 		case BPF_ALU | BPF_OR | BPF_K:
1798 		case BPF_ALU | BPF_XOR | BPF_K:
1799 		case BPF_ALU64 | BPF_ADD | BPF_K:
1800 		case BPF_ALU64 | BPF_SUB | BPF_K:
1801 		case BPF_ALU64 | BPF_AND | BPF_K:
1802 		case BPF_ALU64 | BPF_OR | BPF_K:
1803 		case BPF_ALU64 | BPF_XOR | BPF_K:
1804 			maybe_emit_1mod(&prog, dst_reg,
1805 					BPF_CLASS(insn->code) == BPF_ALU64);
1806 
1807 			/*
1808 			 * b3 holds 'normal' opcode, b2 short form only valid
1809 			 * in case dst is eax/rax.
1810 			 */
1811 			switch (BPF_OP(insn->code)) {
1812 			case BPF_ADD:
1813 				b3 = 0xC0;
1814 				b2 = 0x05;
1815 				break;
1816 			case BPF_SUB:
1817 				b3 = 0xE8;
1818 				b2 = 0x2D;
1819 				break;
1820 			case BPF_AND:
1821 				b3 = 0xE0;
1822 				b2 = 0x25;
1823 				break;
1824 			case BPF_OR:
1825 				b3 = 0xC8;
1826 				b2 = 0x0D;
1827 				break;
1828 			case BPF_XOR:
1829 				b3 = 0xF0;
1830 				b2 = 0x35;
1831 				break;
1832 			}
1833 
1834 			if (is_imm8(imm32))
1835 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1836 			else if (is_axreg(dst_reg))
1837 				EMIT1_off32(b2, imm32);
1838 			else
1839 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1840 			break;
1841 
1842 		case BPF_ALU64 | BPF_MOV | BPF_K:
1843 		case BPF_ALU | BPF_MOV | BPF_K:
1844 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1845 				       dst_reg, imm32);
1846 			break;
1847 
1848 		case BPF_LD | BPF_IMM | BPF_DW:
1849 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1850 			insn++;
1851 			i++;
1852 			break;
1853 
1854 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1855 		case BPF_ALU | BPF_MOD | BPF_X:
1856 		case BPF_ALU | BPF_DIV | BPF_X:
1857 		case BPF_ALU | BPF_MOD | BPF_K:
1858 		case BPF_ALU | BPF_DIV | BPF_K:
1859 		case BPF_ALU64 | BPF_MOD | BPF_X:
1860 		case BPF_ALU64 | BPF_DIV | BPF_X:
1861 		case BPF_ALU64 | BPF_MOD | BPF_K:
1862 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1863 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1864 
1865 			if (dst_reg != BPF_REG_0)
1866 				EMIT1(0x50); /* push rax */
1867 			if (dst_reg != BPF_REG_3)
1868 				EMIT1(0x52); /* push rdx */
1869 
1870 			if (BPF_SRC(insn->code) == BPF_X) {
1871 				if (src_reg == BPF_REG_0 ||
1872 				    src_reg == BPF_REG_3) {
1873 					/* mov r11, src_reg */
1874 					EMIT_mov(AUX_REG, src_reg);
1875 					src_reg = AUX_REG;
1876 				}
1877 			} else {
1878 				/* mov r11, imm32 */
1879 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1880 				src_reg = AUX_REG;
1881 			}
1882 
1883 			if (dst_reg != BPF_REG_0)
1884 				/* mov rax, dst_reg */
1885 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1886 
1887 			if (insn->off == 0) {
1888 				/*
1889 				 * xor edx, edx
1890 				 * equivalent to 'xor rdx, rdx', but one byte less
1891 				 */
1892 				EMIT2(0x31, 0xd2);
1893 
1894 				/* div src_reg */
1895 				maybe_emit_1mod(&prog, src_reg, is64);
1896 				EMIT2(0xF7, add_1reg(0xF0, src_reg));
1897 			} else {
1898 				if (BPF_CLASS(insn->code) == BPF_ALU)
1899 					EMIT1(0x99); /* cdq */
1900 				else
1901 					EMIT2(0x48, 0x99); /* cqo */
1902 
1903 				/* idiv src_reg */
1904 				maybe_emit_1mod(&prog, src_reg, is64);
1905 				EMIT2(0xF7, add_1reg(0xF8, src_reg));
1906 			}
1907 
1908 			if (BPF_OP(insn->code) == BPF_MOD &&
1909 			    dst_reg != BPF_REG_3)
1910 				/* mov dst_reg, rdx */
1911 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1912 			else if (BPF_OP(insn->code) == BPF_DIV &&
1913 				 dst_reg != BPF_REG_0)
1914 				/* mov dst_reg, rax */
1915 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1916 
1917 			if (dst_reg != BPF_REG_3)
1918 				EMIT1(0x5A); /* pop rdx */
1919 			if (dst_reg != BPF_REG_0)
1920 				EMIT1(0x58); /* pop rax */
1921 			break;
1922 		}
1923 
1924 		case BPF_ALU | BPF_MUL | BPF_K:
1925 		case BPF_ALU64 | BPF_MUL | BPF_K:
1926 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1927 				       BPF_CLASS(insn->code) == BPF_ALU64);
1928 
1929 			if (is_imm8(imm32))
1930 				/* imul dst_reg, dst_reg, imm8 */
1931 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1932 				      imm32);
1933 			else
1934 				/* imul dst_reg, dst_reg, imm32 */
1935 				EMIT2_off32(0x69,
1936 					    add_2reg(0xC0, dst_reg, dst_reg),
1937 					    imm32);
1938 			break;
1939 
1940 		case BPF_ALU | BPF_MUL | BPF_X:
1941 		case BPF_ALU64 | BPF_MUL | BPF_X:
1942 			maybe_emit_mod(&prog, src_reg, dst_reg,
1943 				       BPF_CLASS(insn->code) == BPF_ALU64);
1944 
1945 			/* imul dst_reg, src_reg */
1946 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1947 			break;
1948 
1949 			/* Shifts */
1950 		case BPF_ALU | BPF_LSH | BPF_K:
1951 		case BPF_ALU | BPF_RSH | BPF_K:
1952 		case BPF_ALU | BPF_ARSH | BPF_K:
1953 		case BPF_ALU64 | BPF_LSH | BPF_K:
1954 		case BPF_ALU64 | BPF_RSH | BPF_K:
1955 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1956 			maybe_emit_1mod(&prog, dst_reg,
1957 					BPF_CLASS(insn->code) == BPF_ALU64);
1958 
1959 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1960 			if (imm32 == 1)
1961 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1962 			else
1963 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1964 			break;
1965 
1966 		case BPF_ALU | BPF_LSH | BPF_X:
1967 		case BPF_ALU | BPF_RSH | BPF_X:
1968 		case BPF_ALU | BPF_ARSH | BPF_X:
1969 		case BPF_ALU64 | BPF_LSH | BPF_X:
1970 		case BPF_ALU64 | BPF_RSH | BPF_X:
1971 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1972 			/* BMI2 shifts aren't better when shift count is already in rcx */
1973 			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1974 				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1975 				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1976 				u8 op;
1977 
1978 				switch (BPF_OP(insn->code)) {
1979 				case BPF_LSH:
1980 					op = 1; /* prefix 0x66 */
1981 					break;
1982 				case BPF_RSH:
1983 					op = 3; /* prefix 0xf2 */
1984 					break;
1985 				case BPF_ARSH:
1986 					op = 2; /* prefix 0xf3 */
1987 					break;
1988 				}
1989 
1990 				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1991 
1992 				break;
1993 			}
1994 
1995 			if (src_reg != BPF_REG_4) { /* common case */
1996 				/* Check for bad case when dst_reg == rcx */
1997 				if (dst_reg == BPF_REG_4) {
1998 					/* mov r11, dst_reg */
1999 					EMIT_mov(AUX_REG, dst_reg);
2000 					dst_reg = AUX_REG;
2001 				} else {
2002 					EMIT1(0x51); /* push rcx */
2003 				}
2004 				/* mov rcx, src_reg */
2005 				EMIT_mov(BPF_REG_4, src_reg);
2006 			}
2007 
2008 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
2009 			maybe_emit_1mod(&prog, dst_reg,
2010 					BPF_CLASS(insn->code) == BPF_ALU64);
2011 
2012 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
2013 			EMIT2(0xD3, add_1reg(b3, dst_reg));
2014 
2015 			if (src_reg != BPF_REG_4) {
2016 				if (insn->dst_reg == BPF_REG_4)
2017 					/* mov dst_reg, r11 */
2018 					EMIT_mov(insn->dst_reg, AUX_REG);
2019 				else
2020 					EMIT1(0x59); /* pop rcx */
2021 			}
2022 
2023 			break;
2024 
2025 		case BPF_ALU | BPF_END | BPF_FROM_BE:
2026 		case BPF_ALU64 | BPF_END | BPF_FROM_LE:
2027 			switch (imm32) {
2028 			case 16:
2029 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
2030 				EMIT1(0x66);
2031 				if (is_ereg(dst_reg))
2032 					EMIT1(0x41);
2033 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
2034 
2035 				/* Emit 'movzwl eax, ax' */
2036 				if (is_ereg(dst_reg))
2037 					EMIT3(0x45, 0x0F, 0xB7);
2038 				else
2039 					EMIT2(0x0F, 0xB7);
2040 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
2041 				break;
2042 			case 32:
2043 				/* Emit 'bswap eax' to swap lower 4 bytes */
2044 				if (is_ereg(dst_reg))
2045 					EMIT2(0x41, 0x0F);
2046 				else
2047 					EMIT1(0x0F);
2048 				EMIT1(add_1reg(0xC8, dst_reg));
2049 				break;
2050 			case 64:
2051 				/* Emit 'bswap rax' to swap 8 bytes */
2052 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
2053 				      add_1reg(0xC8, dst_reg));
2054 				break;
2055 			}
2056 			break;
2057 
2058 		case BPF_ALU | BPF_END | BPF_FROM_LE:
2059 			switch (imm32) {
2060 			case 16:
2061 				/*
2062 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
2063 				 * into 64 bit
2064 				 */
2065 				if (is_ereg(dst_reg))
2066 					EMIT3(0x45, 0x0F, 0xB7);
2067 				else
2068 					EMIT2(0x0F, 0xB7);
2069 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
2070 				break;
2071 			case 32:
2072 				/* Emit 'mov eax, eax' to clear upper 32-bits */
2073 				if (is_ereg(dst_reg))
2074 					EMIT1(0x45);
2075 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
2076 				break;
2077 			case 64:
2078 				/* nop */
2079 				break;
2080 			}
2081 			break;
2082 
2083 			/* speculation barrier */
2084 		case BPF_ST | BPF_NOSPEC:
2085 			EMIT_LFENCE();
2086 			break;
2087 
2088 			/* ST: *(u8*)(dst_reg + off) = imm */
2089 		case BPF_ST | BPF_MEM | BPF_B:
2090 			if (is_ereg(dst_reg))
2091 				EMIT2(0x41, 0xC6);
2092 			else
2093 				EMIT1(0xC6);
2094 			goto st;
2095 		case BPF_ST | BPF_MEM | BPF_H:
2096 			if (is_ereg(dst_reg))
2097 				EMIT3(0x66, 0x41, 0xC7);
2098 			else
2099 				EMIT2(0x66, 0xC7);
2100 			goto st;
2101 		case BPF_ST | BPF_MEM | BPF_W:
2102 			if (is_ereg(dst_reg))
2103 				EMIT2(0x41, 0xC7);
2104 			else
2105 				EMIT1(0xC7);
2106 			goto st;
2107 		case BPF_ST | BPF_MEM | BPF_DW:
2108 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
2109 
2110 st:			if (is_imm8(insn->off))
2111 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
2112 			else
2113 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
2114 
2115 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
2116 			break;
2117 
2118 			/* STX: *(u8*)(dst_reg + off) = src_reg */
2119 		case BPF_STX | BPF_MEM | BPF_B:
2120 		case BPF_STX | BPF_MEM | BPF_H:
2121 		case BPF_STX | BPF_MEM | BPF_W:
2122 		case BPF_STX | BPF_MEM | BPF_DW:
2123 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2124 			break;
2125 
2126 		case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
2127 		case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
2128 		case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
2129 		case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
2130 			start_of_ldx = prog;
2131 			emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
2132 			goto populate_extable;
2133 
2134 			/* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
2135 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
2136 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
2137 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
2138 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
2139 		case BPF_LDX | BPF_PROBE_MEM32SX | BPF_B:
2140 		case BPF_LDX | BPF_PROBE_MEM32SX | BPF_H:
2141 		case BPF_LDX | BPF_PROBE_MEM32SX | BPF_W:
2142 		case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
2143 		case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
2144 		case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
2145 		case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
2146 			start_of_ldx = prog;
2147 			if (BPF_CLASS(insn->code) == BPF_LDX) {
2148 				if (BPF_MODE(insn->code) == BPF_PROBE_MEM32SX)
2149 					emit_ldsx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2150 				else
2151 					emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2152 			} else {
2153 				emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2154 			}
2155 populate_extable:
2156 			{
2157 				struct exception_table_entry *ex;
2158 				u8 *_insn = image + proglen + (start_of_ldx - temp);
2159 				u32 arena_reg, fixup_reg;
2160 				s64 delta;
2161 
2162 				if (!bpf_prog->aux->extable)
2163 					break;
2164 
2165 				if (excnt >= bpf_prog->aux->num_exentries) {
2166 					pr_err("mem32 extable bug\n");
2167 					return -EFAULT;
2168 				}
2169 				ex = &bpf_prog->aux->extable[excnt++];
2170 
2171 				delta = _insn - (u8 *)&ex->insn;
2172 				/* switch ex to rw buffer for writes */
2173 				ex = (void *)rw_image + ((void *)ex - (void *)image);
2174 
2175 				ex->insn = delta;
2176 
2177 				ex->data = EX_TYPE_BPF;
2178 
2179 				/*
2180 				 * src_reg/dst_reg holds the address in the arena region with upper
2181 				 * 32-bits being zero because of a preceding addr_space_cast(r<n>,
2182 				 * 0x0, 0x1) instruction. This address is adjusted with the addition
2183 				 * of arena_vm_start (see the implementation of BPF_PROBE_MEM32 and
2184 				 * BPF_PROBE_ATOMIC) before being used for the memory access. Pass
2185 				 * the reg holding the unmodified 32-bit address to
2186 				 * ex_handler_bpf().
2187 				 */
2188 				if (BPF_CLASS(insn->code) == BPF_LDX) {
2189 					arena_reg = reg2pt_regs[src_reg];
2190 					fixup_reg = reg2pt_regs[dst_reg];
2191 				} else {
2192 					arena_reg = reg2pt_regs[dst_reg];
2193 					fixup_reg = DONT_CLEAR;
2194 				}
2195 
2196 				ex->fixup = FIELD_PREP(FIXUP_INSN_LEN_MASK, prog - start_of_ldx) |
2197 					    FIELD_PREP(FIXUP_ARENA_REG_MASK, arena_reg) |
2198 					    FIELD_PREP(FIXUP_REG_MASK, fixup_reg);
2199 				ex->fixup |= FIXUP_ARENA_ACCESS;
2200 
2201 				ex->data |= FIELD_PREP(DATA_ARENA_OFFSET_MASK, insn->off);
2202 			}
2203 			break;
2204 
2205 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
2206 		case BPF_LDX | BPF_MEM | BPF_B:
2207 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
2208 		case BPF_LDX | BPF_MEM | BPF_H:
2209 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
2210 		case BPF_LDX | BPF_MEM | BPF_W:
2211 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
2212 		case BPF_LDX | BPF_MEM | BPF_DW:
2213 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
2214 			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
2215 		case BPF_LDX | BPF_MEMSX | BPF_B:
2216 		case BPF_LDX | BPF_MEMSX | BPF_H:
2217 		case BPF_LDX | BPF_MEMSX | BPF_W:
2218 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
2219 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
2220 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
2221 			insn_off = insn->off;
2222 
2223 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2224 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2225 				/* Conservatively check that src_reg + insn->off is a kernel address:
2226 				 *   src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
2227 				 *   and
2228 				 *   src_reg + insn->off < VSYSCALL_ADDR
2229 				 */
2230 
2231 				u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
2232 				u8 *end_of_jmp;
2233 
2234 				/* movabsq r10, VSYSCALL_ADDR */
2235 				emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
2236 					       (u32)(long)VSYSCALL_ADDR);
2237 
2238 				/* mov src_reg, r11 */
2239 				EMIT_mov(AUX_REG, src_reg);
2240 
2241 				if (insn->off) {
2242 					/* add r11, insn->off */
2243 					maybe_emit_1mod(&prog, AUX_REG, true);
2244 					EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
2245 				}
2246 
2247 				/* sub r11, r10 */
2248 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2249 				EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2250 
2251 				/* movabsq r10, limit */
2252 				emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
2253 					       (u32)(long)limit);
2254 
2255 				/* cmp r10, r11 */
2256 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2257 				EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2258 
2259 				/* if unsigned '>', goto load */
2260 				EMIT2(X86_JA, 0);
2261 				end_of_jmp = prog;
2262 
2263 				/* xor dst_reg, dst_reg */
2264 				emit_mov_imm32(&prog, false, dst_reg, 0);
2265 				/* jmp byte_after_ldx */
2266 				EMIT2(0xEB, 0);
2267 
2268 				/* populate jmp_offset for JAE above to jump to start_of_ldx */
2269 				start_of_ldx = prog;
2270 				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
2271 			}
2272 			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
2273 			    BPF_MODE(insn->code) == BPF_MEMSX)
2274 				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2275 			else
2276 				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2277 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2278 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2279 				struct exception_table_entry *ex;
2280 				u8 *_insn = image + proglen + (start_of_ldx - temp);
2281 				s64 delta;
2282 
2283 				/* populate jmp_offset for JMP above */
2284 				start_of_ldx[-1] = prog - start_of_ldx;
2285 
2286 				if (!bpf_prog->aux->extable)
2287 					break;
2288 
2289 				if (excnt >= bpf_prog->aux->num_exentries) {
2290 					pr_err("ex gen bug\n");
2291 					return -EFAULT;
2292 				}
2293 				ex = &bpf_prog->aux->extable[excnt++];
2294 
2295 				delta = _insn - (u8 *)&ex->insn;
2296 				if (!is_simm32(delta)) {
2297 					pr_err("extable->insn doesn't fit into 32-bit\n");
2298 					return -EFAULT;
2299 				}
2300 				/* switch ex to rw buffer for writes */
2301 				ex = (void *)rw_image + ((void *)ex - (void *)image);
2302 
2303 				ex->insn = delta;
2304 
2305 				ex->data = EX_TYPE_BPF;
2306 
2307 				if (dst_reg > BPF_REG_9) {
2308 					pr_err("verifier error\n");
2309 					return -EFAULT;
2310 				}
2311 				/*
2312 				 * Compute size of x86 insn and its target dest x86 register.
2313 				 * ex_handler_bpf() will use lower 8 bits to adjust
2314 				 * pt_regs->ip to jump over this x86 instruction
2315 				 * and upper bits to figure out which pt_regs to zero out.
2316 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2317 				 * of 4 bytes will be ignored and rbx will be zero inited.
2318 				 */
2319 				ex->fixup = FIELD_PREP(FIXUP_INSN_LEN_MASK, prog - start_of_ldx) |
2320 					    FIELD_PREP(FIXUP_REG_MASK, reg2pt_regs[dst_reg]);
2321 			}
2322 			break;
2323 
2324 		case BPF_STX | BPF_ATOMIC | BPF_B:
2325 		case BPF_STX | BPF_ATOMIC | BPF_H:
2326 			if (!bpf_atomic_is_load_store(insn)) {
2327 				pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2328 				return -EFAULT;
2329 			}
2330 			fallthrough;
2331 		case BPF_STX | BPF_ATOMIC | BPF_W:
2332 		case BPF_STX | BPF_ATOMIC | BPF_DW:
2333 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
2334 			    insn->imm == (BPF_OR | BPF_FETCH) ||
2335 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
2336 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2337 				u32 real_src_reg = src_reg;
2338 				u32 real_dst_reg = dst_reg;
2339 				u8 *branch_target;
2340 
2341 				/*
2342 				 * Can't be implemented with a single x86 insn.
2343 				 * Need to do a CMPXCHG loop.
2344 				 */
2345 
2346 				/* Will need RAX as a CMPXCHG operand so save R0 */
2347 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2348 				if (src_reg == BPF_REG_0)
2349 					real_src_reg = BPF_REG_AX;
2350 				if (dst_reg == BPF_REG_0)
2351 					real_dst_reg = BPF_REG_AX;
2352 
2353 				branch_target = prog;
2354 				/* Load old value */
2355 				emit_ldx(&prog, BPF_SIZE(insn->code),
2356 					 BPF_REG_0, real_dst_reg, insn->off);
2357 				/*
2358 				 * Perform the (commutative) operation locally,
2359 				 * put the result in the AUX_REG.
2360 				 */
2361 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2362 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2363 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2364 				      add_2reg(0xC0, AUX_REG, real_src_reg));
2365 				/* Attempt to swap in new value */
2366 				err = emit_atomic_rmw(&prog, BPF_CMPXCHG,
2367 						      real_dst_reg, AUX_REG,
2368 						      insn->off,
2369 						      BPF_SIZE(insn->code));
2370 				if (WARN_ON(err))
2371 					return err;
2372 				/*
2373 				 * ZF tells us whether we won the race. If it's
2374 				 * cleared we need to try again.
2375 				 */
2376 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
2377 				/* Return the pre-modification value */
2378 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2379 				/* Restore R0 after clobbering RAX */
2380 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2381 				break;
2382 			}
2383 
2384 			if (bpf_atomic_is_load_store(insn))
2385 				err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg,
2386 							insn->off, BPF_SIZE(insn->code));
2387 			else
2388 				err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg,
2389 						      insn->off, BPF_SIZE(insn->code));
2390 			if (err)
2391 				return err;
2392 			break;
2393 
2394 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
2395 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
2396 			if (!bpf_atomic_is_load_store(insn)) {
2397 				pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2398 				return -EFAULT;
2399 			}
2400 			fallthrough;
2401 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2402 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2403 			start_of_ldx = prog;
2404 
2405 			if (bpf_atomic_is_load_store(insn))
2406 				err = emit_atomic_ld_st_index(&prog, insn->imm,
2407 							      BPF_SIZE(insn->code), dst_reg,
2408 							      src_reg, X86_REG_R12, insn->off);
2409 			else
2410 				err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code),
2411 							    dst_reg, src_reg, X86_REG_R12,
2412 							    insn->off);
2413 			if (err)
2414 				return err;
2415 			goto populate_extable;
2416 
2417 			/* call */
2418 		case BPF_JMP | BPF_CALL: {
2419 			u8 *ip = image + addrs[i - 1];
2420 
2421 			func = (u8 *) __bpf_call_base + imm32;
2422 			if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) {
2423 				LOAD_TAIL_CALL_CNT_PTR(stack_depth);
2424 				ip += 7;
2425 			}
2426 			if (!imm32)
2427 				return -EINVAL;
2428 			if (priv_frame_ptr) {
2429 				push_r9(&prog);
2430 				ip += 2;
2431 			}
2432 			ip += x86_call_depth_emit_accounting(&prog, func, ip);
2433 			if (emit_call(&prog, func, ip))
2434 				return -EINVAL;
2435 			if (priv_frame_ptr)
2436 				pop_r9(&prog);
2437 			break;
2438 		}
2439 
2440 		case BPF_JMP | BPF_TAIL_CALL:
2441 			if (imm32)
2442 				emit_bpf_tail_call_direct(bpf_prog,
2443 							  &bpf_prog->aux->poke_tab[imm32 - 1],
2444 							  &prog, image + addrs[i - 1],
2445 							  callee_regs_used,
2446 							  stack_depth,
2447 							  ctx);
2448 			else
2449 				emit_bpf_tail_call_indirect(bpf_prog,
2450 							    &prog,
2451 							    callee_regs_used,
2452 							    stack_depth,
2453 							    image + addrs[i - 1],
2454 							    ctx);
2455 			break;
2456 
2457 			/* cond jump */
2458 		case BPF_JMP | BPF_JEQ | BPF_X:
2459 		case BPF_JMP | BPF_JNE | BPF_X:
2460 		case BPF_JMP | BPF_JGT | BPF_X:
2461 		case BPF_JMP | BPF_JLT | BPF_X:
2462 		case BPF_JMP | BPF_JGE | BPF_X:
2463 		case BPF_JMP | BPF_JLE | BPF_X:
2464 		case BPF_JMP | BPF_JSGT | BPF_X:
2465 		case BPF_JMP | BPF_JSLT | BPF_X:
2466 		case BPF_JMP | BPF_JSGE | BPF_X:
2467 		case BPF_JMP | BPF_JSLE | BPF_X:
2468 		case BPF_JMP32 | BPF_JEQ | BPF_X:
2469 		case BPF_JMP32 | BPF_JNE | BPF_X:
2470 		case BPF_JMP32 | BPF_JGT | BPF_X:
2471 		case BPF_JMP32 | BPF_JLT | BPF_X:
2472 		case BPF_JMP32 | BPF_JGE | BPF_X:
2473 		case BPF_JMP32 | BPF_JLE | BPF_X:
2474 		case BPF_JMP32 | BPF_JSGT | BPF_X:
2475 		case BPF_JMP32 | BPF_JSLT | BPF_X:
2476 		case BPF_JMP32 | BPF_JSGE | BPF_X:
2477 		case BPF_JMP32 | BPF_JSLE | BPF_X:
2478 			/* cmp dst_reg, src_reg */
2479 			maybe_emit_mod(&prog, dst_reg, src_reg,
2480 				       BPF_CLASS(insn->code) == BPF_JMP);
2481 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2482 			goto emit_cond_jmp;
2483 
2484 		case BPF_JMP | BPF_JSET | BPF_X:
2485 		case BPF_JMP32 | BPF_JSET | BPF_X:
2486 			/* test dst_reg, src_reg */
2487 			maybe_emit_mod(&prog, dst_reg, src_reg,
2488 				       BPF_CLASS(insn->code) == BPF_JMP);
2489 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2490 			goto emit_cond_jmp;
2491 
2492 		case BPF_JMP | BPF_JSET | BPF_K:
2493 		case BPF_JMP32 | BPF_JSET | BPF_K:
2494 			/* test dst_reg, imm32 */
2495 			maybe_emit_1mod(&prog, dst_reg,
2496 					BPF_CLASS(insn->code) == BPF_JMP);
2497 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2498 			goto emit_cond_jmp;
2499 
2500 		case BPF_JMP | BPF_JEQ | BPF_K:
2501 		case BPF_JMP | BPF_JNE | BPF_K:
2502 		case BPF_JMP | BPF_JGT | BPF_K:
2503 		case BPF_JMP | BPF_JLT | BPF_K:
2504 		case BPF_JMP | BPF_JGE | BPF_K:
2505 		case BPF_JMP | BPF_JLE | BPF_K:
2506 		case BPF_JMP | BPF_JSGT | BPF_K:
2507 		case BPF_JMP | BPF_JSLT | BPF_K:
2508 		case BPF_JMP | BPF_JSGE | BPF_K:
2509 		case BPF_JMP | BPF_JSLE | BPF_K:
2510 		case BPF_JMP32 | BPF_JEQ | BPF_K:
2511 		case BPF_JMP32 | BPF_JNE | BPF_K:
2512 		case BPF_JMP32 | BPF_JGT | BPF_K:
2513 		case BPF_JMP32 | BPF_JLT | BPF_K:
2514 		case BPF_JMP32 | BPF_JGE | BPF_K:
2515 		case BPF_JMP32 | BPF_JLE | BPF_K:
2516 		case BPF_JMP32 | BPF_JSGT | BPF_K:
2517 		case BPF_JMP32 | BPF_JSLT | BPF_K:
2518 		case BPF_JMP32 | BPF_JSGE | BPF_K:
2519 		case BPF_JMP32 | BPF_JSLE | BPF_K:
2520 			/* test dst_reg, dst_reg to save one extra byte */
2521 			if (imm32 == 0) {
2522 				maybe_emit_mod(&prog, dst_reg, dst_reg,
2523 					       BPF_CLASS(insn->code) == BPF_JMP);
2524 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2525 				goto emit_cond_jmp;
2526 			}
2527 
2528 			/* cmp dst_reg, imm8/32 */
2529 			maybe_emit_1mod(&prog, dst_reg,
2530 					BPF_CLASS(insn->code) == BPF_JMP);
2531 
2532 			if (is_imm8(imm32))
2533 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2534 			else
2535 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2536 
2537 emit_cond_jmp:		/* Convert BPF opcode to x86 */
2538 			switch (BPF_OP(insn->code)) {
2539 			case BPF_JEQ:
2540 				jmp_cond = X86_JE;
2541 				break;
2542 			case BPF_JSET:
2543 			case BPF_JNE:
2544 				jmp_cond = X86_JNE;
2545 				break;
2546 			case BPF_JGT:
2547 				/* GT is unsigned '>', JA in x86 */
2548 				jmp_cond = X86_JA;
2549 				break;
2550 			case BPF_JLT:
2551 				/* LT is unsigned '<', JB in x86 */
2552 				jmp_cond = X86_JB;
2553 				break;
2554 			case BPF_JGE:
2555 				/* GE is unsigned '>=', JAE in x86 */
2556 				jmp_cond = X86_JAE;
2557 				break;
2558 			case BPF_JLE:
2559 				/* LE is unsigned '<=', JBE in x86 */
2560 				jmp_cond = X86_JBE;
2561 				break;
2562 			case BPF_JSGT:
2563 				/* Signed '>', GT in x86 */
2564 				jmp_cond = X86_JG;
2565 				break;
2566 			case BPF_JSLT:
2567 				/* Signed '<', LT in x86 */
2568 				jmp_cond = X86_JL;
2569 				break;
2570 			case BPF_JSGE:
2571 				/* Signed '>=', GE in x86 */
2572 				jmp_cond = X86_JGE;
2573 				break;
2574 			case BPF_JSLE:
2575 				/* Signed '<=', LE in x86 */
2576 				jmp_cond = X86_JLE;
2577 				break;
2578 			default: /* to silence GCC warning */
2579 				return -EFAULT;
2580 			}
2581 			jmp_offset = addrs[i + insn->off] - addrs[i];
2582 			if (is_imm8_jmp_offset(jmp_offset)) {
2583 				if (jmp_padding) {
2584 					/* To keep the jmp_offset valid, the extra bytes are
2585 					 * padded before the jump insn, so we subtract the
2586 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2587 					 *
2588 					 * If the previous pass already emits an imm8
2589 					 * jmp_cond, then this BPF insn won't shrink, so
2590 					 * "nops" is 0.
2591 					 *
2592 					 * On the other hand, if the previous pass emits an
2593 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
2594 					 * keep the image from shrinking further.
2595 					 *
2596 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2597 					 *     is 2 bytes, so the size difference is 4 bytes.
2598 					 */
2599 					nops = INSN_SZ_DIFF - 2;
2600 					if (nops != 0 && nops != 4) {
2601 						pr_err("unexpected jmp_cond padding: %d bytes\n",
2602 						       nops);
2603 						return -EFAULT;
2604 					}
2605 					emit_nops(&prog, nops);
2606 				}
2607 				EMIT2(jmp_cond, jmp_offset);
2608 			} else if (is_simm32(jmp_offset)) {
2609 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2610 			} else {
2611 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2612 				return -EFAULT;
2613 			}
2614 
2615 			break;
2616 
2617 		case BPF_JMP | BPF_JA:
2618 		case BPF_JMP32 | BPF_JA:
2619 			if (BPF_CLASS(insn->code) == BPF_JMP) {
2620 				if (insn->off == -1)
2621 					/* -1 jmp instructions will always jump
2622 					 * backwards two bytes. Explicitly handling
2623 					 * this case avoids wasting too many passes
2624 					 * when there are long sequences of replaced
2625 					 * dead code.
2626 					 */
2627 					jmp_offset = -2;
2628 				else
2629 					jmp_offset = addrs[i + insn->off] - addrs[i];
2630 			} else {
2631 				if (insn->imm == -1)
2632 					jmp_offset = -2;
2633 				else
2634 					jmp_offset = addrs[i + insn->imm] - addrs[i];
2635 			}
2636 
2637 			if (!jmp_offset) {
2638 				/*
2639 				 * If jmp_padding is enabled, the extra nops will
2640 				 * be inserted. Otherwise, optimize out nop jumps.
2641 				 */
2642 				if (jmp_padding) {
2643 					/* There are 3 possible conditions.
2644 					 * (1) This BPF_JA is already optimized out in
2645 					 *     the previous run, so there is no need
2646 					 *     to pad any extra byte (0 byte).
2647 					 * (2) The previous pass emits an imm8 jmp,
2648 					 *     so we pad 2 bytes to match the previous
2649 					 *     insn size.
2650 					 * (3) Similarly, the previous pass emits an
2651 					 *     imm32 jmp, and 5 bytes is padded.
2652 					 */
2653 					nops = INSN_SZ_DIFF;
2654 					if (nops != 0 && nops != 2 && nops != 5) {
2655 						pr_err("unexpected nop jump padding: %d bytes\n",
2656 						       nops);
2657 						return -EFAULT;
2658 					}
2659 					emit_nops(&prog, nops);
2660 				}
2661 				break;
2662 			}
2663 emit_jmp:
2664 			if (is_imm8_jmp_offset(jmp_offset)) {
2665 				if (jmp_padding) {
2666 					/* To avoid breaking jmp_offset, the extra bytes
2667 					 * are padded before the actual jmp insn, so
2668 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
2669 					 *
2670 					 * If the previous pass already emits an imm8
2671 					 * jmp, there is nothing to pad (0 byte).
2672 					 *
2673 					 * If it emits an imm32 jmp (5 bytes) previously
2674 					 * and now an imm8 jmp (2 bytes), then we pad
2675 					 * (5 - 2 = 3) bytes to stop the image from
2676 					 * shrinking further.
2677 					 */
2678 					nops = INSN_SZ_DIFF - 2;
2679 					if (nops != 0 && nops != 3) {
2680 						pr_err("unexpected jump padding: %d bytes\n",
2681 						       nops);
2682 						return -EFAULT;
2683 					}
2684 					emit_nops(&prog, INSN_SZ_DIFF - 2);
2685 				}
2686 				EMIT2(0xEB, jmp_offset);
2687 			} else if (is_simm32(jmp_offset)) {
2688 				EMIT1_off32(0xE9, jmp_offset);
2689 			} else {
2690 				pr_err("jmp gen bug %llx\n", jmp_offset);
2691 				return -EFAULT;
2692 			}
2693 			break;
2694 
2695 		case BPF_JMP | BPF_EXIT:
2696 			if (seen_exit) {
2697 				jmp_offset = ctx->cleanup_addr - addrs[i];
2698 				goto emit_jmp;
2699 			}
2700 			seen_exit = true;
2701 			/* Update cleanup_addr */
2702 			ctx->cleanup_addr = proglen;
2703 			if (bpf_prog_was_classic(bpf_prog) &&
2704 			    !capable(CAP_SYS_ADMIN)) {
2705 				u8 *ip = image + addrs[i - 1];
2706 
2707 				if (emit_spectre_bhb_barrier(&prog, ip, bpf_prog))
2708 					return -EINVAL;
2709 			}
2710 			if (bpf_prog->aux->exception_boundary) {
2711 				pop_callee_regs(&prog, all_callee_regs_used);
2712 				pop_r12(&prog);
2713 			} else {
2714 				pop_callee_regs(&prog, callee_regs_used);
2715 				if (arena_vm_start)
2716 					pop_r12(&prog);
2717 			}
2718 			EMIT1(0xC9);         /* leave */
2719 			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2720 			break;
2721 
2722 		default:
2723 			/*
2724 			 * By design x86-64 JIT should support all BPF instructions.
2725 			 * This error will be seen if new instruction was added
2726 			 * to the interpreter, but not to the JIT, or if there is
2727 			 * junk in bpf_prog.
2728 			 */
2729 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2730 			return -EINVAL;
2731 		}
2732 
2733 		ilen = prog - temp;
2734 		if (ilen > BPF_MAX_INSN_SIZE) {
2735 			pr_err("bpf_jit: fatal insn size error\n");
2736 			return -EFAULT;
2737 		}
2738 
2739 		if (image) {
2740 			/*
2741 			 * When populating the image, assert that:
2742 			 *
2743 			 *  i) We do not write beyond the allocated space, and
2744 			 * ii) addrs[i] did not change from the prior run, in order
2745 			 *     to validate assumptions made for computing branch
2746 			 *     displacements.
2747 			 */
2748 			if (unlikely(proglen + ilen > oldproglen ||
2749 				     proglen + ilen != addrs[i])) {
2750 				pr_err("bpf_jit: fatal error\n");
2751 				return -EFAULT;
2752 			}
2753 			memcpy(rw_image + proglen, temp, ilen);
2754 		}
2755 		proglen += ilen;
2756 		addrs[i] = proglen;
2757 		prog = temp;
2758 	}
2759 
2760 	if (image && excnt != bpf_prog->aux->num_exentries) {
2761 		pr_err("extable is not populated\n");
2762 		return -EFAULT;
2763 	}
2764 	return proglen;
2765 }
2766 
2767 static void clean_stack_garbage(const struct btf_func_model *m,
2768 				u8 **pprog, int nr_stack_slots,
2769 				int stack_size)
2770 {
2771 	int arg_size, off;
2772 	u8 *prog;
2773 
2774 	/* Generally speaking, the compiler will pass the arguments
2775 	 * on-stack with "push" instruction, which will take 8-byte
2776 	 * on the stack. In this case, there won't be garbage values
2777 	 * while we copy the arguments from origin stack frame to current
2778 	 * in BPF_DW.
2779 	 *
2780 	 * However, sometimes the compiler will only allocate 4-byte on
2781 	 * the stack for the arguments. For now, this case will only
2782 	 * happen if there is only one argument on-stack and its size
2783 	 * not more than 4 byte. In this case, there will be garbage
2784 	 * values on the upper 4-byte where we store the argument on
2785 	 * current stack frame.
2786 	 *
2787 	 * arguments on origin stack:
2788 	 *
2789 	 * stack_arg_1(4-byte) xxx(4-byte)
2790 	 *
2791 	 * what we copy:
2792 	 *
2793 	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2794 	 *
2795 	 * and the xxx is the garbage values which we should clean here.
2796 	 */
2797 	if (nr_stack_slots != 1)
2798 		return;
2799 
2800 	/* the size of the last argument */
2801 	arg_size = m->arg_size[m->nr_args - 1];
2802 	if (arg_size <= 4) {
2803 		off = -(stack_size - 4);
2804 		prog = *pprog;
2805 		/* mov DWORD PTR [rbp + off], 0 */
2806 		if (!is_imm8(off))
2807 			EMIT2_off32(0xC7, 0x85, off);
2808 		else
2809 			EMIT3(0xC7, 0x45, off);
2810 		EMIT(0, 4);
2811 		*pprog = prog;
2812 	}
2813 }
2814 
2815 /* get the count of the regs that are used to pass arguments */
2816 static int get_nr_used_regs(const struct btf_func_model *m)
2817 {
2818 	int i, arg_regs, nr_used_regs = 0;
2819 
2820 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2821 		arg_regs = (m->arg_size[i] + 7) / 8;
2822 		if (nr_used_regs + arg_regs <= 6)
2823 			nr_used_regs += arg_regs;
2824 
2825 		if (nr_used_regs >= 6)
2826 			break;
2827 	}
2828 
2829 	return nr_used_regs;
2830 }
2831 
2832 static void save_args(const struct btf_func_model *m, u8 **prog,
2833 		      int stack_size, bool for_call_origin)
2834 {
2835 	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2836 	int i, j;
2837 
2838 	/* Store function arguments to stack.
2839 	 * For a function that accepts two pointers the sequence will be:
2840 	 * mov QWORD PTR [rbp-0x10],rdi
2841 	 * mov QWORD PTR [rbp-0x8],rsi
2842 	 */
2843 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2844 		arg_regs = (m->arg_size[i] + 7) / 8;
2845 
2846 		/* According to the research of Yonghong, struct members
2847 		 * should be all in register or all on the stack.
2848 		 * Meanwhile, the compiler will pass the argument on regs
2849 		 * if the remaining regs can hold the argument.
2850 		 *
2851 		 * Disorder of the args can happen. For example:
2852 		 *
2853 		 * struct foo_struct {
2854 		 *     long a;
2855 		 *     int b;
2856 		 * };
2857 		 * int foo(char, char, char, char, char, struct foo_struct,
2858 		 *         char);
2859 		 *
2860 		 * the arg1-5,arg7 will be passed by regs, and arg6 will
2861 		 * by stack.
2862 		 */
2863 		if (nr_regs + arg_regs > 6) {
2864 			/* copy function arguments from origin stack frame
2865 			 * into current stack frame.
2866 			 *
2867 			 * The starting address of the arguments on-stack
2868 			 * is:
2869 			 *   rbp + 8(push rbp) +
2870 			 *   8(return addr of origin call) +
2871 			 *   8(return addr of the caller)
2872 			 * which means: rbp + 24
2873 			 */
2874 			for (j = 0; j < arg_regs; j++) {
2875 				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2876 					 nr_stack_slots * 8 + 0x18);
2877 				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2878 					 -stack_size);
2879 
2880 				if (!nr_stack_slots)
2881 					first_off = stack_size;
2882 				stack_size -= 8;
2883 				nr_stack_slots++;
2884 			}
2885 		} else {
2886 			/* Only copy the arguments on-stack to current
2887 			 * 'stack_size' and ignore the regs, used to
2888 			 * prepare the arguments on-stack for origin call.
2889 			 */
2890 			if (for_call_origin) {
2891 				nr_regs += arg_regs;
2892 				continue;
2893 			}
2894 
2895 			/* copy the arguments from regs into stack */
2896 			for (j = 0; j < arg_regs; j++) {
2897 				emit_stx(prog, BPF_DW, BPF_REG_FP,
2898 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2899 					 -stack_size);
2900 				stack_size -= 8;
2901 				nr_regs++;
2902 			}
2903 		}
2904 	}
2905 
2906 	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2907 }
2908 
2909 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2910 			 int stack_size)
2911 {
2912 	int i, j, arg_regs, nr_regs = 0;
2913 
2914 	/* Restore function arguments from stack.
2915 	 * For a function that accepts two pointers the sequence will be:
2916 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2917 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2918 	 *
2919 	 * The logic here is similar to what we do in save_args()
2920 	 */
2921 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2922 		arg_regs = (m->arg_size[i] + 7) / 8;
2923 		if (nr_regs + arg_regs <= 6) {
2924 			for (j = 0; j < arg_regs; j++) {
2925 				emit_ldx(prog, BPF_DW,
2926 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2927 					 BPF_REG_FP,
2928 					 -stack_size);
2929 				stack_size -= 8;
2930 				nr_regs++;
2931 			}
2932 		} else {
2933 			stack_size -= 8 * arg_regs;
2934 		}
2935 
2936 		if (nr_regs >= 6)
2937 			break;
2938 	}
2939 }
2940 
2941 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2942 			   struct bpf_tramp_link *l, int stack_size,
2943 			   int run_ctx_off, bool save_ret,
2944 			   void *image, void *rw_image)
2945 {
2946 	u8 *prog = *pprog;
2947 	u8 *jmp_insn;
2948 	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2949 	struct bpf_prog *p = l->link.prog;
2950 	u64 cookie = l->cookie;
2951 
2952 	/* mov rdi, cookie */
2953 	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2954 
2955 	/* Prepare struct bpf_tramp_run_ctx.
2956 	 *
2957 	 * bpf_tramp_run_ctx is already preserved by
2958 	 * arch_prepare_bpf_trampoline().
2959 	 *
2960 	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2961 	 */
2962 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2963 
2964 	/* arg1: mov rdi, progs[i] */
2965 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2966 	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2967 	if (!is_imm8(-run_ctx_off))
2968 		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2969 	else
2970 		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2971 
2972 	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2973 		return -EINVAL;
2974 	/* remember prog start time returned by __bpf_prog_enter */
2975 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2976 
2977 	/* if (__bpf_prog_enter*(prog) == 0)
2978 	 *	goto skip_exec_of_prog;
2979 	 */
2980 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2981 	/* emit 2 nops that will be replaced with JE insn */
2982 	jmp_insn = prog;
2983 	emit_nops(&prog, 2);
2984 
2985 	/* arg1: lea rdi, [rbp - stack_size] */
2986 	if (!is_imm8(-stack_size))
2987 		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2988 	else
2989 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2990 	/* arg2: progs[i]->insnsi for interpreter */
2991 	if (!p->jited)
2992 		emit_mov_imm64(&prog, BPF_REG_2,
2993 			       (long) p->insnsi >> 32,
2994 			       (u32) (long) p->insnsi);
2995 	/* call JITed bpf program or interpreter */
2996 	if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2997 		return -EINVAL;
2998 
2999 	/*
3000 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
3001 	 * of the previous call which is then passed on the stack to
3002 	 * the next BPF program.
3003 	 *
3004 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
3005 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
3006 	 */
3007 	if (save_ret)
3008 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3009 
3010 	/* replace 2 nops with JE insn, since jmp target is known */
3011 	jmp_insn[0] = X86_JE;
3012 	jmp_insn[1] = prog - jmp_insn - 2;
3013 
3014 	/* arg1: mov rdi, progs[i] */
3015 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
3016 	/* arg2: mov rsi, rbx <- start time in nsec */
3017 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
3018 	/* arg3: lea rdx, [rbp - run_ctx_off] */
3019 	if (!is_imm8(-run_ctx_off))
3020 		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
3021 	else
3022 		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
3023 	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
3024 		return -EINVAL;
3025 
3026 	*pprog = prog;
3027 	return 0;
3028 }
3029 
3030 static void emit_align(u8 **pprog, u32 align)
3031 {
3032 	u8 *target, *prog = *pprog;
3033 
3034 	target = PTR_ALIGN(prog, align);
3035 	if (target != prog)
3036 		emit_nops(&prog, target - prog);
3037 
3038 	*pprog = prog;
3039 }
3040 
3041 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
3042 {
3043 	u8 *prog = *pprog;
3044 	s64 offset;
3045 
3046 	offset = func - (ip + 2 + 4);
3047 	if (!is_simm32(offset)) {
3048 		pr_err("Target %p is out of range\n", func);
3049 		return -EINVAL;
3050 	}
3051 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
3052 	*pprog = prog;
3053 	return 0;
3054 }
3055 
3056 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
3057 		      struct bpf_tramp_links *tl, int stack_size,
3058 		      int run_ctx_off, bool save_ret,
3059 		      void *image, void *rw_image)
3060 {
3061 	int i;
3062 	u8 *prog = *pprog;
3063 
3064 	for (i = 0; i < tl->nr_links; i++) {
3065 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
3066 				    run_ctx_off, save_ret, image, rw_image))
3067 			return -EINVAL;
3068 	}
3069 	*pprog = prog;
3070 	return 0;
3071 }
3072 
3073 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
3074 			      struct bpf_tramp_links *tl, int stack_size,
3075 			      int run_ctx_off, u8 **branches,
3076 			      void *image, void *rw_image)
3077 {
3078 	u8 *prog = *pprog;
3079 	int i;
3080 
3081 	/* The first fmod_ret program will receive a garbage return value.
3082 	 * Set this to 0 to avoid confusing the program.
3083 	 */
3084 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
3085 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3086 	for (i = 0; i < tl->nr_links; i++) {
3087 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
3088 				    image, rw_image))
3089 			return -EINVAL;
3090 
3091 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
3092 		 * if (*(u64 *)(rbp - 8) !=  0)
3093 		 *	goto do_fexit;
3094 		 */
3095 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
3096 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
3097 
3098 		/* Save the location of the branch and Generate 6 nops
3099 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
3100 		 * are replaced with a conditional jump once do_fexit (i.e. the
3101 		 * start of the fexit invocation) is finalized.
3102 		 */
3103 		branches[i] = prog;
3104 		emit_nops(&prog, 4 + 2);
3105 	}
3106 
3107 	*pprog = prog;
3108 	return 0;
3109 }
3110 
3111 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
3112 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack)	\
3113 	__LOAD_TCC_PTR(-round_up(stack, 8) - 8)
3114 
3115 /* Example:
3116  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
3117  * its 'struct btf_func_model' will be nr_args=2
3118  * The assembly code when eth_type_trans is executing after trampoline:
3119  *
3120  * push rbp
3121  * mov rbp, rsp
3122  * sub rsp, 16                     // space for skb and dev
3123  * push rbx                        // temp regs to pass start time
3124  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
3125  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
3126  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
3127  * mov rbx, rax                    // remember start time in bpf stats are enabled
3128  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
3129  * call addr_of_jited_FENTRY_prog
3130  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
3131  * mov rsi, rbx                    // prog start time
3132  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
3133  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
3134  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
3135  * pop rbx
3136  * leave
3137  * ret
3138  *
3139  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
3140  * replaced with 'call generated_bpf_trampoline'. When it returns
3141  * eth_type_trans will continue executing with original skb and dev pointers.
3142  *
3143  * The assembly code when eth_type_trans is called from trampoline:
3144  *
3145  * push rbp
3146  * mov rbp, rsp
3147  * sub rsp, 24                     // space for skb, dev, return value
3148  * push rbx                        // temp regs to pass start time
3149  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
3150  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
3151  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
3152  * mov rbx, rax                    // remember start time if bpf stats are enabled
3153  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
3154  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
3155  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
3156  * mov rsi, rbx                    // prog start time
3157  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
3158  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
3159  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
3160  * call eth_type_trans+5           // execute body of eth_type_trans
3161  * mov qword ptr [rbp - 8], rax    // save return value
3162  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
3163  * mov rbx, rax                    // remember start time in bpf stats are enabled
3164  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
3165  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
3166  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
3167  * mov rsi, rbx                    // prog start time
3168  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
3169  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
3170  * pop rbx
3171  * leave
3172  * add rsp, 8                      // skip eth_type_trans's frame
3173  * ret                             // return to its caller
3174  */
3175 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
3176 					 void *rw_image_end, void *image,
3177 					 const struct btf_func_model *m, u32 flags,
3178 					 struct bpf_tramp_links *tlinks,
3179 					 void *func_addr)
3180 {
3181 	int i, ret, nr_regs = m->nr_args, stack_size = 0;
3182 	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
3183 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
3184 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
3185 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
3186 	void *orig_call = func_addr;
3187 	u8 **branches = NULL;
3188 	u8 *prog;
3189 	bool save_ret;
3190 
3191 	/*
3192 	 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
3193 	 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
3194 	 * because @func_addr.
3195 	 */
3196 	WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
3197 		     (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
3198 
3199 	/* extra registers for struct arguments */
3200 	for (i = 0; i < m->nr_args; i++) {
3201 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
3202 			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
3203 	}
3204 
3205 	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
3206 	 * are passed through regs, the remains are through stack.
3207 	 */
3208 	if (nr_regs > MAX_BPF_FUNC_ARGS)
3209 		return -ENOTSUPP;
3210 
3211 	/* Generated trampoline stack layout:
3212 	 *
3213 	 * RBP + 8         [ return address  ]
3214 	 * RBP + 0         [ RBP             ]
3215 	 *
3216 	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
3217 	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
3218 	 *
3219 	 *                 [ reg_argN        ]  always
3220 	 *                 [ ...             ]
3221 	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
3222 	 *
3223 	 * RBP - nregs_off [ regs count	     ]  always
3224 	 *
3225 	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
3226 	 *
3227 	 * RBP - rbx_off   [ rbx value       ]  always
3228 	 *
3229 	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
3230 	 *
3231 	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
3232 	 *                     [ ...        ]
3233 	 *                     [ stack_arg2 ]
3234 	 * RBP - arg_stack_off [ stack_arg1 ]
3235 	 * RSP                 [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
3236 	 */
3237 
3238 	/* room for return value of orig_call or fentry prog */
3239 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
3240 	if (save_ret)
3241 		stack_size += 8;
3242 
3243 	stack_size += nr_regs * 8;
3244 	regs_off = stack_size;
3245 
3246 	/* regs count  */
3247 	stack_size += 8;
3248 	nregs_off = stack_size;
3249 
3250 	if (flags & BPF_TRAMP_F_IP_ARG)
3251 		stack_size += 8; /* room for IP address argument */
3252 
3253 	ip_off = stack_size;
3254 
3255 	stack_size += 8;
3256 	rbx_off = stack_size;
3257 
3258 	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
3259 	run_ctx_off = stack_size;
3260 
3261 	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
3262 		/* the space that used to pass arguments on-stack */
3263 		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
3264 		/* make sure the stack pointer is 16-byte aligned if we
3265 		 * need pass arguments on stack, which means
3266 		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
3267 		 * should be 16-byte aligned. Following code depend on
3268 		 * that stack_size is already 8-byte aligned.
3269 		 */
3270 		stack_size += (stack_size % 16) ? 0 : 8;
3271 	}
3272 
3273 	arg_stack_off = stack_size;
3274 
3275 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3276 		/* skip patched call instruction and point orig_call to actual
3277 		 * body of the kernel function.
3278 		 */
3279 		if (is_endbr(orig_call))
3280 			orig_call += ENDBR_INSN_SIZE;
3281 		orig_call += X86_PATCH_SIZE;
3282 	}
3283 
3284 	prog = rw_image;
3285 
3286 	if (flags & BPF_TRAMP_F_INDIRECT) {
3287 		/*
3288 		 * Indirect call for bpf_struct_ops
3289 		 */
3290 		emit_cfi(&prog, image,
3291 			 cfi_get_func_hash(func_addr),
3292 			 cfi_get_func_arity(func_addr));
3293 	} else {
3294 		/*
3295 		 * Direct-call fentry stub, as such it needs accounting for the
3296 		 * __fentry__ call.
3297 		 */
3298 		x86_call_depth_emit_accounting(&prog, NULL, image);
3299 	}
3300 	EMIT1(0x55);		 /* push rbp */
3301 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
3302 	if (!is_imm8(stack_size)) {
3303 		/* sub rsp, stack_size */
3304 		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
3305 	} else {
3306 		/* sub rsp, stack_size */
3307 		EMIT4(0x48, 0x83, 0xEC, stack_size);
3308 	}
3309 	if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
3310 		EMIT1(0x50);		/* push rax */
3311 	/* mov QWORD PTR [rbp - rbx_off], rbx */
3312 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
3313 
3314 	/* Store number of argument registers of the traced function:
3315 	 *   mov rax, nr_regs
3316 	 *   mov QWORD PTR [rbp - nregs_off], rax
3317 	 */
3318 	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
3319 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
3320 
3321 	if (flags & BPF_TRAMP_F_IP_ARG) {
3322 		/* Store IP address of the traced function:
3323 		 * movabsq rax, func_addr
3324 		 * mov QWORD PTR [rbp - ip_off], rax
3325 		 */
3326 		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
3327 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
3328 	}
3329 
3330 	save_args(m, &prog, regs_off, false);
3331 
3332 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3333 		/* arg1: mov rdi, im */
3334 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3335 		if (emit_rsb_call(&prog, __bpf_tramp_enter,
3336 				  image + (prog - (u8 *)rw_image))) {
3337 			ret = -EINVAL;
3338 			goto cleanup;
3339 		}
3340 	}
3341 
3342 	if (fentry->nr_links) {
3343 		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
3344 			       flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
3345 			return -EINVAL;
3346 	}
3347 
3348 	if (fmod_ret->nr_links) {
3349 		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
3350 				   GFP_KERNEL);
3351 		if (!branches)
3352 			return -ENOMEM;
3353 
3354 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
3355 				       run_ctx_off, branches, image, rw_image)) {
3356 			ret = -EINVAL;
3357 			goto cleanup;
3358 		}
3359 	}
3360 
3361 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3362 		restore_regs(m, &prog, regs_off);
3363 		save_args(m, &prog, arg_stack_off, true);
3364 
3365 		if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3366 			/* Before calling the original function, load the
3367 			 * tail_call_cnt_ptr from stack to rax.
3368 			 */
3369 			LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3370 		}
3371 
3372 		if (flags & BPF_TRAMP_F_ORIG_STACK) {
3373 			emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3374 			EMIT2(0xff, 0xd3); /* call *rbx */
3375 		} else {
3376 			/* call original function */
3377 			if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3378 				ret = -EINVAL;
3379 				goto cleanup;
3380 			}
3381 		}
3382 		/* remember return value in a stack for bpf prog to access */
3383 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3384 		im->ip_after_call = image + (prog - (u8 *)rw_image);
3385 		emit_nops(&prog, X86_PATCH_SIZE);
3386 	}
3387 
3388 	if (fmod_ret->nr_links) {
3389 		/* From Intel 64 and IA-32 Architectures Optimization
3390 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3391 		 * Coding Rule 11: All branch targets should be 16-byte
3392 		 * aligned.
3393 		 */
3394 		emit_align(&prog, 16);
3395 		/* Update the branches saved in invoke_bpf_mod_ret with the
3396 		 * aligned address of do_fexit.
3397 		 */
3398 		for (i = 0; i < fmod_ret->nr_links; i++) {
3399 			emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3400 					    image + (branches[i] - (u8 *)rw_image), X86_JNE);
3401 		}
3402 	}
3403 
3404 	if (fexit->nr_links) {
3405 		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
3406 			       false, image, rw_image)) {
3407 			ret = -EINVAL;
3408 			goto cleanup;
3409 		}
3410 	}
3411 
3412 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
3413 		restore_regs(m, &prog, regs_off);
3414 
3415 	/* This needs to be done regardless. If there were fmod_ret programs,
3416 	 * the return value is only updated on the stack and still needs to be
3417 	 * restored to R0.
3418 	 */
3419 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3420 		im->ip_epilogue = image + (prog - (u8 *)rw_image);
3421 		/* arg1: mov rdi, im */
3422 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3423 		if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3424 			ret = -EINVAL;
3425 			goto cleanup;
3426 		}
3427 	} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3428 		/* Before running the original function, load the
3429 		 * tail_call_cnt_ptr from stack to rax.
3430 		 */
3431 		LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3432 	}
3433 
3434 	/* restore return value of orig_call or fentry prog back into RAX */
3435 	if (save_ret)
3436 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3437 
3438 	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3439 	EMIT1(0xC9); /* leave */
3440 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3441 		/* skip our return address and return to parent */
3442 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3443 	}
3444 	emit_return(&prog, image + (prog - (u8 *)rw_image));
3445 	/* Make sure the trampoline generation logic doesn't overflow */
3446 	if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3447 		ret = -EFAULT;
3448 		goto cleanup;
3449 	}
3450 	ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3451 
3452 cleanup:
3453 	kfree(branches);
3454 	return ret;
3455 }
3456 
3457 void *arch_alloc_bpf_trampoline(unsigned int size)
3458 {
3459 	return bpf_prog_pack_alloc(size, jit_fill_hole);
3460 }
3461 
3462 void arch_free_bpf_trampoline(void *image, unsigned int size)
3463 {
3464 	bpf_prog_pack_free(image, size);
3465 }
3466 
3467 int arch_protect_bpf_trampoline(void *image, unsigned int size)
3468 {
3469 	return 0;
3470 }
3471 
3472 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3473 				const struct btf_func_model *m, u32 flags,
3474 				struct bpf_tramp_links *tlinks,
3475 				void *func_addr)
3476 {
3477 	void *rw_image, *tmp;
3478 	int ret;
3479 	u32 size = image_end - image;
3480 
3481 	/* rw_image doesn't need to be in module memory range, so we can
3482 	 * use kvmalloc.
3483 	 */
3484 	rw_image = kvmalloc(size, GFP_KERNEL);
3485 	if (!rw_image)
3486 		return -ENOMEM;
3487 
3488 	ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3489 					    flags, tlinks, func_addr);
3490 	if (ret < 0)
3491 		goto out;
3492 
3493 	tmp = bpf_arch_text_copy(image, rw_image, size);
3494 	if (IS_ERR(tmp))
3495 		ret = PTR_ERR(tmp);
3496 out:
3497 	kvfree(rw_image);
3498 	return ret;
3499 }
3500 
3501 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3502 			     struct bpf_tramp_links *tlinks, void *func_addr)
3503 {
3504 	struct bpf_tramp_image im;
3505 	void *image;
3506 	int ret;
3507 
3508 	/* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3509 	 * This will NOT cause fragmentation in direct map, as we do not
3510 	 * call set_memory_*() on this buffer.
3511 	 *
3512 	 * We cannot use kvmalloc here, because we need image to be in
3513 	 * module memory range.
3514 	 */
3515 	image = bpf_jit_alloc_exec(PAGE_SIZE);
3516 	if (!image)
3517 		return -ENOMEM;
3518 
3519 	ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3520 					    m, flags, tlinks, func_addr);
3521 	bpf_jit_free_exec(image);
3522 	return ret;
3523 }
3524 
3525 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3526 {
3527 	u8 *jg_reloc, *prog = *pprog;
3528 	int pivot, err, jg_bytes = 1;
3529 	s64 jg_offset;
3530 
3531 	if (a == b) {
3532 		/* Leaf node of recursion, i.e. not a range of indices
3533 		 * anymore.
3534 		 */
3535 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
3536 		if (!is_simm32(progs[a]))
3537 			return -1;
3538 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3539 			    progs[a]);
3540 		err = emit_cond_near_jump(&prog,	/* je func */
3541 					  (void *)progs[a], image + (prog - buf),
3542 					  X86_JE);
3543 		if (err)
3544 			return err;
3545 
3546 		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
3547 
3548 		*pprog = prog;
3549 		return 0;
3550 	}
3551 
3552 	/* Not a leaf node, so we pivot, and recursively descend into
3553 	 * the lower and upper ranges.
3554 	 */
3555 	pivot = (b - a) / 2;
3556 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
3557 	if (!is_simm32(progs[a + pivot]))
3558 		return -1;
3559 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3560 
3561 	if (pivot > 2) {				/* jg upper_part */
3562 		/* Require near jump. */
3563 		jg_bytes = 4;
3564 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3565 	} else {
3566 		EMIT2(X86_JG, 0);
3567 	}
3568 	jg_reloc = prog;
3569 
3570 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
3571 				  progs, image, buf);
3572 	if (err)
3573 		return err;
3574 
3575 	/* From Intel 64 and IA-32 Architectures Optimization
3576 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3577 	 * Coding Rule 11: All branch targets should be 16-byte
3578 	 * aligned.
3579 	 */
3580 	emit_align(&prog, 16);
3581 	jg_offset = prog - jg_reloc;
3582 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3583 
3584 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
3585 				  b, progs, image, buf);
3586 	if (err)
3587 		return err;
3588 
3589 	*pprog = prog;
3590 	return 0;
3591 }
3592 
3593 static int cmp_ips(const void *a, const void *b)
3594 {
3595 	const s64 *ipa = a;
3596 	const s64 *ipb = b;
3597 
3598 	if (*ipa > *ipb)
3599 		return 1;
3600 	if (*ipa < *ipb)
3601 		return -1;
3602 	return 0;
3603 }
3604 
3605 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3606 {
3607 	u8 *prog = buf;
3608 
3609 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3610 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3611 }
3612 
3613 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
3614 {
3615 	int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3616 	u64 *stack_ptr;
3617 
3618 	for_each_possible_cpu(cpu) {
3619 		stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3620 		stack_ptr[0] = PRIV_STACK_GUARD_VAL;
3621 		stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
3622 	}
3623 }
3624 
3625 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
3626 				   struct bpf_prog *prog)
3627 {
3628 	int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3629 	u64 *stack_ptr;
3630 
3631 	for_each_possible_cpu(cpu) {
3632 		stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3633 		if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
3634 		    stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) {
3635 			pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
3636 			       bpf_jit_get_prog_name(prog));
3637 			break;
3638 		}
3639 	}
3640 }
3641 
3642 struct x64_jit_data {
3643 	struct bpf_binary_header *rw_header;
3644 	struct bpf_binary_header *header;
3645 	int *addrs;
3646 	u8 *image;
3647 	int proglen;
3648 	struct jit_context ctx;
3649 };
3650 
3651 #define MAX_PASSES 20
3652 #define PADDING_PASSES (MAX_PASSES - 5)
3653 
3654 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3655 {
3656 	struct bpf_binary_header *rw_header = NULL;
3657 	struct bpf_binary_header *header = NULL;
3658 	struct bpf_prog *tmp, *orig_prog = prog;
3659 	void __percpu *priv_stack_ptr = NULL;
3660 	struct x64_jit_data *jit_data;
3661 	int priv_stack_alloc_sz;
3662 	int proglen, oldproglen = 0;
3663 	struct jit_context ctx = {};
3664 	bool tmp_blinded = false;
3665 	bool extra_pass = false;
3666 	bool padding = false;
3667 	u8 *rw_image = NULL;
3668 	u8 *image = NULL;
3669 	int *addrs;
3670 	int pass;
3671 	int i;
3672 
3673 	if (!prog->jit_requested)
3674 		return orig_prog;
3675 
3676 	tmp = bpf_jit_blind_constants(prog);
3677 	/*
3678 	 * If blinding was requested and we failed during blinding,
3679 	 * we must fall back to the interpreter.
3680 	 */
3681 	if (IS_ERR(tmp))
3682 		return orig_prog;
3683 	if (tmp != prog) {
3684 		tmp_blinded = true;
3685 		prog = tmp;
3686 	}
3687 
3688 	jit_data = prog->aux->jit_data;
3689 	if (!jit_data) {
3690 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3691 		if (!jit_data) {
3692 			prog = orig_prog;
3693 			goto out;
3694 		}
3695 		prog->aux->jit_data = jit_data;
3696 	}
3697 	priv_stack_ptr = prog->aux->priv_stack_ptr;
3698 	if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
3699 		/* Allocate actual private stack size with verifier-calculated
3700 		 * stack size plus two memory guards to protect overflow and
3701 		 * underflow.
3702 		 */
3703 		priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3704 				      2 * PRIV_STACK_GUARD_SZ;
3705 		priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL);
3706 		if (!priv_stack_ptr) {
3707 			prog = orig_prog;
3708 			goto out_priv_stack;
3709 		}
3710 
3711 		priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
3712 		prog->aux->priv_stack_ptr = priv_stack_ptr;
3713 	}
3714 	addrs = jit_data->addrs;
3715 	if (addrs) {
3716 		ctx = jit_data->ctx;
3717 		oldproglen = jit_data->proglen;
3718 		image = jit_data->image;
3719 		header = jit_data->header;
3720 		rw_header = jit_data->rw_header;
3721 		rw_image = (void *)rw_header + ((void *)image - (void *)header);
3722 		extra_pass = true;
3723 		padding = true;
3724 		goto skip_init_addrs;
3725 	}
3726 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3727 	if (!addrs) {
3728 		prog = orig_prog;
3729 		goto out_addrs;
3730 	}
3731 
3732 	/*
3733 	 * Before first pass, make a rough estimation of addrs[]
3734 	 * each BPF instruction is translated to less than 64 bytes
3735 	 */
3736 	for (proglen = 0, i = 0; i <= prog->len; i++) {
3737 		proglen += 64;
3738 		addrs[i] = proglen;
3739 	}
3740 	ctx.cleanup_addr = proglen;
3741 skip_init_addrs:
3742 
3743 	/*
3744 	 * JITed image shrinks with every pass and the loop iterates
3745 	 * until the image stops shrinking. Very large BPF programs
3746 	 * may converge on the last pass. In such case do one more
3747 	 * pass to emit the final image.
3748 	 */
3749 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
3750 		if (!padding && pass >= PADDING_PASSES)
3751 			padding = true;
3752 		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3753 		if (proglen <= 0) {
3754 out_image:
3755 			image = NULL;
3756 			if (header) {
3757 				bpf_arch_text_copy(&header->size, &rw_header->size,
3758 						   sizeof(rw_header->size));
3759 				bpf_jit_binary_pack_free(header, rw_header);
3760 			}
3761 			/* Fall back to interpreter mode */
3762 			prog = orig_prog;
3763 			if (extra_pass) {
3764 				prog->bpf_func = NULL;
3765 				prog->jited = 0;
3766 				prog->jited_len = 0;
3767 			}
3768 			goto out_addrs;
3769 		}
3770 		if (image) {
3771 			if (proglen != oldproglen) {
3772 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3773 				       proglen, oldproglen);
3774 				goto out_image;
3775 			}
3776 			break;
3777 		}
3778 		if (proglen == oldproglen) {
3779 			/*
3780 			 * The number of entries in extable is the number of BPF_LDX
3781 			 * insns that access kernel memory via "pointer to BTF type".
3782 			 * The verifier changed their opcode from LDX|MEM|size
3783 			 * to LDX|PROBE_MEM|size to make JITing easier.
3784 			 */
3785 			u32 align = __alignof__(struct exception_table_entry);
3786 			u32 extable_size = prog->aux->num_exentries *
3787 				sizeof(struct exception_table_entry);
3788 
3789 			/* allocate module memory for x86 insns and extable */
3790 			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3791 							   &image, align, &rw_header, &rw_image,
3792 							   jit_fill_hole);
3793 			if (!header) {
3794 				prog = orig_prog;
3795 				goto out_addrs;
3796 			}
3797 			prog->aux->extable = (void *) image + roundup(proglen, align);
3798 		}
3799 		oldproglen = proglen;
3800 		cond_resched();
3801 	}
3802 
3803 	if (bpf_jit_enable > 1)
3804 		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3805 
3806 	if (image) {
3807 		if (!prog->is_func || extra_pass) {
3808 			/*
3809 			 * bpf_jit_binary_pack_finalize fails in two scenarios:
3810 			 *   1) header is not pointing to proper module memory;
3811 			 *   2) the arch doesn't support bpf_arch_text_copy().
3812 			 *
3813 			 * Both cases are serious bugs and justify WARN_ON.
3814 			 */
3815 			if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3816 				/* header has been freed */
3817 				header = NULL;
3818 				goto out_image;
3819 			}
3820 
3821 			bpf_tail_call_direct_fixup(prog);
3822 		} else {
3823 			jit_data->addrs = addrs;
3824 			jit_data->ctx = ctx;
3825 			jit_data->proglen = proglen;
3826 			jit_data->image = image;
3827 			jit_data->header = header;
3828 			jit_data->rw_header = rw_header;
3829 		}
3830 		/*
3831 		 * ctx.prog_offset is used when CFI preambles put code *before*
3832 		 * the function. See emit_cfi(). For FineIBT specifically this code
3833 		 * can also be executed and bpf_prog_kallsyms_add() will
3834 		 * generate an additional symbol to cover this, hence also
3835 		 * decrement proglen.
3836 		 */
3837 		prog->bpf_func = (void *)image + cfi_get_offset();
3838 		prog->jited = 1;
3839 		prog->jited_len = proglen - cfi_get_offset();
3840 	} else {
3841 		prog = orig_prog;
3842 	}
3843 
3844 	if (!image || !prog->is_func || extra_pass) {
3845 		if (image)
3846 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
3847 out_addrs:
3848 		kvfree(addrs);
3849 		if (!image && priv_stack_ptr) {
3850 			free_percpu(priv_stack_ptr);
3851 			prog->aux->priv_stack_ptr = NULL;
3852 		}
3853 out_priv_stack:
3854 		kfree(jit_data);
3855 		prog->aux->jit_data = NULL;
3856 	}
3857 out:
3858 	if (tmp_blinded)
3859 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
3860 					   tmp : orig_prog);
3861 	return prog;
3862 }
3863 
3864 bool bpf_jit_supports_kfunc_call(void)
3865 {
3866 	return true;
3867 }
3868 
3869 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3870 {
3871 	if (text_poke_copy(dst, src, len) == NULL)
3872 		return ERR_PTR(-EINVAL);
3873 	return dst;
3874 }
3875 
3876 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3877 bool bpf_jit_supports_subprog_tailcalls(void)
3878 {
3879 	return true;
3880 }
3881 
3882 bool bpf_jit_supports_percpu_insn(void)
3883 {
3884 	return true;
3885 }
3886 
3887 void bpf_jit_free(struct bpf_prog *prog)
3888 {
3889 	if (prog->jited) {
3890 		struct x64_jit_data *jit_data = prog->aux->jit_data;
3891 		struct bpf_binary_header *hdr;
3892 		void __percpu *priv_stack_ptr;
3893 		int priv_stack_alloc_sz;
3894 
3895 		/*
3896 		 * If we fail the final pass of JIT (from jit_subprogs),
3897 		 * the program may not be finalized yet. Call finalize here
3898 		 * before freeing it.
3899 		 */
3900 		if (jit_data) {
3901 			bpf_jit_binary_pack_finalize(jit_data->header,
3902 						     jit_data->rw_header);
3903 			kvfree(jit_data->addrs);
3904 			kfree(jit_data);
3905 		}
3906 		prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3907 		hdr = bpf_jit_binary_pack_hdr(prog);
3908 		bpf_jit_binary_pack_free(hdr, NULL);
3909 		priv_stack_ptr = prog->aux->priv_stack_ptr;
3910 		if (priv_stack_ptr) {
3911 			priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3912 					      2 * PRIV_STACK_GUARD_SZ;
3913 			priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3914 			free_percpu(prog->aux->priv_stack_ptr);
3915 		}
3916 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3917 	}
3918 
3919 	bpf_prog_unlock_free(prog);
3920 }
3921 
3922 bool bpf_jit_supports_exceptions(void)
3923 {
3924 	/* We unwind through both kernel frames (starting from within bpf_throw
3925 	 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3926 	 * to walk kernel frames and reach BPF frames in the stack trace.
3927 	 */
3928 	return IS_ENABLED(CONFIG_UNWINDER_ORC);
3929 }
3930 
3931 bool bpf_jit_supports_private_stack(void)
3932 {
3933 	return true;
3934 }
3935 
3936 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3937 {
3938 #if defined(CONFIG_UNWINDER_ORC)
3939 	struct unwind_state state;
3940 	unsigned long addr;
3941 
3942 	for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3943 	     unwind_next_frame(&state)) {
3944 		addr = unwind_get_return_address(&state);
3945 		if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3946 			break;
3947 	}
3948 	return;
3949 #endif
3950 }
3951 
3952 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3953 			       struct bpf_prog *new, struct bpf_prog *old)
3954 {
3955 	u8 *old_addr, *new_addr, *old_bypass_addr;
3956 	int ret;
3957 
3958 	old_bypass_addr = old ? NULL : poke->bypass_addr;
3959 	old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3960 	new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3961 
3962 	/*
3963 	 * On program loading or teardown, the program's kallsym entry
3964 	 * might not be in place, so we use __bpf_arch_text_poke to skip
3965 	 * the kallsyms check.
3966 	 */
3967 	if (new) {
3968 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3969 					   BPF_MOD_JUMP,
3970 					   old_addr, new_addr);
3971 		BUG_ON(ret < 0);
3972 		if (!old) {
3973 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3974 						   BPF_MOD_JUMP,
3975 						   poke->bypass_addr,
3976 						   NULL);
3977 			BUG_ON(ret < 0);
3978 		}
3979 	} else {
3980 		ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3981 					   BPF_MOD_JUMP,
3982 					   old_bypass_addr,
3983 					   poke->bypass_addr);
3984 		BUG_ON(ret < 0);
3985 		/* let other CPUs finish the execution of program
3986 		 * so that it will not possible to expose them
3987 		 * to invalid nop, stack unwind, nop state
3988 		 */
3989 		if (!ret)
3990 			synchronize_rcu();
3991 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3992 					   BPF_MOD_JUMP,
3993 					   old_addr, NULL);
3994 		BUG_ON(ret < 0);
3995 	}
3996 }
3997 
3998 bool bpf_jit_supports_arena(void)
3999 {
4000 	return true;
4001 }
4002 
4003 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
4004 {
4005 	if (!in_arena)
4006 		return true;
4007 	switch (insn->code) {
4008 	case BPF_STX | BPF_ATOMIC | BPF_W:
4009 	case BPF_STX | BPF_ATOMIC | BPF_DW:
4010 		if (insn->imm == (BPF_AND | BPF_FETCH) ||
4011 		    insn->imm == (BPF_OR | BPF_FETCH) ||
4012 		    insn->imm == (BPF_XOR | BPF_FETCH))
4013 			return false;
4014 	}
4015 	return true;
4016 }
4017 
4018 bool bpf_jit_supports_ptr_xchg(void)
4019 {
4020 	return true;
4021 }
4022 
4023 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */
4024 u64 bpf_arch_uaddress_limit(void)
4025 {
4026 	return 0;
4027 }
4028 
4029 bool bpf_jit_supports_timed_may_goto(void)
4030 {
4031 	return true;
4032 }
4033