1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BPF JIT compiler 4 * 5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) 6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 7 */ 8 #include <linux/netdevice.h> 9 #include <linux/filter.h> 10 #include <linux/if_vlan.h> 11 #include <linux/bpf.h> 12 #include <linux/memory.h> 13 #include <linux/sort.h> 14 #include <asm/extable.h> 15 #include <asm/ftrace.h> 16 #include <asm/set_memory.h> 17 #include <asm/nospec-branch.h> 18 #include <asm/text-patching.h> 19 #include <asm/unwind.h> 20 21 static bool all_callee_regs_used[4] = {true, true, true, true}; 22 23 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) 24 { 25 if (len == 1) 26 *ptr = bytes; 27 else if (len == 2) 28 *(u16 *)ptr = bytes; 29 else { 30 *(u32 *)ptr = bytes; 31 barrier(); 32 } 33 return ptr + len; 34 } 35 36 #define EMIT(bytes, len) \ 37 do { prog = emit_code(prog, bytes, len); } while (0) 38 39 #define EMIT1(b1) EMIT(b1, 1) 40 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) 41 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) 42 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) 43 44 #define EMIT1_off32(b1, off) \ 45 do { EMIT1(b1); EMIT(off, 4); } while (0) 46 #define EMIT2_off32(b1, b2, off) \ 47 do { EMIT2(b1, b2); EMIT(off, 4); } while (0) 48 #define EMIT3_off32(b1, b2, b3, off) \ 49 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) 50 #define EMIT4_off32(b1, b2, b3, b4, off) \ 51 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) 52 53 #ifdef CONFIG_X86_KERNEL_IBT 54 #define EMIT_ENDBR() EMIT(gen_endbr(), 4) 55 #else 56 #define EMIT_ENDBR() 57 #endif 58 59 static bool is_imm8(int value) 60 { 61 return value <= 127 && value >= -128; 62 } 63 64 static bool is_simm32(s64 value) 65 { 66 return value == (s64)(s32)value; 67 } 68 69 static bool is_uimm32(u64 value) 70 { 71 return value == (u64)(u32)value; 72 } 73 74 /* mov dst, src */ 75 #define EMIT_mov(DST, SRC) \ 76 do { \ 77 if (DST != SRC) \ 78 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ 79 } while (0) 80 81 static int bpf_size_to_x86_bytes(int bpf_size) 82 { 83 if (bpf_size == BPF_W) 84 return 4; 85 else if (bpf_size == BPF_H) 86 return 2; 87 else if (bpf_size == BPF_B) 88 return 1; 89 else if (bpf_size == BPF_DW) 90 return 4; /* imm32 */ 91 else 92 return 0; 93 } 94 95 /* 96 * List of x86 cond jumps opcodes (. + s8) 97 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) 98 */ 99 #define X86_JB 0x72 100 #define X86_JAE 0x73 101 #define X86_JE 0x74 102 #define X86_JNE 0x75 103 #define X86_JBE 0x76 104 #define X86_JA 0x77 105 #define X86_JL 0x7C 106 #define X86_JGE 0x7D 107 #define X86_JLE 0x7E 108 #define X86_JG 0x7F 109 110 /* Pick a register outside of BPF range for JIT internal work */ 111 #define AUX_REG (MAX_BPF_JIT_REG + 1) 112 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) 113 114 /* 115 * The following table maps BPF registers to x86-64 registers. 116 * 117 * x86-64 register R12 is unused, since if used as base address 118 * register in load/store instructions, it always needs an 119 * extra byte of encoding and is callee saved. 120 * 121 * x86-64 register R9 is not used by BPF programs, but can be used by BPF 122 * trampoline. x86-64 register R10 is used for blinding (if enabled). 123 */ 124 static const int reg2hex[] = { 125 [BPF_REG_0] = 0, /* RAX */ 126 [BPF_REG_1] = 7, /* RDI */ 127 [BPF_REG_2] = 6, /* RSI */ 128 [BPF_REG_3] = 2, /* RDX */ 129 [BPF_REG_4] = 1, /* RCX */ 130 [BPF_REG_5] = 0, /* R8 */ 131 [BPF_REG_6] = 3, /* RBX callee saved */ 132 [BPF_REG_7] = 5, /* R13 callee saved */ 133 [BPF_REG_8] = 6, /* R14 callee saved */ 134 [BPF_REG_9] = 7, /* R15 callee saved */ 135 [BPF_REG_FP] = 5, /* RBP readonly */ 136 [BPF_REG_AX] = 2, /* R10 temp register */ 137 [AUX_REG] = 3, /* R11 temp register */ 138 [X86_REG_R9] = 1, /* R9 register, 6th function argument */ 139 }; 140 141 static const int reg2pt_regs[] = { 142 [BPF_REG_0] = offsetof(struct pt_regs, ax), 143 [BPF_REG_1] = offsetof(struct pt_regs, di), 144 [BPF_REG_2] = offsetof(struct pt_regs, si), 145 [BPF_REG_3] = offsetof(struct pt_regs, dx), 146 [BPF_REG_4] = offsetof(struct pt_regs, cx), 147 [BPF_REG_5] = offsetof(struct pt_regs, r8), 148 [BPF_REG_6] = offsetof(struct pt_regs, bx), 149 [BPF_REG_7] = offsetof(struct pt_regs, r13), 150 [BPF_REG_8] = offsetof(struct pt_regs, r14), 151 [BPF_REG_9] = offsetof(struct pt_regs, r15), 152 }; 153 154 /* 155 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 156 * which need extra byte of encoding. 157 * rax,rcx,...,rbp have simpler encoding 158 */ 159 static bool is_ereg(u32 reg) 160 { 161 return (1 << reg) & (BIT(BPF_REG_5) | 162 BIT(AUX_REG) | 163 BIT(BPF_REG_7) | 164 BIT(BPF_REG_8) | 165 BIT(BPF_REG_9) | 166 BIT(X86_REG_R9) | 167 BIT(BPF_REG_AX)); 168 } 169 170 /* 171 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 172 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte 173 * of encoding. al,cl,dl,bl have simpler encoding. 174 */ 175 static bool is_ereg_8l(u32 reg) 176 { 177 return is_ereg(reg) || 178 (1 << reg) & (BIT(BPF_REG_1) | 179 BIT(BPF_REG_2) | 180 BIT(BPF_REG_FP)); 181 } 182 183 static bool is_axreg(u32 reg) 184 { 185 return reg == BPF_REG_0; 186 } 187 188 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ 189 static u8 add_1mod(u8 byte, u32 reg) 190 { 191 if (is_ereg(reg)) 192 byte |= 1; 193 return byte; 194 } 195 196 static u8 add_2mod(u8 byte, u32 r1, u32 r2) 197 { 198 if (is_ereg(r1)) 199 byte |= 1; 200 if (is_ereg(r2)) 201 byte |= 4; 202 return byte; 203 } 204 205 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ 206 static u8 add_1reg(u8 byte, u32 dst_reg) 207 { 208 return byte + reg2hex[dst_reg]; 209 } 210 211 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ 212 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) 213 { 214 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); 215 } 216 217 /* Some 1-byte opcodes for binary ALU operations */ 218 static u8 simple_alu_opcodes[] = { 219 [BPF_ADD] = 0x01, 220 [BPF_SUB] = 0x29, 221 [BPF_AND] = 0x21, 222 [BPF_OR] = 0x09, 223 [BPF_XOR] = 0x31, 224 [BPF_LSH] = 0xE0, 225 [BPF_RSH] = 0xE8, 226 [BPF_ARSH] = 0xF8, 227 }; 228 229 static void jit_fill_hole(void *area, unsigned int size) 230 { 231 /* Fill whole space with INT3 instructions */ 232 memset(area, 0xcc, size); 233 } 234 235 int bpf_arch_text_invalidate(void *dst, size_t len) 236 { 237 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len)); 238 } 239 240 struct jit_context { 241 int cleanup_addr; /* Epilogue code offset */ 242 243 /* 244 * Program specific offsets of labels in the code; these rely on the 245 * JIT doing at least 2 passes, recording the position on the first 246 * pass, only to generate the correct offset on the second pass. 247 */ 248 int tail_call_direct_label; 249 int tail_call_indirect_label; 250 }; 251 252 /* Maximum number of bytes emitted while JITing one eBPF insn */ 253 #define BPF_MAX_INSN_SIZE 128 254 #define BPF_INSN_SAFETY 64 255 256 /* Number of bytes emit_patch() needs to generate instructions */ 257 #define X86_PATCH_SIZE 5 258 /* Number of bytes that will be skipped on tailcall */ 259 #define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE) 260 261 static void push_r12(u8 **pprog) 262 { 263 u8 *prog = *pprog; 264 265 EMIT2(0x41, 0x54); /* push r12 */ 266 *pprog = prog; 267 } 268 269 static void push_callee_regs(u8 **pprog, bool *callee_regs_used) 270 { 271 u8 *prog = *pprog; 272 273 if (callee_regs_used[0]) 274 EMIT1(0x53); /* push rbx */ 275 if (callee_regs_used[1]) 276 EMIT2(0x41, 0x55); /* push r13 */ 277 if (callee_regs_used[2]) 278 EMIT2(0x41, 0x56); /* push r14 */ 279 if (callee_regs_used[3]) 280 EMIT2(0x41, 0x57); /* push r15 */ 281 *pprog = prog; 282 } 283 284 static void pop_r12(u8 **pprog) 285 { 286 u8 *prog = *pprog; 287 288 EMIT2(0x41, 0x5C); /* pop r12 */ 289 *pprog = prog; 290 } 291 292 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) 293 { 294 u8 *prog = *pprog; 295 296 if (callee_regs_used[3]) 297 EMIT2(0x41, 0x5F); /* pop r15 */ 298 if (callee_regs_used[2]) 299 EMIT2(0x41, 0x5E); /* pop r14 */ 300 if (callee_regs_used[1]) 301 EMIT2(0x41, 0x5D); /* pop r13 */ 302 if (callee_regs_used[0]) 303 EMIT1(0x5B); /* pop rbx */ 304 *pprog = prog; 305 } 306 307 /* 308 * Emit x86-64 prologue code for BPF program. 309 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes 310 * while jumping to another program 311 */ 312 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf, 313 bool tail_call_reachable, bool is_subprog, 314 bool is_exception_cb) 315 { 316 u8 *prog = *pprog; 317 318 /* BPF trampoline can be made to work without these nops, 319 * but let's waste 5 bytes for now and optimize later 320 */ 321 EMIT_ENDBR(); 322 memcpy(prog, x86_nops[5], X86_PATCH_SIZE); 323 prog += X86_PATCH_SIZE; 324 if (!ebpf_from_cbpf) { 325 if (tail_call_reachable && !is_subprog) 326 /* When it's the entry of the whole tailcall context, 327 * zeroing rax means initialising tail_call_cnt. 328 */ 329 EMIT2(0x31, 0xC0); /* xor eax, eax */ 330 else 331 /* Keep the same instruction layout. */ 332 EMIT2(0x66, 0x90); /* nop2 */ 333 } 334 /* Exception callback receives FP as third parameter */ 335 if (is_exception_cb) { 336 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */ 337 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */ 338 /* The main frame must have exception_boundary as true, so we 339 * first restore those callee-saved regs from stack, before 340 * reusing the stack frame. 341 */ 342 pop_callee_regs(&prog, all_callee_regs_used); 343 pop_r12(&prog); 344 /* Reset the stack frame. */ 345 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */ 346 } else { 347 EMIT1(0x55); /* push rbp */ 348 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 349 } 350 351 /* X86_TAIL_CALL_OFFSET is here */ 352 EMIT_ENDBR(); 353 354 /* sub rsp, rounded_stack_depth */ 355 if (stack_depth) 356 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); 357 if (tail_call_reachable) 358 EMIT1(0x50); /* push rax */ 359 *pprog = prog; 360 } 361 362 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) 363 { 364 u8 *prog = *pprog; 365 s64 offset; 366 367 offset = func - (ip + X86_PATCH_SIZE); 368 if (!is_simm32(offset)) { 369 pr_err("Target call %p is out of range\n", func); 370 return -ERANGE; 371 } 372 EMIT1_off32(opcode, offset); 373 *pprog = prog; 374 return 0; 375 } 376 377 static int emit_call(u8 **pprog, void *func, void *ip) 378 { 379 return emit_patch(pprog, func, ip, 0xE8); 380 } 381 382 static int emit_rsb_call(u8 **pprog, void *func, void *ip) 383 { 384 OPTIMIZER_HIDE_VAR(func); 385 x86_call_depth_emit_accounting(pprog, func); 386 return emit_patch(pprog, func, ip, 0xE8); 387 } 388 389 static int emit_jump(u8 **pprog, void *func, void *ip) 390 { 391 return emit_patch(pprog, func, ip, 0xE9); 392 } 393 394 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 395 void *old_addr, void *new_addr) 396 { 397 const u8 *nop_insn = x86_nops[5]; 398 u8 old_insn[X86_PATCH_SIZE]; 399 u8 new_insn[X86_PATCH_SIZE]; 400 u8 *prog; 401 int ret; 402 403 memcpy(old_insn, nop_insn, X86_PATCH_SIZE); 404 if (old_addr) { 405 prog = old_insn; 406 ret = t == BPF_MOD_CALL ? 407 emit_call(&prog, old_addr, ip) : 408 emit_jump(&prog, old_addr, ip); 409 if (ret) 410 return ret; 411 } 412 413 memcpy(new_insn, nop_insn, X86_PATCH_SIZE); 414 if (new_addr) { 415 prog = new_insn; 416 ret = t == BPF_MOD_CALL ? 417 emit_call(&prog, new_addr, ip) : 418 emit_jump(&prog, new_addr, ip); 419 if (ret) 420 return ret; 421 } 422 423 ret = -EBUSY; 424 mutex_lock(&text_mutex); 425 if (memcmp(ip, old_insn, X86_PATCH_SIZE)) 426 goto out; 427 ret = 1; 428 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { 429 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL); 430 ret = 0; 431 } 432 out: 433 mutex_unlock(&text_mutex); 434 return ret; 435 } 436 437 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 438 void *old_addr, void *new_addr) 439 { 440 if (!is_kernel_text((long)ip) && 441 !is_bpf_text_address((long)ip)) 442 /* BPF poking in modules is not supported */ 443 return -EINVAL; 444 445 /* 446 * See emit_prologue(), for IBT builds the trampoline hook is preceded 447 * with an ENDBR instruction. 448 */ 449 if (is_endbr(*(u32 *)ip)) 450 ip += ENDBR_INSN_SIZE; 451 452 return __bpf_arch_text_poke(ip, t, old_addr, new_addr); 453 } 454 455 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8) 456 457 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip) 458 { 459 u8 *prog = *pprog; 460 461 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 462 EMIT_LFENCE(); 463 EMIT2(0xFF, 0xE0 + reg); 464 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) { 465 OPTIMIZER_HIDE_VAR(reg); 466 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 467 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip); 468 else 469 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip); 470 } else { 471 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */ 472 if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS)) 473 EMIT1(0xCC); /* int3 */ 474 } 475 476 *pprog = prog; 477 } 478 479 static void emit_return(u8 **pprog, u8 *ip) 480 { 481 u8 *prog = *pprog; 482 483 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) { 484 emit_jump(&prog, x86_return_thunk, ip); 485 } else { 486 EMIT1(0xC3); /* ret */ 487 if (IS_ENABLED(CONFIG_SLS)) 488 EMIT1(0xCC); /* int3 */ 489 } 490 491 *pprog = prog; 492 } 493 494 /* 495 * Generate the following code: 496 * 497 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... 498 * if (index >= array->map.max_entries) 499 * goto out; 500 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) 501 * goto out; 502 * prog = array->ptrs[index]; 503 * if (prog == NULL) 504 * goto out; 505 * goto *(prog->bpf_func + prologue_size); 506 * out: 507 */ 508 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog, 509 u8 **pprog, bool *callee_regs_used, 510 u32 stack_depth, u8 *ip, 511 struct jit_context *ctx) 512 { 513 int tcc_off = -4 - round_up(stack_depth, 8); 514 u8 *prog = *pprog, *start = *pprog; 515 int offset; 516 517 /* 518 * rdi - pointer to ctx 519 * rsi - pointer to bpf_array 520 * rdx - index in bpf_array 521 */ 522 523 /* 524 * if (index >= array->map.max_entries) 525 * goto out; 526 */ 527 EMIT2(0x89, 0xD2); /* mov edx, edx */ 528 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ 529 offsetof(struct bpf_array, map.max_entries)); 530 531 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 532 EMIT2(X86_JBE, offset); /* jbe out */ 533 534 /* 535 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) 536 * goto out; 537 */ 538 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ 539 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ 540 541 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 542 EMIT2(X86_JAE, offset); /* jae out */ 543 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ 544 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ 545 546 /* prog = array->ptrs[index]; */ 547 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ 548 offsetof(struct bpf_array, ptrs)); 549 550 /* 551 * if (prog == NULL) 552 * goto out; 553 */ 554 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ 555 556 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 557 EMIT2(X86_JE, offset); /* je out */ 558 559 if (bpf_prog->aux->exception_boundary) { 560 pop_callee_regs(&prog, all_callee_regs_used); 561 pop_r12(&prog); 562 } else { 563 pop_callee_regs(&prog, callee_regs_used); 564 } 565 566 EMIT1(0x58); /* pop rax */ 567 if (stack_depth) 568 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ 569 round_up(stack_depth, 8)); 570 571 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ 572 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ 573 offsetof(struct bpf_prog, bpf_func)); 574 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ 575 X86_TAIL_CALL_OFFSET); 576 /* 577 * Now we're ready to jump into next BPF program 578 * rdi == ctx (1st arg) 579 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET 580 */ 581 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start)); 582 583 /* out: */ 584 ctx->tail_call_indirect_label = prog - start; 585 *pprog = prog; 586 } 587 588 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog, 589 struct bpf_jit_poke_descriptor *poke, 590 u8 **pprog, u8 *ip, 591 bool *callee_regs_used, u32 stack_depth, 592 struct jit_context *ctx) 593 { 594 int tcc_off = -4 - round_up(stack_depth, 8); 595 u8 *prog = *pprog, *start = *pprog; 596 int offset; 597 598 /* 599 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) 600 * goto out; 601 */ 602 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ 603 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ 604 605 offset = ctx->tail_call_direct_label - (prog + 2 - start); 606 EMIT2(X86_JAE, offset); /* jae out */ 607 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ 608 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ 609 610 poke->tailcall_bypass = ip + (prog - start); 611 poke->adj_off = X86_TAIL_CALL_OFFSET; 612 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE; 613 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; 614 615 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, 616 poke->tailcall_bypass); 617 618 if (bpf_prog->aux->exception_boundary) { 619 pop_callee_regs(&prog, all_callee_regs_used); 620 pop_r12(&prog); 621 } else { 622 pop_callee_regs(&prog, callee_regs_used); 623 } 624 625 EMIT1(0x58); /* pop rax */ 626 if (stack_depth) 627 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); 628 629 memcpy(prog, x86_nops[5], X86_PATCH_SIZE); 630 prog += X86_PATCH_SIZE; 631 632 /* out: */ 633 ctx->tail_call_direct_label = prog - start; 634 635 *pprog = prog; 636 } 637 638 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) 639 { 640 struct bpf_jit_poke_descriptor *poke; 641 struct bpf_array *array; 642 struct bpf_prog *target; 643 int i, ret; 644 645 for (i = 0; i < prog->aux->size_poke_tab; i++) { 646 poke = &prog->aux->poke_tab[i]; 647 if (poke->aux && poke->aux != prog->aux) 648 continue; 649 650 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); 651 652 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 653 continue; 654 655 array = container_of(poke->tail_call.map, struct bpf_array, map); 656 mutex_lock(&array->aux->poke_mutex); 657 target = array->ptrs[poke->tail_call.key]; 658 if (target) { 659 ret = __bpf_arch_text_poke(poke->tailcall_target, 660 BPF_MOD_JUMP, NULL, 661 (u8 *)target->bpf_func + 662 poke->adj_off); 663 BUG_ON(ret < 0); 664 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 665 BPF_MOD_JUMP, 666 (u8 *)poke->tailcall_target + 667 X86_PATCH_SIZE, NULL); 668 BUG_ON(ret < 0); 669 } 670 WRITE_ONCE(poke->tailcall_target_stable, true); 671 mutex_unlock(&array->aux->poke_mutex); 672 } 673 } 674 675 static void emit_mov_imm32(u8 **pprog, bool sign_propagate, 676 u32 dst_reg, const u32 imm32) 677 { 678 u8 *prog = *pprog; 679 u8 b1, b2, b3; 680 681 /* 682 * Optimization: if imm32 is positive, use 'mov %eax, imm32' 683 * (which zero-extends imm32) to save 2 bytes. 684 */ 685 if (sign_propagate && (s32)imm32 < 0) { 686 /* 'mov %rax, imm32' sign extends imm32 */ 687 b1 = add_1mod(0x48, dst_reg); 688 b2 = 0xC7; 689 b3 = 0xC0; 690 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); 691 goto done; 692 } 693 694 /* 695 * Optimization: if imm32 is zero, use 'xor %eax, %eax' 696 * to save 3 bytes. 697 */ 698 if (imm32 == 0) { 699 if (is_ereg(dst_reg)) 700 EMIT1(add_2mod(0x40, dst_reg, dst_reg)); 701 b2 = 0x31; /* xor */ 702 b3 = 0xC0; 703 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); 704 goto done; 705 } 706 707 /* mov %eax, imm32 */ 708 if (is_ereg(dst_reg)) 709 EMIT1(add_1mod(0x40, dst_reg)); 710 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); 711 done: 712 *pprog = prog; 713 } 714 715 static void emit_mov_imm64(u8 **pprog, u32 dst_reg, 716 const u32 imm32_hi, const u32 imm32_lo) 717 { 718 u8 *prog = *pprog; 719 720 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) { 721 /* 722 * For emitting plain u32, where sign bit must not be 723 * propagated LLVM tends to load imm64 over mov32 724 * directly, so save couple of bytes by just doing 725 * 'mov %eax, imm32' instead. 726 */ 727 emit_mov_imm32(&prog, false, dst_reg, imm32_lo); 728 } else { 729 /* movabsq rax, imm64 */ 730 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); 731 EMIT(imm32_lo, 4); 732 EMIT(imm32_hi, 4); 733 } 734 735 *pprog = prog; 736 } 737 738 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) 739 { 740 u8 *prog = *pprog; 741 742 if (is64) { 743 /* mov dst, src */ 744 EMIT_mov(dst_reg, src_reg); 745 } else { 746 /* mov32 dst, src */ 747 if (is_ereg(dst_reg) || is_ereg(src_reg)) 748 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 749 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); 750 } 751 752 *pprog = prog; 753 } 754 755 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg, 756 u32 src_reg) 757 { 758 u8 *prog = *pprog; 759 760 if (is64) { 761 /* movs[b,w,l]q dst, src */ 762 if (num_bits == 8) 763 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe, 764 add_2reg(0xC0, src_reg, dst_reg)); 765 else if (num_bits == 16) 766 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf, 767 add_2reg(0xC0, src_reg, dst_reg)); 768 else if (num_bits == 32) 769 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63, 770 add_2reg(0xC0, src_reg, dst_reg)); 771 } else { 772 /* movs[b,w]l dst, src */ 773 if (num_bits == 8) { 774 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe, 775 add_2reg(0xC0, src_reg, dst_reg)); 776 } else if (num_bits == 16) { 777 if (is_ereg(dst_reg) || is_ereg(src_reg)) 778 EMIT1(add_2mod(0x40, src_reg, dst_reg)); 779 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf, 780 add_2reg(0xC0, src_reg, dst_reg)); 781 } 782 } 783 784 *pprog = prog; 785 } 786 787 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ 788 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) 789 { 790 u8 *prog = *pprog; 791 792 if (is_imm8(off)) { 793 /* 1-byte signed displacement. 794 * 795 * If off == 0 we could skip this and save one extra byte, but 796 * special case of x86 R13 which always needs an offset is not 797 * worth the hassle 798 */ 799 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); 800 } else { 801 /* 4-byte signed displacement */ 802 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); 803 } 804 *pprog = prog; 805 } 806 807 /* 808 * Emit a REX byte if it will be necessary to address these registers 809 */ 810 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) 811 { 812 u8 *prog = *pprog; 813 814 if (is64) 815 EMIT1(add_2mod(0x48, dst_reg, src_reg)); 816 else if (is_ereg(dst_reg) || is_ereg(src_reg)) 817 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 818 *pprog = prog; 819 } 820 821 /* 822 * Similar version of maybe_emit_mod() for a single register 823 */ 824 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64) 825 { 826 u8 *prog = *pprog; 827 828 if (is64) 829 EMIT1(add_1mod(0x48, reg)); 830 else if (is_ereg(reg)) 831 EMIT1(add_1mod(0x40, reg)); 832 *pprog = prog; 833 } 834 835 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 836 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 837 { 838 u8 *prog = *pprog; 839 840 switch (size) { 841 case BPF_B: 842 /* Emit 'movzx rax, byte ptr [rax + off]' */ 843 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); 844 break; 845 case BPF_H: 846 /* Emit 'movzx rax, word ptr [rax + off]' */ 847 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); 848 break; 849 case BPF_W: 850 /* Emit 'mov eax, dword ptr [rax+0x14]' */ 851 if (is_ereg(dst_reg) || is_ereg(src_reg)) 852 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); 853 else 854 EMIT1(0x8B); 855 break; 856 case BPF_DW: 857 /* Emit 'mov rax, qword ptr [rax+0x14]' */ 858 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); 859 break; 860 } 861 emit_insn_suffix(&prog, src_reg, dst_reg, off); 862 *pprog = prog; 863 } 864 865 /* LDSX: dst_reg = *(s8*)(src_reg + off) */ 866 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 867 { 868 u8 *prog = *pprog; 869 870 switch (size) { 871 case BPF_B: 872 /* Emit 'movsx rax, byte ptr [rax + off]' */ 873 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE); 874 break; 875 case BPF_H: 876 /* Emit 'movsx rax, word ptr [rax + off]' */ 877 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF); 878 break; 879 case BPF_W: 880 /* Emit 'movsx rax, dword ptr [rax+0x14]' */ 881 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63); 882 break; 883 } 884 emit_insn_suffix(&prog, src_reg, dst_reg, off); 885 *pprog = prog; 886 } 887 888 /* STX: *(u8*)(dst_reg + off) = src_reg */ 889 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 890 { 891 u8 *prog = *pprog; 892 893 switch (size) { 894 case BPF_B: 895 /* Emit 'mov byte ptr [rax + off], al' */ 896 if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) 897 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ 898 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); 899 else 900 EMIT1(0x88); 901 break; 902 case BPF_H: 903 if (is_ereg(dst_reg) || is_ereg(src_reg)) 904 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); 905 else 906 EMIT2(0x66, 0x89); 907 break; 908 case BPF_W: 909 if (is_ereg(dst_reg) || is_ereg(src_reg)) 910 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); 911 else 912 EMIT1(0x89); 913 break; 914 case BPF_DW: 915 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); 916 break; 917 } 918 emit_insn_suffix(&prog, dst_reg, src_reg, off); 919 *pprog = prog; 920 } 921 922 static int emit_atomic(u8 **pprog, u8 atomic_op, 923 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) 924 { 925 u8 *prog = *pprog; 926 927 EMIT1(0xF0); /* lock prefix */ 928 929 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); 930 931 /* emit opcode */ 932 switch (atomic_op) { 933 case BPF_ADD: 934 case BPF_AND: 935 case BPF_OR: 936 case BPF_XOR: 937 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ 938 EMIT1(simple_alu_opcodes[atomic_op]); 939 break; 940 case BPF_ADD | BPF_FETCH: 941 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ 942 EMIT2(0x0F, 0xC1); 943 break; 944 case BPF_XCHG: 945 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 946 EMIT1(0x87); 947 break; 948 case BPF_CMPXCHG: 949 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 950 EMIT2(0x0F, 0xB1); 951 break; 952 default: 953 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 954 return -EFAULT; 955 } 956 957 emit_insn_suffix(&prog, dst_reg, src_reg, off); 958 959 *pprog = prog; 960 return 0; 961 } 962 963 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) 964 { 965 u32 reg = x->fixup >> 8; 966 967 /* jump over faulting load and clear dest register */ 968 *(unsigned long *)((void *)regs + reg) = 0; 969 regs->ip += x->fixup & 0xff; 970 return true; 971 } 972 973 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, 974 bool *regs_used, bool *tail_call_seen) 975 { 976 int i; 977 978 for (i = 1; i <= insn_cnt; i++, insn++) { 979 if (insn->code == (BPF_JMP | BPF_TAIL_CALL)) 980 *tail_call_seen = true; 981 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 982 regs_used[0] = true; 983 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 984 regs_used[1] = true; 985 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 986 regs_used[2] = true; 987 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 988 regs_used[3] = true; 989 } 990 } 991 992 static void emit_nops(u8 **pprog, int len) 993 { 994 u8 *prog = *pprog; 995 int i, noplen; 996 997 while (len > 0) { 998 noplen = len; 999 1000 if (noplen > ASM_NOP_MAX) 1001 noplen = ASM_NOP_MAX; 1002 1003 for (i = 0; i < noplen; i++) 1004 EMIT1(x86_nops[noplen][i]); 1005 len -= noplen; 1006 } 1007 1008 *pprog = prog; 1009 } 1010 1011 /* emit the 3-byte VEX prefix 1012 * 1013 * r: same as rex.r, extra bit for ModRM reg field 1014 * x: same as rex.x, extra bit for SIB index field 1015 * b: same as rex.b, extra bit for ModRM r/m, or SIB base 1016 * m: opcode map select, encoding escape bytes e.g. 0x0f38 1017 * w: same as rex.w (32 bit or 64 bit) or opcode specific 1018 * src_reg2: additional source reg (encoded as BPF reg) 1019 * l: vector length (128 bit or 256 bit) or reserved 1020 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3) 1021 */ 1022 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m, 1023 bool w, u8 src_reg2, bool l, u8 pp) 1024 { 1025 u8 *prog = *pprog; 1026 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */ 1027 u8 b1, b2; 1028 u8 vvvv = reg2hex[src_reg2]; 1029 1030 /* reg2hex gives only the lower 3 bit of vvvv */ 1031 if (is_ereg(src_reg2)) 1032 vvvv |= 1 << 3; 1033 1034 /* 1035 * 2nd byte of 3-byte VEX prefix 1036 * ~ means bit inverted encoding 1037 * 1038 * 7 0 1039 * +---+---+---+---+---+---+---+---+ 1040 * |~R |~X |~B | m | 1041 * +---+---+---+---+---+---+---+---+ 1042 */ 1043 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f); 1044 /* 1045 * 3rd byte of 3-byte VEX prefix 1046 * 1047 * 7 0 1048 * +---+---+---+---+---+---+---+---+ 1049 * | W | ~vvvv | L | pp | 1050 * +---+---+---+---+---+---+---+---+ 1051 */ 1052 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3); 1053 1054 EMIT3(b0, b1, b2); 1055 *pprog = prog; 1056 } 1057 1058 /* emit BMI2 shift instruction */ 1059 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op) 1060 { 1061 u8 *prog = *pprog; 1062 bool r = is_ereg(dst_reg); 1063 u8 m = 2; /* escape code 0f38 */ 1064 1065 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op); 1066 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg)); 1067 *pprog = prog; 1068 } 1069 1070 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) 1071 1072 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */ 1073 #define RESTORE_TAIL_CALL_CNT(stack) \ 1074 EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8) 1075 1076 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image, 1077 int oldproglen, struct jit_context *ctx, bool jmp_padding) 1078 { 1079 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; 1080 struct bpf_insn *insn = bpf_prog->insnsi; 1081 bool callee_regs_used[4] = {}; 1082 int insn_cnt = bpf_prog->len; 1083 bool tail_call_seen = false; 1084 bool seen_exit = false; 1085 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; 1086 int i, excnt = 0; 1087 int ilen, proglen = 0; 1088 u8 *prog = temp; 1089 int err; 1090 1091 detect_reg_usage(insn, insn_cnt, callee_regs_used, 1092 &tail_call_seen); 1093 1094 /* tail call's presence in current prog implies it is reachable */ 1095 tail_call_reachable |= tail_call_seen; 1096 1097 emit_prologue(&prog, bpf_prog->aux->stack_depth, 1098 bpf_prog_was_classic(bpf_prog), tail_call_reachable, 1099 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb); 1100 /* Exception callback will clobber callee regs for its own use, and 1101 * restore the original callee regs from main prog's stack frame. 1102 */ 1103 if (bpf_prog->aux->exception_boundary) { 1104 /* We also need to save r12, which is not mapped to any BPF 1105 * register, as we throw after entry into the kernel, which may 1106 * overwrite r12. 1107 */ 1108 push_r12(&prog); 1109 push_callee_regs(&prog, all_callee_regs_used); 1110 } else { 1111 push_callee_regs(&prog, callee_regs_used); 1112 } 1113 1114 ilen = prog - temp; 1115 if (rw_image) 1116 memcpy(rw_image + proglen, temp, ilen); 1117 proglen += ilen; 1118 addrs[0] = proglen; 1119 prog = temp; 1120 1121 for (i = 1; i <= insn_cnt; i++, insn++) { 1122 const s32 imm32 = insn->imm; 1123 u32 dst_reg = insn->dst_reg; 1124 u32 src_reg = insn->src_reg; 1125 u8 b2 = 0, b3 = 0; 1126 u8 *start_of_ldx; 1127 s64 jmp_offset; 1128 s16 insn_off; 1129 u8 jmp_cond; 1130 u8 *func; 1131 int nops; 1132 1133 switch (insn->code) { 1134 /* ALU */ 1135 case BPF_ALU | BPF_ADD | BPF_X: 1136 case BPF_ALU | BPF_SUB | BPF_X: 1137 case BPF_ALU | BPF_AND | BPF_X: 1138 case BPF_ALU | BPF_OR | BPF_X: 1139 case BPF_ALU | BPF_XOR | BPF_X: 1140 case BPF_ALU64 | BPF_ADD | BPF_X: 1141 case BPF_ALU64 | BPF_SUB | BPF_X: 1142 case BPF_ALU64 | BPF_AND | BPF_X: 1143 case BPF_ALU64 | BPF_OR | BPF_X: 1144 case BPF_ALU64 | BPF_XOR | BPF_X: 1145 maybe_emit_mod(&prog, dst_reg, src_reg, 1146 BPF_CLASS(insn->code) == BPF_ALU64); 1147 b2 = simple_alu_opcodes[BPF_OP(insn->code)]; 1148 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); 1149 break; 1150 1151 case BPF_ALU64 | BPF_MOV | BPF_X: 1152 case BPF_ALU | BPF_MOV | BPF_X: 1153 if (insn->off == 0) 1154 emit_mov_reg(&prog, 1155 BPF_CLASS(insn->code) == BPF_ALU64, 1156 dst_reg, src_reg); 1157 else 1158 emit_movsx_reg(&prog, insn->off, 1159 BPF_CLASS(insn->code) == BPF_ALU64, 1160 dst_reg, src_reg); 1161 break; 1162 1163 /* neg dst */ 1164 case BPF_ALU | BPF_NEG: 1165 case BPF_ALU64 | BPF_NEG: 1166 maybe_emit_1mod(&prog, dst_reg, 1167 BPF_CLASS(insn->code) == BPF_ALU64); 1168 EMIT2(0xF7, add_1reg(0xD8, dst_reg)); 1169 break; 1170 1171 case BPF_ALU | BPF_ADD | BPF_K: 1172 case BPF_ALU | BPF_SUB | BPF_K: 1173 case BPF_ALU | BPF_AND | BPF_K: 1174 case BPF_ALU | BPF_OR | BPF_K: 1175 case BPF_ALU | BPF_XOR | BPF_K: 1176 case BPF_ALU64 | BPF_ADD | BPF_K: 1177 case BPF_ALU64 | BPF_SUB | BPF_K: 1178 case BPF_ALU64 | BPF_AND | BPF_K: 1179 case BPF_ALU64 | BPF_OR | BPF_K: 1180 case BPF_ALU64 | BPF_XOR | BPF_K: 1181 maybe_emit_1mod(&prog, dst_reg, 1182 BPF_CLASS(insn->code) == BPF_ALU64); 1183 1184 /* 1185 * b3 holds 'normal' opcode, b2 short form only valid 1186 * in case dst is eax/rax. 1187 */ 1188 switch (BPF_OP(insn->code)) { 1189 case BPF_ADD: 1190 b3 = 0xC0; 1191 b2 = 0x05; 1192 break; 1193 case BPF_SUB: 1194 b3 = 0xE8; 1195 b2 = 0x2D; 1196 break; 1197 case BPF_AND: 1198 b3 = 0xE0; 1199 b2 = 0x25; 1200 break; 1201 case BPF_OR: 1202 b3 = 0xC8; 1203 b2 = 0x0D; 1204 break; 1205 case BPF_XOR: 1206 b3 = 0xF0; 1207 b2 = 0x35; 1208 break; 1209 } 1210 1211 if (is_imm8(imm32)) 1212 EMIT3(0x83, add_1reg(b3, dst_reg), imm32); 1213 else if (is_axreg(dst_reg)) 1214 EMIT1_off32(b2, imm32); 1215 else 1216 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); 1217 break; 1218 1219 case BPF_ALU64 | BPF_MOV | BPF_K: 1220 case BPF_ALU | BPF_MOV | BPF_K: 1221 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, 1222 dst_reg, imm32); 1223 break; 1224 1225 case BPF_LD | BPF_IMM | BPF_DW: 1226 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); 1227 insn++; 1228 i++; 1229 break; 1230 1231 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ 1232 case BPF_ALU | BPF_MOD | BPF_X: 1233 case BPF_ALU | BPF_DIV | BPF_X: 1234 case BPF_ALU | BPF_MOD | BPF_K: 1235 case BPF_ALU | BPF_DIV | BPF_K: 1236 case BPF_ALU64 | BPF_MOD | BPF_X: 1237 case BPF_ALU64 | BPF_DIV | BPF_X: 1238 case BPF_ALU64 | BPF_MOD | BPF_K: 1239 case BPF_ALU64 | BPF_DIV | BPF_K: { 1240 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 1241 1242 if (dst_reg != BPF_REG_0) 1243 EMIT1(0x50); /* push rax */ 1244 if (dst_reg != BPF_REG_3) 1245 EMIT1(0x52); /* push rdx */ 1246 1247 if (BPF_SRC(insn->code) == BPF_X) { 1248 if (src_reg == BPF_REG_0 || 1249 src_reg == BPF_REG_3) { 1250 /* mov r11, src_reg */ 1251 EMIT_mov(AUX_REG, src_reg); 1252 src_reg = AUX_REG; 1253 } 1254 } else { 1255 /* mov r11, imm32 */ 1256 EMIT3_off32(0x49, 0xC7, 0xC3, imm32); 1257 src_reg = AUX_REG; 1258 } 1259 1260 if (dst_reg != BPF_REG_0) 1261 /* mov rax, dst_reg */ 1262 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg); 1263 1264 if (insn->off == 0) { 1265 /* 1266 * xor edx, edx 1267 * equivalent to 'xor rdx, rdx', but one byte less 1268 */ 1269 EMIT2(0x31, 0xd2); 1270 1271 /* div src_reg */ 1272 maybe_emit_1mod(&prog, src_reg, is64); 1273 EMIT2(0xF7, add_1reg(0xF0, src_reg)); 1274 } else { 1275 if (BPF_CLASS(insn->code) == BPF_ALU) 1276 EMIT1(0x99); /* cdq */ 1277 else 1278 EMIT2(0x48, 0x99); /* cqo */ 1279 1280 /* idiv src_reg */ 1281 maybe_emit_1mod(&prog, src_reg, is64); 1282 EMIT2(0xF7, add_1reg(0xF8, src_reg)); 1283 } 1284 1285 if (BPF_OP(insn->code) == BPF_MOD && 1286 dst_reg != BPF_REG_3) 1287 /* mov dst_reg, rdx */ 1288 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3); 1289 else if (BPF_OP(insn->code) == BPF_DIV && 1290 dst_reg != BPF_REG_0) 1291 /* mov dst_reg, rax */ 1292 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0); 1293 1294 if (dst_reg != BPF_REG_3) 1295 EMIT1(0x5A); /* pop rdx */ 1296 if (dst_reg != BPF_REG_0) 1297 EMIT1(0x58); /* pop rax */ 1298 break; 1299 } 1300 1301 case BPF_ALU | BPF_MUL | BPF_K: 1302 case BPF_ALU64 | BPF_MUL | BPF_K: 1303 maybe_emit_mod(&prog, dst_reg, dst_reg, 1304 BPF_CLASS(insn->code) == BPF_ALU64); 1305 1306 if (is_imm8(imm32)) 1307 /* imul dst_reg, dst_reg, imm8 */ 1308 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg), 1309 imm32); 1310 else 1311 /* imul dst_reg, dst_reg, imm32 */ 1312 EMIT2_off32(0x69, 1313 add_2reg(0xC0, dst_reg, dst_reg), 1314 imm32); 1315 break; 1316 1317 case BPF_ALU | BPF_MUL | BPF_X: 1318 case BPF_ALU64 | BPF_MUL | BPF_X: 1319 maybe_emit_mod(&prog, src_reg, dst_reg, 1320 BPF_CLASS(insn->code) == BPF_ALU64); 1321 1322 /* imul dst_reg, src_reg */ 1323 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg)); 1324 break; 1325 1326 /* Shifts */ 1327 case BPF_ALU | BPF_LSH | BPF_K: 1328 case BPF_ALU | BPF_RSH | BPF_K: 1329 case BPF_ALU | BPF_ARSH | BPF_K: 1330 case BPF_ALU64 | BPF_LSH | BPF_K: 1331 case BPF_ALU64 | BPF_RSH | BPF_K: 1332 case BPF_ALU64 | BPF_ARSH | BPF_K: 1333 maybe_emit_1mod(&prog, dst_reg, 1334 BPF_CLASS(insn->code) == BPF_ALU64); 1335 1336 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1337 if (imm32 == 1) 1338 EMIT2(0xD1, add_1reg(b3, dst_reg)); 1339 else 1340 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); 1341 break; 1342 1343 case BPF_ALU | BPF_LSH | BPF_X: 1344 case BPF_ALU | BPF_RSH | BPF_X: 1345 case BPF_ALU | BPF_ARSH | BPF_X: 1346 case BPF_ALU64 | BPF_LSH | BPF_X: 1347 case BPF_ALU64 | BPF_RSH | BPF_X: 1348 case BPF_ALU64 | BPF_ARSH | BPF_X: 1349 /* BMI2 shifts aren't better when shift count is already in rcx */ 1350 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) { 1351 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */ 1352 bool w = (BPF_CLASS(insn->code) == BPF_ALU64); 1353 u8 op; 1354 1355 switch (BPF_OP(insn->code)) { 1356 case BPF_LSH: 1357 op = 1; /* prefix 0x66 */ 1358 break; 1359 case BPF_RSH: 1360 op = 3; /* prefix 0xf2 */ 1361 break; 1362 case BPF_ARSH: 1363 op = 2; /* prefix 0xf3 */ 1364 break; 1365 } 1366 1367 emit_shiftx(&prog, dst_reg, src_reg, w, op); 1368 1369 break; 1370 } 1371 1372 if (src_reg != BPF_REG_4) { /* common case */ 1373 /* Check for bad case when dst_reg == rcx */ 1374 if (dst_reg == BPF_REG_4) { 1375 /* mov r11, dst_reg */ 1376 EMIT_mov(AUX_REG, dst_reg); 1377 dst_reg = AUX_REG; 1378 } else { 1379 EMIT1(0x51); /* push rcx */ 1380 } 1381 /* mov rcx, src_reg */ 1382 EMIT_mov(BPF_REG_4, src_reg); 1383 } 1384 1385 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ 1386 maybe_emit_1mod(&prog, dst_reg, 1387 BPF_CLASS(insn->code) == BPF_ALU64); 1388 1389 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1390 EMIT2(0xD3, add_1reg(b3, dst_reg)); 1391 1392 if (src_reg != BPF_REG_4) { 1393 if (insn->dst_reg == BPF_REG_4) 1394 /* mov dst_reg, r11 */ 1395 EMIT_mov(insn->dst_reg, AUX_REG); 1396 else 1397 EMIT1(0x59); /* pop rcx */ 1398 } 1399 1400 break; 1401 1402 case BPF_ALU | BPF_END | BPF_FROM_BE: 1403 case BPF_ALU64 | BPF_END | BPF_FROM_LE: 1404 switch (imm32) { 1405 case 16: 1406 /* Emit 'ror %ax, 8' to swap lower 2 bytes */ 1407 EMIT1(0x66); 1408 if (is_ereg(dst_reg)) 1409 EMIT1(0x41); 1410 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); 1411 1412 /* Emit 'movzwl eax, ax' */ 1413 if (is_ereg(dst_reg)) 1414 EMIT3(0x45, 0x0F, 0xB7); 1415 else 1416 EMIT2(0x0F, 0xB7); 1417 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1418 break; 1419 case 32: 1420 /* Emit 'bswap eax' to swap lower 4 bytes */ 1421 if (is_ereg(dst_reg)) 1422 EMIT2(0x41, 0x0F); 1423 else 1424 EMIT1(0x0F); 1425 EMIT1(add_1reg(0xC8, dst_reg)); 1426 break; 1427 case 64: 1428 /* Emit 'bswap rax' to swap 8 bytes */ 1429 EMIT3(add_1mod(0x48, dst_reg), 0x0F, 1430 add_1reg(0xC8, dst_reg)); 1431 break; 1432 } 1433 break; 1434 1435 case BPF_ALU | BPF_END | BPF_FROM_LE: 1436 switch (imm32) { 1437 case 16: 1438 /* 1439 * Emit 'movzwl eax, ax' to zero extend 16-bit 1440 * into 64 bit 1441 */ 1442 if (is_ereg(dst_reg)) 1443 EMIT3(0x45, 0x0F, 0xB7); 1444 else 1445 EMIT2(0x0F, 0xB7); 1446 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1447 break; 1448 case 32: 1449 /* Emit 'mov eax, eax' to clear upper 32-bits */ 1450 if (is_ereg(dst_reg)) 1451 EMIT1(0x45); 1452 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); 1453 break; 1454 case 64: 1455 /* nop */ 1456 break; 1457 } 1458 break; 1459 1460 /* speculation barrier */ 1461 case BPF_ST | BPF_NOSPEC: 1462 EMIT_LFENCE(); 1463 break; 1464 1465 /* ST: *(u8*)(dst_reg + off) = imm */ 1466 case BPF_ST | BPF_MEM | BPF_B: 1467 if (is_ereg(dst_reg)) 1468 EMIT2(0x41, 0xC6); 1469 else 1470 EMIT1(0xC6); 1471 goto st; 1472 case BPF_ST | BPF_MEM | BPF_H: 1473 if (is_ereg(dst_reg)) 1474 EMIT3(0x66, 0x41, 0xC7); 1475 else 1476 EMIT2(0x66, 0xC7); 1477 goto st; 1478 case BPF_ST | BPF_MEM | BPF_W: 1479 if (is_ereg(dst_reg)) 1480 EMIT2(0x41, 0xC7); 1481 else 1482 EMIT1(0xC7); 1483 goto st; 1484 case BPF_ST | BPF_MEM | BPF_DW: 1485 EMIT2(add_1mod(0x48, dst_reg), 0xC7); 1486 1487 st: if (is_imm8(insn->off)) 1488 EMIT2(add_1reg(0x40, dst_reg), insn->off); 1489 else 1490 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); 1491 1492 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); 1493 break; 1494 1495 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1496 case BPF_STX | BPF_MEM | BPF_B: 1497 case BPF_STX | BPF_MEM | BPF_H: 1498 case BPF_STX | BPF_MEM | BPF_W: 1499 case BPF_STX | BPF_MEM | BPF_DW: 1500 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 1501 break; 1502 1503 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 1504 case BPF_LDX | BPF_MEM | BPF_B: 1505 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 1506 case BPF_LDX | BPF_MEM | BPF_H: 1507 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 1508 case BPF_LDX | BPF_MEM | BPF_W: 1509 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 1510 case BPF_LDX | BPF_MEM | BPF_DW: 1511 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 1512 /* LDXS: dst_reg = *(s8*)(src_reg + off) */ 1513 case BPF_LDX | BPF_MEMSX | BPF_B: 1514 case BPF_LDX | BPF_MEMSX | BPF_H: 1515 case BPF_LDX | BPF_MEMSX | BPF_W: 1516 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: 1517 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: 1518 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: 1519 insn_off = insn->off; 1520 1521 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 1522 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 1523 /* Conservatively check that src_reg + insn->off is a kernel address: 1524 * src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE 1525 * src_reg is used as scratch for src_reg += insn->off and restored 1526 * after emit_ldx if necessary 1527 */ 1528 1529 u64 limit = TASK_SIZE_MAX + PAGE_SIZE; 1530 u8 *end_of_jmp; 1531 1532 /* At end of these emitted checks, insn->off will have been added 1533 * to src_reg, so no need to do relative load with insn->off offset 1534 */ 1535 insn_off = 0; 1536 1537 /* movabsq r11, limit */ 1538 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG)); 1539 EMIT((u32)limit, 4); 1540 EMIT(limit >> 32, 4); 1541 1542 if (insn->off) { 1543 /* add src_reg, insn->off */ 1544 maybe_emit_1mod(&prog, src_reg, true); 1545 EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off); 1546 } 1547 1548 /* cmp src_reg, r11 */ 1549 maybe_emit_mod(&prog, src_reg, AUX_REG, true); 1550 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG)); 1551 1552 /* if unsigned '>=', goto load */ 1553 EMIT2(X86_JAE, 0); 1554 end_of_jmp = prog; 1555 1556 /* xor dst_reg, dst_reg */ 1557 emit_mov_imm32(&prog, false, dst_reg, 0); 1558 /* jmp byte_after_ldx */ 1559 EMIT2(0xEB, 0); 1560 1561 /* populate jmp_offset for JAE above to jump to start_of_ldx */ 1562 start_of_ldx = prog; 1563 end_of_jmp[-1] = start_of_ldx - end_of_jmp; 1564 } 1565 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || 1566 BPF_MODE(insn->code) == BPF_MEMSX) 1567 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 1568 else 1569 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 1570 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 1571 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 1572 struct exception_table_entry *ex; 1573 u8 *_insn = image + proglen + (start_of_ldx - temp); 1574 s64 delta; 1575 1576 /* populate jmp_offset for JMP above */ 1577 start_of_ldx[-1] = prog - start_of_ldx; 1578 1579 if (insn->off && src_reg != dst_reg) { 1580 /* sub src_reg, insn->off 1581 * Restore src_reg after "add src_reg, insn->off" in prev 1582 * if statement. But if src_reg == dst_reg, emit_ldx 1583 * above already clobbered src_reg, so no need to restore. 1584 * If add src_reg, insn->off was unnecessary, no need to 1585 * restore either. 1586 */ 1587 maybe_emit_1mod(&prog, src_reg, true); 1588 EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off); 1589 } 1590 1591 if (!bpf_prog->aux->extable) 1592 break; 1593 1594 if (excnt >= bpf_prog->aux->num_exentries) { 1595 pr_err("ex gen bug\n"); 1596 return -EFAULT; 1597 } 1598 ex = &bpf_prog->aux->extable[excnt++]; 1599 1600 delta = _insn - (u8 *)&ex->insn; 1601 if (!is_simm32(delta)) { 1602 pr_err("extable->insn doesn't fit into 32-bit\n"); 1603 return -EFAULT; 1604 } 1605 /* switch ex to rw buffer for writes */ 1606 ex = (void *)rw_image + ((void *)ex - (void *)image); 1607 1608 ex->insn = delta; 1609 1610 ex->data = EX_TYPE_BPF; 1611 1612 if (dst_reg > BPF_REG_9) { 1613 pr_err("verifier error\n"); 1614 return -EFAULT; 1615 } 1616 /* 1617 * Compute size of x86 insn and its target dest x86 register. 1618 * ex_handler_bpf() will use lower 8 bits to adjust 1619 * pt_regs->ip to jump over this x86 instruction 1620 * and upper bits to figure out which pt_regs to zero out. 1621 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" 1622 * of 4 bytes will be ignored and rbx will be zero inited. 1623 */ 1624 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8); 1625 } 1626 break; 1627 1628 case BPF_STX | BPF_ATOMIC | BPF_W: 1629 case BPF_STX | BPF_ATOMIC | BPF_DW: 1630 if (insn->imm == (BPF_AND | BPF_FETCH) || 1631 insn->imm == (BPF_OR | BPF_FETCH) || 1632 insn->imm == (BPF_XOR | BPF_FETCH)) { 1633 bool is64 = BPF_SIZE(insn->code) == BPF_DW; 1634 u32 real_src_reg = src_reg; 1635 u32 real_dst_reg = dst_reg; 1636 u8 *branch_target; 1637 1638 /* 1639 * Can't be implemented with a single x86 insn. 1640 * Need to do a CMPXCHG loop. 1641 */ 1642 1643 /* Will need RAX as a CMPXCHG operand so save R0 */ 1644 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); 1645 if (src_reg == BPF_REG_0) 1646 real_src_reg = BPF_REG_AX; 1647 if (dst_reg == BPF_REG_0) 1648 real_dst_reg = BPF_REG_AX; 1649 1650 branch_target = prog; 1651 /* Load old value */ 1652 emit_ldx(&prog, BPF_SIZE(insn->code), 1653 BPF_REG_0, real_dst_reg, insn->off); 1654 /* 1655 * Perform the (commutative) operation locally, 1656 * put the result in the AUX_REG. 1657 */ 1658 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); 1659 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64); 1660 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], 1661 add_2reg(0xC0, AUX_REG, real_src_reg)); 1662 /* Attempt to swap in new value */ 1663 err = emit_atomic(&prog, BPF_CMPXCHG, 1664 real_dst_reg, AUX_REG, 1665 insn->off, 1666 BPF_SIZE(insn->code)); 1667 if (WARN_ON(err)) 1668 return err; 1669 /* 1670 * ZF tells us whether we won the race. If it's 1671 * cleared we need to try again. 1672 */ 1673 EMIT2(X86_JNE, -(prog - branch_target) - 2); 1674 /* Return the pre-modification value */ 1675 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0); 1676 /* Restore R0 after clobbering RAX */ 1677 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); 1678 break; 1679 } 1680 1681 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg, 1682 insn->off, BPF_SIZE(insn->code)); 1683 if (err) 1684 return err; 1685 break; 1686 1687 /* call */ 1688 case BPF_JMP | BPF_CALL: { 1689 int offs; 1690 1691 func = (u8 *) __bpf_call_base + imm32; 1692 if (tail_call_reachable) { 1693 RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth); 1694 if (!imm32) 1695 return -EINVAL; 1696 offs = 7 + x86_call_depth_emit_accounting(&prog, func); 1697 } else { 1698 if (!imm32) 1699 return -EINVAL; 1700 offs = x86_call_depth_emit_accounting(&prog, func); 1701 } 1702 if (emit_call(&prog, func, image + addrs[i - 1] + offs)) 1703 return -EINVAL; 1704 break; 1705 } 1706 1707 case BPF_JMP | BPF_TAIL_CALL: 1708 if (imm32) 1709 emit_bpf_tail_call_direct(bpf_prog, 1710 &bpf_prog->aux->poke_tab[imm32 - 1], 1711 &prog, image + addrs[i - 1], 1712 callee_regs_used, 1713 bpf_prog->aux->stack_depth, 1714 ctx); 1715 else 1716 emit_bpf_tail_call_indirect(bpf_prog, 1717 &prog, 1718 callee_regs_used, 1719 bpf_prog->aux->stack_depth, 1720 image + addrs[i - 1], 1721 ctx); 1722 break; 1723 1724 /* cond jump */ 1725 case BPF_JMP | BPF_JEQ | BPF_X: 1726 case BPF_JMP | BPF_JNE | BPF_X: 1727 case BPF_JMP | BPF_JGT | BPF_X: 1728 case BPF_JMP | BPF_JLT | BPF_X: 1729 case BPF_JMP | BPF_JGE | BPF_X: 1730 case BPF_JMP | BPF_JLE | BPF_X: 1731 case BPF_JMP | BPF_JSGT | BPF_X: 1732 case BPF_JMP | BPF_JSLT | BPF_X: 1733 case BPF_JMP | BPF_JSGE | BPF_X: 1734 case BPF_JMP | BPF_JSLE | BPF_X: 1735 case BPF_JMP32 | BPF_JEQ | BPF_X: 1736 case BPF_JMP32 | BPF_JNE | BPF_X: 1737 case BPF_JMP32 | BPF_JGT | BPF_X: 1738 case BPF_JMP32 | BPF_JLT | BPF_X: 1739 case BPF_JMP32 | BPF_JGE | BPF_X: 1740 case BPF_JMP32 | BPF_JLE | BPF_X: 1741 case BPF_JMP32 | BPF_JSGT | BPF_X: 1742 case BPF_JMP32 | BPF_JSLT | BPF_X: 1743 case BPF_JMP32 | BPF_JSGE | BPF_X: 1744 case BPF_JMP32 | BPF_JSLE | BPF_X: 1745 /* cmp dst_reg, src_reg */ 1746 maybe_emit_mod(&prog, dst_reg, src_reg, 1747 BPF_CLASS(insn->code) == BPF_JMP); 1748 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); 1749 goto emit_cond_jmp; 1750 1751 case BPF_JMP | BPF_JSET | BPF_X: 1752 case BPF_JMP32 | BPF_JSET | BPF_X: 1753 /* test dst_reg, src_reg */ 1754 maybe_emit_mod(&prog, dst_reg, src_reg, 1755 BPF_CLASS(insn->code) == BPF_JMP); 1756 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); 1757 goto emit_cond_jmp; 1758 1759 case BPF_JMP | BPF_JSET | BPF_K: 1760 case BPF_JMP32 | BPF_JSET | BPF_K: 1761 /* test dst_reg, imm32 */ 1762 maybe_emit_1mod(&prog, dst_reg, 1763 BPF_CLASS(insn->code) == BPF_JMP); 1764 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); 1765 goto emit_cond_jmp; 1766 1767 case BPF_JMP | BPF_JEQ | BPF_K: 1768 case BPF_JMP | BPF_JNE | BPF_K: 1769 case BPF_JMP | BPF_JGT | BPF_K: 1770 case BPF_JMP | BPF_JLT | BPF_K: 1771 case BPF_JMP | BPF_JGE | BPF_K: 1772 case BPF_JMP | BPF_JLE | BPF_K: 1773 case BPF_JMP | BPF_JSGT | BPF_K: 1774 case BPF_JMP | BPF_JSLT | BPF_K: 1775 case BPF_JMP | BPF_JSGE | BPF_K: 1776 case BPF_JMP | BPF_JSLE | BPF_K: 1777 case BPF_JMP32 | BPF_JEQ | BPF_K: 1778 case BPF_JMP32 | BPF_JNE | BPF_K: 1779 case BPF_JMP32 | BPF_JGT | BPF_K: 1780 case BPF_JMP32 | BPF_JLT | BPF_K: 1781 case BPF_JMP32 | BPF_JGE | BPF_K: 1782 case BPF_JMP32 | BPF_JLE | BPF_K: 1783 case BPF_JMP32 | BPF_JSGT | BPF_K: 1784 case BPF_JMP32 | BPF_JSLT | BPF_K: 1785 case BPF_JMP32 | BPF_JSGE | BPF_K: 1786 case BPF_JMP32 | BPF_JSLE | BPF_K: 1787 /* test dst_reg, dst_reg to save one extra byte */ 1788 if (imm32 == 0) { 1789 maybe_emit_mod(&prog, dst_reg, dst_reg, 1790 BPF_CLASS(insn->code) == BPF_JMP); 1791 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 1792 goto emit_cond_jmp; 1793 } 1794 1795 /* cmp dst_reg, imm8/32 */ 1796 maybe_emit_1mod(&prog, dst_reg, 1797 BPF_CLASS(insn->code) == BPF_JMP); 1798 1799 if (is_imm8(imm32)) 1800 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); 1801 else 1802 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); 1803 1804 emit_cond_jmp: /* Convert BPF opcode to x86 */ 1805 switch (BPF_OP(insn->code)) { 1806 case BPF_JEQ: 1807 jmp_cond = X86_JE; 1808 break; 1809 case BPF_JSET: 1810 case BPF_JNE: 1811 jmp_cond = X86_JNE; 1812 break; 1813 case BPF_JGT: 1814 /* GT is unsigned '>', JA in x86 */ 1815 jmp_cond = X86_JA; 1816 break; 1817 case BPF_JLT: 1818 /* LT is unsigned '<', JB in x86 */ 1819 jmp_cond = X86_JB; 1820 break; 1821 case BPF_JGE: 1822 /* GE is unsigned '>=', JAE in x86 */ 1823 jmp_cond = X86_JAE; 1824 break; 1825 case BPF_JLE: 1826 /* LE is unsigned '<=', JBE in x86 */ 1827 jmp_cond = X86_JBE; 1828 break; 1829 case BPF_JSGT: 1830 /* Signed '>', GT in x86 */ 1831 jmp_cond = X86_JG; 1832 break; 1833 case BPF_JSLT: 1834 /* Signed '<', LT in x86 */ 1835 jmp_cond = X86_JL; 1836 break; 1837 case BPF_JSGE: 1838 /* Signed '>=', GE in x86 */ 1839 jmp_cond = X86_JGE; 1840 break; 1841 case BPF_JSLE: 1842 /* Signed '<=', LE in x86 */ 1843 jmp_cond = X86_JLE; 1844 break; 1845 default: /* to silence GCC warning */ 1846 return -EFAULT; 1847 } 1848 jmp_offset = addrs[i + insn->off] - addrs[i]; 1849 if (is_imm8(jmp_offset)) { 1850 if (jmp_padding) { 1851 /* To keep the jmp_offset valid, the extra bytes are 1852 * padded before the jump insn, so we subtract the 1853 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. 1854 * 1855 * If the previous pass already emits an imm8 1856 * jmp_cond, then this BPF insn won't shrink, so 1857 * "nops" is 0. 1858 * 1859 * On the other hand, if the previous pass emits an 1860 * imm32 jmp_cond, the extra 4 bytes(*) is padded to 1861 * keep the image from shrinking further. 1862 * 1863 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond 1864 * is 2 bytes, so the size difference is 4 bytes. 1865 */ 1866 nops = INSN_SZ_DIFF - 2; 1867 if (nops != 0 && nops != 4) { 1868 pr_err("unexpected jmp_cond padding: %d bytes\n", 1869 nops); 1870 return -EFAULT; 1871 } 1872 emit_nops(&prog, nops); 1873 } 1874 EMIT2(jmp_cond, jmp_offset); 1875 } else if (is_simm32(jmp_offset)) { 1876 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 1877 } else { 1878 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 1879 return -EFAULT; 1880 } 1881 1882 break; 1883 1884 case BPF_JMP | BPF_JA: 1885 case BPF_JMP32 | BPF_JA: 1886 if (BPF_CLASS(insn->code) == BPF_JMP) { 1887 if (insn->off == -1) 1888 /* -1 jmp instructions will always jump 1889 * backwards two bytes. Explicitly handling 1890 * this case avoids wasting too many passes 1891 * when there are long sequences of replaced 1892 * dead code. 1893 */ 1894 jmp_offset = -2; 1895 else 1896 jmp_offset = addrs[i + insn->off] - addrs[i]; 1897 } else { 1898 if (insn->imm == -1) 1899 jmp_offset = -2; 1900 else 1901 jmp_offset = addrs[i + insn->imm] - addrs[i]; 1902 } 1903 1904 if (!jmp_offset) { 1905 /* 1906 * If jmp_padding is enabled, the extra nops will 1907 * be inserted. Otherwise, optimize out nop jumps. 1908 */ 1909 if (jmp_padding) { 1910 /* There are 3 possible conditions. 1911 * (1) This BPF_JA is already optimized out in 1912 * the previous run, so there is no need 1913 * to pad any extra byte (0 byte). 1914 * (2) The previous pass emits an imm8 jmp, 1915 * so we pad 2 bytes to match the previous 1916 * insn size. 1917 * (3) Similarly, the previous pass emits an 1918 * imm32 jmp, and 5 bytes is padded. 1919 */ 1920 nops = INSN_SZ_DIFF; 1921 if (nops != 0 && nops != 2 && nops != 5) { 1922 pr_err("unexpected nop jump padding: %d bytes\n", 1923 nops); 1924 return -EFAULT; 1925 } 1926 emit_nops(&prog, nops); 1927 } 1928 break; 1929 } 1930 emit_jmp: 1931 if (is_imm8(jmp_offset)) { 1932 if (jmp_padding) { 1933 /* To avoid breaking jmp_offset, the extra bytes 1934 * are padded before the actual jmp insn, so 1935 * 2 bytes is subtracted from INSN_SZ_DIFF. 1936 * 1937 * If the previous pass already emits an imm8 1938 * jmp, there is nothing to pad (0 byte). 1939 * 1940 * If it emits an imm32 jmp (5 bytes) previously 1941 * and now an imm8 jmp (2 bytes), then we pad 1942 * (5 - 2 = 3) bytes to stop the image from 1943 * shrinking further. 1944 */ 1945 nops = INSN_SZ_DIFF - 2; 1946 if (nops != 0 && nops != 3) { 1947 pr_err("unexpected jump padding: %d bytes\n", 1948 nops); 1949 return -EFAULT; 1950 } 1951 emit_nops(&prog, INSN_SZ_DIFF - 2); 1952 } 1953 EMIT2(0xEB, jmp_offset); 1954 } else if (is_simm32(jmp_offset)) { 1955 EMIT1_off32(0xE9, jmp_offset); 1956 } else { 1957 pr_err("jmp gen bug %llx\n", jmp_offset); 1958 return -EFAULT; 1959 } 1960 break; 1961 1962 case BPF_JMP | BPF_EXIT: 1963 if (seen_exit) { 1964 jmp_offset = ctx->cleanup_addr - addrs[i]; 1965 goto emit_jmp; 1966 } 1967 seen_exit = true; 1968 /* Update cleanup_addr */ 1969 ctx->cleanup_addr = proglen; 1970 if (bpf_prog->aux->exception_boundary) { 1971 pop_callee_regs(&prog, all_callee_regs_used); 1972 pop_r12(&prog); 1973 } else { 1974 pop_callee_regs(&prog, callee_regs_used); 1975 } 1976 EMIT1(0xC9); /* leave */ 1977 emit_return(&prog, image + addrs[i - 1] + (prog - temp)); 1978 break; 1979 1980 default: 1981 /* 1982 * By design x86-64 JIT should support all BPF instructions. 1983 * This error will be seen if new instruction was added 1984 * to the interpreter, but not to the JIT, or if there is 1985 * junk in bpf_prog. 1986 */ 1987 pr_err("bpf_jit: unknown opcode %02x\n", insn->code); 1988 return -EINVAL; 1989 } 1990 1991 ilen = prog - temp; 1992 if (ilen > BPF_MAX_INSN_SIZE) { 1993 pr_err("bpf_jit: fatal insn size error\n"); 1994 return -EFAULT; 1995 } 1996 1997 if (image) { 1998 /* 1999 * When populating the image, assert that: 2000 * 2001 * i) We do not write beyond the allocated space, and 2002 * ii) addrs[i] did not change from the prior run, in order 2003 * to validate assumptions made for computing branch 2004 * displacements. 2005 */ 2006 if (unlikely(proglen + ilen > oldproglen || 2007 proglen + ilen != addrs[i])) { 2008 pr_err("bpf_jit: fatal error\n"); 2009 return -EFAULT; 2010 } 2011 memcpy(rw_image + proglen, temp, ilen); 2012 } 2013 proglen += ilen; 2014 addrs[i] = proglen; 2015 prog = temp; 2016 } 2017 2018 if (image && excnt != bpf_prog->aux->num_exentries) { 2019 pr_err("extable is not populated\n"); 2020 return -EFAULT; 2021 } 2022 return proglen; 2023 } 2024 2025 static void clean_stack_garbage(const struct btf_func_model *m, 2026 u8 **pprog, int nr_stack_slots, 2027 int stack_size) 2028 { 2029 int arg_size, off; 2030 u8 *prog; 2031 2032 /* Generally speaking, the compiler will pass the arguments 2033 * on-stack with "push" instruction, which will take 8-byte 2034 * on the stack. In this case, there won't be garbage values 2035 * while we copy the arguments from origin stack frame to current 2036 * in BPF_DW. 2037 * 2038 * However, sometimes the compiler will only allocate 4-byte on 2039 * the stack for the arguments. For now, this case will only 2040 * happen if there is only one argument on-stack and its size 2041 * not more than 4 byte. In this case, there will be garbage 2042 * values on the upper 4-byte where we store the argument on 2043 * current stack frame. 2044 * 2045 * arguments on origin stack: 2046 * 2047 * stack_arg_1(4-byte) xxx(4-byte) 2048 * 2049 * what we copy: 2050 * 2051 * stack_arg_1(8-byte): stack_arg_1(origin) xxx 2052 * 2053 * and the xxx is the garbage values which we should clean here. 2054 */ 2055 if (nr_stack_slots != 1) 2056 return; 2057 2058 /* the size of the last argument */ 2059 arg_size = m->arg_size[m->nr_args - 1]; 2060 if (arg_size <= 4) { 2061 off = -(stack_size - 4); 2062 prog = *pprog; 2063 /* mov DWORD PTR [rbp + off], 0 */ 2064 if (!is_imm8(off)) 2065 EMIT2_off32(0xC7, 0x85, off); 2066 else 2067 EMIT3(0xC7, 0x45, off); 2068 EMIT(0, 4); 2069 *pprog = prog; 2070 } 2071 } 2072 2073 /* get the count of the regs that are used to pass arguments */ 2074 static int get_nr_used_regs(const struct btf_func_model *m) 2075 { 2076 int i, arg_regs, nr_used_regs = 0; 2077 2078 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2079 arg_regs = (m->arg_size[i] + 7) / 8; 2080 if (nr_used_regs + arg_regs <= 6) 2081 nr_used_regs += arg_regs; 2082 2083 if (nr_used_regs >= 6) 2084 break; 2085 } 2086 2087 return nr_used_regs; 2088 } 2089 2090 static void save_args(const struct btf_func_model *m, u8 **prog, 2091 int stack_size, bool for_call_origin) 2092 { 2093 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0; 2094 int i, j; 2095 2096 /* Store function arguments to stack. 2097 * For a function that accepts two pointers the sequence will be: 2098 * mov QWORD PTR [rbp-0x10],rdi 2099 * mov QWORD PTR [rbp-0x8],rsi 2100 */ 2101 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2102 arg_regs = (m->arg_size[i] + 7) / 8; 2103 2104 /* According to the research of Yonghong, struct members 2105 * should be all in register or all on the stack. 2106 * Meanwhile, the compiler will pass the argument on regs 2107 * if the remaining regs can hold the argument. 2108 * 2109 * Disorder of the args can happen. For example: 2110 * 2111 * struct foo_struct { 2112 * long a; 2113 * int b; 2114 * }; 2115 * int foo(char, char, char, char, char, struct foo_struct, 2116 * char); 2117 * 2118 * the arg1-5,arg7 will be passed by regs, and arg6 will 2119 * by stack. 2120 */ 2121 if (nr_regs + arg_regs > 6) { 2122 /* copy function arguments from origin stack frame 2123 * into current stack frame. 2124 * 2125 * The starting address of the arguments on-stack 2126 * is: 2127 * rbp + 8(push rbp) + 2128 * 8(return addr of origin call) + 2129 * 8(return addr of the caller) 2130 * which means: rbp + 24 2131 */ 2132 for (j = 0; j < arg_regs; j++) { 2133 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 2134 nr_stack_slots * 8 + 0x18); 2135 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0, 2136 -stack_size); 2137 2138 if (!nr_stack_slots) 2139 first_off = stack_size; 2140 stack_size -= 8; 2141 nr_stack_slots++; 2142 } 2143 } else { 2144 /* Only copy the arguments on-stack to current 2145 * 'stack_size' and ignore the regs, used to 2146 * prepare the arguments on-stack for orign call. 2147 */ 2148 if (for_call_origin) { 2149 nr_regs += arg_regs; 2150 continue; 2151 } 2152 2153 /* copy the arguments from regs into stack */ 2154 for (j = 0; j < arg_regs; j++) { 2155 emit_stx(prog, BPF_DW, BPF_REG_FP, 2156 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2157 -stack_size); 2158 stack_size -= 8; 2159 nr_regs++; 2160 } 2161 } 2162 } 2163 2164 clean_stack_garbage(m, prog, nr_stack_slots, first_off); 2165 } 2166 2167 static void restore_regs(const struct btf_func_model *m, u8 **prog, 2168 int stack_size) 2169 { 2170 int i, j, arg_regs, nr_regs = 0; 2171 2172 /* Restore function arguments from stack. 2173 * For a function that accepts two pointers the sequence will be: 2174 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] 2175 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] 2176 * 2177 * The logic here is similar to what we do in save_args() 2178 */ 2179 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2180 arg_regs = (m->arg_size[i] + 7) / 8; 2181 if (nr_regs + arg_regs <= 6) { 2182 for (j = 0; j < arg_regs; j++) { 2183 emit_ldx(prog, BPF_DW, 2184 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2185 BPF_REG_FP, 2186 -stack_size); 2187 stack_size -= 8; 2188 nr_regs++; 2189 } 2190 } else { 2191 stack_size -= 8 * arg_regs; 2192 } 2193 2194 if (nr_regs >= 6) 2195 break; 2196 } 2197 } 2198 2199 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, 2200 struct bpf_tramp_link *l, int stack_size, 2201 int run_ctx_off, bool save_ret) 2202 { 2203 u8 *prog = *pprog; 2204 u8 *jmp_insn; 2205 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); 2206 struct bpf_prog *p = l->link.prog; 2207 u64 cookie = l->cookie; 2208 2209 /* mov rdi, cookie */ 2210 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie); 2211 2212 /* Prepare struct bpf_tramp_run_ctx. 2213 * 2214 * bpf_tramp_run_ctx is already preserved by 2215 * arch_prepare_bpf_trampoline(). 2216 * 2217 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi 2218 */ 2219 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off); 2220 2221 /* arg1: mov rdi, progs[i] */ 2222 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2223 /* arg2: lea rsi, [rbp - ctx_cookie_off] */ 2224 if (!is_imm8(-run_ctx_off)) 2225 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off); 2226 else 2227 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off); 2228 2229 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), prog)) 2230 return -EINVAL; 2231 /* remember prog start time returned by __bpf_prog_enter */ 2232 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); 2233 2234 /* if (__bpf_prog_enter*(prog) == 0) 2235 * goto skip_exec_of_prog; 2236 */ 2237 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ 2238 /* emit 2 nops that will be replaced with JE insn */ 2239 jmp_insn = prog; 2240 emit_nops(&prog, 2); 2241 2242 /* arg1: lea rdi, [rbp - stack_size] */ 2243 if (!is_imm8(-stack_size)) 2244 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size); 2245 else 2246 EMIT4(0x48, 0x8D, 0x7D, -stack_size); 2247 /* arg2: progs[i]->insnsi for interpreter */ 2248 if (!p->jited) 2249 emit_mov_imm64(&prog, BPF_REG_2, 2250 (long) p->insnsi >> 32, 2251 (u32) (long) p->insnsi); 2252 /* call JITed bpf program or interpreter */ 2253 if (emit_rsb_call(&prog, p->bpf_func, prog)) 2254 return -EINVAL; 2255 2256 /* 2257 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return 2258 * of the previous call which is then passed on the stack to 2259 * the next BPF program. 2260 * 2261 * BPF_TRAMP_FENTRY trampoline may need to return the return 2262 * value of BPF_PROG_TYPE_STRUCT_OPS prog. 2263 */ 2264 if (save_ret) 2265 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2266 2267 /* replace 2 nops with JE insn, since jmp target is known */ 2268 jmp_insn[0] = X86_JE; 2269 jmp_insn[1] = prog - jmp_insn - 2; 2270 2271 /* arg1: mov rdi, progs[i] */ 2272 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2273 /* arg2: mov rsi, rbx <- start time in nsec */ 2274 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); 2275 /* arg3: lea rdx, [rbp - run_ctx_off] */ 2276 if (!is_imm8(-run_ctx_off)) 2277 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off); 2278 else 2279 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off); 2280 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), prog)) 2281 return -EINVAL; 2282 2283 *pprog = prog; 2284 return 0; 2285 } 2286 2287 static void emit_align(u8 **pprog, u32 align) 2288 { 2289 u8 *target, *prog = *pprog; 2290 2291 target = PTR_ALIGN(prog, align); 2292 if (target != prog) 2293 emit_nops(&prog, target - prog); 2294 2295 *pprog = prog; 2296 } 2297 2298 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) 2299 { 2300 u8 *prog = *pprog; 2301 s64 offset; 2302 2303 offset = func - (ip + 2 + 4); 2304 if (!is_simm32(offset)) { 2305 pr_err("Target %p is out of range\n", func); 2306 return -EINVAL; 2307 } 2308 EMIT2_off32(0x0F, jmp_cond + 0x10, offset); 2309 *pprog = prog; 2310 return 0; 2311 } 2312 2313 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, 2314 struct bpf_tramp_links *tl, int stack_size, 2315 int run_ctx_off, bool save_ret) 2316 { 2317 int i; 2318 u8 *prog = *pprog; 2319 2320 for (i = 0; i < tl->nr_links; i++) { 2321 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, 2322 run_ctx_off, save_ret)) 2323 return -EINVAL; 2324 } 2325 *pprog = prog; 2326 return 0; 2327 } 2328 2329 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, 2330 struct bpf_tramp_links *tl, int stack_size, 2331 int run_ctx_off, u8 **branches) 2332 { 2333 u8 *prog = *pprog; 2334 int i; 2335 2336 /* The first fmod_ret program will receive a garbage return value. 2337 * Set this to 0 to avoid confusing the program. 2338 */ 2339 emit_mov_imm32(&prog, false, BPF_REG_0, 0); 2340 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2341 for (i = 0; i < tl->nr_links; i++) { 2342 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true)) 2343 return -EINVAL; 2344 2345 /* mod_ret prog stored return value into [rbp - 8]. Emit: 2346 * if (*(u64 *)(rbp - 8) != 0) 2347 * goto do_fexit; 2348 */ 2349 /* cmp QWORD PTR [rbp - 0x8], 0x0 */ 2350 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); 2351 2352 /* Save the location of the branch and Generate 6 nops 2353 * (4 bytes for an offset and 2 bytes for the jump) These nops 2354 * are replaced with a conditional jump once do_fexit (i.e. the 2355 * start of the fexit invocation) is finalized. 2356 */ 2357 branches[i] = prog; 2358 emit_nops(&prog, 4 + 2); 2359 } 2360 2361 *pprog = prog; 2362 return 0; 2363 } 2364 2365 /* Example: 2366 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); 2367 * its 'struct btf_func_model' will be nr_args=2 2368 * The assembly code when eth_type_trans is executing after trampoline: 2369 * 2370 * push rbp 2371 * mov rbp, rsp 2372 * sub rsp, 16 // space for skb and dev 2373 * push rbx // temp regs to pass start time 2374 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack 2375 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack 2376 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 2377 * mov rbx, rax // remember start time in bpf stats are enabled 2378 * lea rdi, [rbp - 16] // R1==ctx of bpf prog 2379 * call addr_of_jited_FENTRY_prog 2380 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 2381 * mov rsi, rbx // prog start time 2382 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 2383 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack 2384 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack 2385 * pop rbx 2386 * leave 2387 * ret 2388 * 2389 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be 2390 * replaced with 'call generated_bpf_trampoline'. When it returns 2391 * eth_type_trans will continue executing with original skb and dev pointers. 2392 * 2393 * The assembly code when eth_type_trans is called from trampoline: 2394 * 2395 * push rbp 2396 * mov rbp, rsp 2397 * sub rsp, 24 // space for skb, dev, return value 2398 * push rbx // temp regs to pass start time 2399 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack 2400 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack 2401 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 2402 * mov rbx, rax // remember start time if bpf stats are enabled 2403 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 2404 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev 2405 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 2406 * mov rsi, rbx // prog start time 2407 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 2408 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack 2409 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack 2410 * call eth_type_trans+5 // execute body of eth_type_trans 2411 * mov qword ptr [rbp - 8], rax // save return value 2412 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 2413 * mov rbx, rax // remember start time in bpf stats are enabled 2414 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 2415 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value 2416 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 2417 * mov rsi, rbx // prog start time 2418 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 2419 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value 2420 * pop rbx 2421 * leave 2422 * add rsp, 8 // skip eth_type_trans's frame 2423 * ret // return to its caller 2424 */ 2425 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 2426 const struct btf_func_model *m, u32 flags, 2427 struct bpf_tramp_links *tlinks, 2428 void *func_addr) 2429 { 2430 int i, ret, nr_regs = m->nr_args, stack_size = 0; 2431 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off; 2432 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; 2433 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; 2434 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; 2435 void *orig_call = func_addr; 2436 u8 **branches = NULL; 2437 u8 *prog; 2438 bool save_ret; 2439 2440 /* extra registers for struct arguments */ 2441 for (i = 0; i < m->nr_args; i++) 2442 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) 2443 nr_regs += (m->arg_size[i] + 7) / 8 - 1; 2444 2445 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6 2446 * are passed through regs, the remains are through stack. 2447 */ 2448 if (nr_regs > MAX_BPF_FUNC_ARGS) 2449 return -ENOTSUPP; 2450 2451 /* Generated trampoline stack layout: 2452 * 2453 * RBP + 8 [ return address ] 2454 * RBP + 0 [ RBP ] 2455 * 2456 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or 2457 * BPF_TRAMP_F_RET_FENTRY_RET flags 2458 * 2459 * [ reg_argN ] always 2460 * [ ... ] 2461 * RBP - regs_off [ reg_arg1 ] program's ctx pointer 2462 * 2463 * RBP - nregs_off [ regs count ] always 2464 * 2465 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag 2466 * 2467 * RBP - rbx_off [ rbx value ] always 2468 * 2469 * RBP - run_ctx_off [ bpf_tramp_run_ctx ] 2470 * 2471 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG 2472 * [ ... ] 2473 * [ stack_arg2 ] 2474 * RBP - arg_stack_off [ stack_arg1 ] 2475 * RSP [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX 2476 */ 2477 2478 /* room for return value of orig_call or fentry prog */ 2479 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); 2480 if (save_ret) 2481 stack_size += 8; 2482 2483 stack_size += nr_regs * 8; 2484 regs_off = stack_size; 2485 2486 /* regs count */ 2487 stack_size += 8; 2488 nregs_off = stack_size; 2489 2490 if (flags & BPF_TRAMP_F_IP_ARG) 2491 stack_size += 8; /* room for IP address argument */ 2492 2493 ip_off = stack_size; 2494 2495 stack_size += 8; 2496 rbx_off = stack_size; 2497 2498 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7; 2499 run_ctx_off = stack_size; 2500 2501 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) { 2502 /* the space that used to pass arguments on-stack */ 2503 stack_size += (nr_regs - get_nr_used_regs(m)) * 8; 2504 /* make sure the stack pointer is 16-byte aligned if we 2505 * need pass arguments on stack, which means 2506 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)] 2507 * should be 16-byte aligned. Following code depend on 2508 * that stack_size is already 8-byte aligned. 2509 */ 2510 stack_size += (stack_size % 16) ? 0 : 8; 2511 } 2512 2513 arg_stack_off = stack_size; 2514 2515 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 2516 /* skip patched call instruction and point orig_call to actual 2517 * body of the kernel function. 2518 */ 2519 if (is_endbr(*(u32 *)orig_call)) 2520 orig_call += ENDBR_INSN_SIZE; 2521 orig_call += X86_PATCH_SIZE; 2522 } 2523 2524 prog = image; 2525 2526 EMIT_ENDBR(); 2527 /* 2528 * This is the direct-call trampoline, as such it needs accounting 2529 * for the __fentry__ call. 2530 */ 2531 x86_call_depth_emit_accounting(&prog, NULL); 2532 EMIT1(0x55); /* push rbp */ 2533 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 2534 if (!is_imm8(stack_size)) 2535 /* sub rsp, stack_size */ 2536 EMIT3_off32(0x48, 0x81, 0xEC, stack_size); 2537 else 2538 /* sub rsp, stack_size */ 2539 EMIT4(0x48, 0x83, 0xEC, stack_size); 2540 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) 2541 EMIT1(0x50); /* push rax */ 2542 /* mov QWORD PTR [rbp - rbx_off], rbx */ 2543 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off); 2544 2545 /* Store number of argument registers of the traced function: 2546 * mov rax, nr_regs 2547 * mov QWORD PTR [rbp - nregs_off], rax 2548 */ 2549 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs); 2550 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off); 2551 2552 if (flags & BPF_TRAMP_F_IP_ARG) { 2553 /* Store IP address of the traced function: 2554 * movabsq rax, func_addr 2555 * mov QWORD PTR [rbp - ip_off], rax 2556 */ 2557 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr); 2558 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off); 2559 } 2560 2561 save_args(m, &prog, regs_off, false); 2562 2563 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2564 /* arg1: mov rdi, im */ 2565 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 2566 if (emit_rsb_call(&prog, __bpf_tramp_enter, prog)) { 2567 ret = -EINVAL; 2568 goto cleanup; 2569 } 2570 } 2571 2572 if (fentry->nr_links) 2573 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off, 2574 flags & BPF_TRAMP_F_RET_FENTRY_RET)) 2575 return -EINVAL; 2576 2577 if (fmod_ret->nr_links) { 2578 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *), 2579 GFP_KERNEL); 2580 if (!branches) 2581 return -ENOMEM; 2582 2583 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off, 2584 run_ctx_off, branches)) { 2585 ret = -EINVAL; 2586 goto cleanup; 2587 } 2588 } 2589 2590 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2591 restore_regs(m, &prog, regs_off); 2592 save_args(m, &prog, arg_stack_off, true); 2593 2594 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) 2595 /* Before calling the original function, restore the 2596 * tail_call_cnt from stack to rax. 2597 */ 2598 RESTORE_TAIL_CALL_CNT(stack_size); 2599 2600 if (flags & BPF_TRAMP_F_ORIG_STACK) { 2601 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8); 2602 EMIT2(0xff, 0xd3); /* call *rbx */ 2603 } else { 2604 /* call original function */ 2605 if (emit_rsb_call(&prog, orig_call, prog)) { 2606 ret = -EINVAL; 2607 goto cleanup; 2608 } 2609 } 2610 /* remember return value in a stack for bpf prog to access */ 2611 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2612 im->ip_after_call = prog; 2613 memcpy(prog, x86_nops[5], X86_PATCH_SIZE); 2614 prog += X86_PATCH_SIZE; 2615 } 2616 2617 if (fmod_ret->nr_links) { 2618 /* From Intel 64 and IA-32 Architectures Optimization 2619 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 2620 * Coding Rule 11: All branch targets should be 16-byte 2621 * aligned. 2622 */ 2623 emit_align(&prog, 16); 2624 /* Update the branches saved in invoke_bpf_mod_ret with the 2625 * aligned address of do_fexit. 2626 */ 2627 for (i = 0; i < fmod_ret->nr_links; i++) 2628 emit_cond_near_jump(&branches[i], prog, branches[i], 2629 X86_JNE); 2630 } 2631 2632 if (fexit->nr_links) 2633 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) { 2634 ret = -EINVAL; 2635 goto cleanup; 2636 } 2637 2638 if (flags & BPF_TRAMP_F_RESTORE_REGS) 2639 restore_regs(m, &prog, regs_off); 2640 2641 /* This needs to be done regardless. If there were fmod_ret programs, 2642 * the return value is only updated on the stack and still needs to be 2643 * restored to R0. 2644 */ 2645 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2646 im->ip_epilogue = prog; 2647 /* arg1: mov rdi, im */ 2648 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 2649 if (emit_rsb_call(&prog, __bpf_tramp_exit, prog)) { 2650 ret = -EINVAL; 2651 goto cleanup; 2652 } 2653 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) 2654 /* Before running the original function, restore the 2655 * tail_call_cnt from stack to rax. 2656 */ 2657 RESTORE_TAIL_CALL_CNT(stack_size); 2658 2659 /* restore return value of orig_call or fentry prog back into RAX */ 2660 if (save_ret) 2661 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); 2662 2663 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off); 2664 EMIT1(0xC9); /* leave */ 2665 if (flags & BPF_TRAMP_F_SKIP_FRAME) 2666 /* skip our return address and return to parent */ 2667 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ 2668 emit_return(&prog, prog); 2669 /* Make sure the trampoline generation logic doesn't overflow */ 2670 if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) { 2671 ret = -EFAULT; 2672 goto cleanup; 2673 } 2674 ret = prog - (u8 *)image; 2675 2676 cleanup: 2677 kfree(branches); 2678 return ret; 2679 } 2680 2681 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf) 2682 { 2683 u8 *jg_reloc, *prog = *pprog; 2684 int pivot, err, jg_bytes = 1; 2685 s64 jg_offset; 2686 2687 if (a == b) { 2688 /* Leaf node of recursion, i.e. not a range of indices 2689 * anymore. 2690 */ 2691 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 2692 if (!is_simm32(progs[a])) 2693 return -1; 2694 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), 2695 progs[a]); 2696 err = emit_cond_near_jump(&prog, /* je func */ 2697 (void *)progs[a], image + (prog - buf), 2698 X86_JE); 2699 if (err) 2700 return err; 2701 2702 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf)); 2703 2704 *pprog = prog; 2705 return 0; 2706 } 2707 2708 /* Not a leaf node, so we pivot, and recursively descend into 2709 * the lower and upper ranges. 2710 */ 2711 pivot = (b - a) / 2; 2712 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 2713 if (!is_simm32(progs[a + pivot])) 2714 return -1; 2715 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); 2716 2717 if (pivot > 2) { /* jg upper_part */ 2718 /* Require near jump. */ 2719 jg_bytes = 4; 2720 EMIT2_off32(0x0F, X86_JG + 0x10, 0); 2721 } else { 2722 EMIT2(X86_JG, 0); 2723 } 2724 jg_reloc = prog; 2725 2726 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ 2727 progs, image, buf); 2728 if (err) 2729 return err; 2730 2731 /* From Intel 64 and IA-32 Architectures Optimization 2732 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 2733 * Coding Rule 11: All branch targets should be 16-byte 2734 * aligned. 2735 */ 2736 emit_align(&prog, 16); 2737 jg_offset = prog - jg_reloc; 2738 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); 2739 2740 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ 2741 b, progs, image, buf); 2742 if (err) 2743 return err; 2744 2745 *pprog = prog; 2746 return 0; 2747 } 2748 2749 static int cmp_ips(const void *a, const void *b) 2750 { 2751 const s64 *ipa = a; 2752 const s64 *ipb = b; 2753 2754 if (*ipa > *ipb) 2755 return 1; 2756 if (*ipa < *ipb) 2757 return -1; 2758 return 0; 2759 } 2760 2761 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs) 2762 { 2763 u8 *prog = buf; 2764 2765 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); 2766 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf); 2767 } 2768 2769 struct x64_jit_data { 2770 struct bpf_binary_header *rw_header; 2771 struct bpf_binary_header *header; 2772 int *addrs; 2773 u8 *image; 2774 int proglen; 2775 struct jit_context ctx; 2776 }; 2777 2778 #define MAX_PASSES 20 2779 #define PADDING_PASSES (MAX_PASSES - 5) 2780 2781 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 2782 { 2783 struct bpf_binary_header *rw_header = NULL; 2784 struct bpf_binary_header *header = NULL; 2785 struct bpf_prog *tmp, *orig_prog = prog; 2786 struct x64_jit_data *jit_data; 2787 int proglen, oldproglen = 0; 2788 struct jit_context ctx = {}; 2789 bool tmp_blinded = false; 2790 bool extra_pass = false; 2791 bool padding = false; 2792 u8 *rw_image = NULL; 2793 u8 *image = NULL; 2794 int *addrs; 2795 int pass; 2796 int i; 2797 2798 if (!prog->jit_requested) 2799 return orig_prog; 2800 2801 tmp = bpf_jit_blind_constants(prog); 2802 /* 2803 * If blinding was requested and we failed during blinding, 2804 * we must fall back to the interpreter. 2805 */ 2806 if (IS_ERR(tmp)) 2807 return orig_prog; 2808 if (tmp != prog) { 2809 tmp_blinded = true; 2810 prog = tmp; 2811 } 2812 2813 jit_data = prog->aux->jit_data; 2814 if (!jit_data) { 2815 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 2816 if (!jit_data) { 2817 prog = orig_prog; 2818 goto out; 2819 } 2820 prog->aux->jit_data = jit_data; 2821 } 2822 addrs = jit_data->addrs; 2823 if (addrs) { 2824 ctx = jit_data->ctx; 2825 oldproglen = jit_data->proglen; 2826 image = jit_data->image; 2827 header = jit_data->header; 2828 rw_header = jit_data->rw_header; 2829 rw_image = (void *)rw_header + ((void *)image - (void *)header); 2830 extra_pass = true; 2831 padding = true; 2832 goto skip_init_addrs; 2833 } 2834 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); 2835 if (!addrs) { 2836 prog = orig_prog; 2837 goto out_addrs; 2838 } 2839 2840 /* 2841 * Before first pass, make a rough estimation of addrs[] 2842 * each BPF instruction is translated to less than 64 bytes 2843 */ 2844 for (proglen = 0, i = 0; i <= prog->len; i++) { 2845 proglen += 64; 2846 addrs[i] = proglen; 2847 } 2848 ctx.cleanup_addr = proglen; 2849 skip_init_addrs: 2850 2851 /* 2852 * JITed image shrinks with every pass and the loop iterates 2853 * until the image stops shrinking. Very large BPF programs 2854 * may converge on the last pass. In such case do one more 2855 * pass to emit the final image. 2856 */ 2857 for (pass = 0; pass < MAX_PASSES || image; pass++) { 2858 if (!padding && pass >= PADDING_PASSES) 2859 padding = true; 2860 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding); 2861 if (proglen <= 0) { 2862 out_image: 2863 image = NULL; 2864 if (header) { 2865 bpf_arch_text_copy(&header->size, &rw_header->size, 2866 sizeof(rw_header->size)); 2867 bpf_jit_binary_pack_free(header, rw_header); 2868 } 2869 /* Fall back to interpreter mode */ 2870 prog = orig_prog; 2871 if (extra_pass) { 2872 prog->bpf_func = NULL; 2873 prog->jited = 0; 2874 prog->jited_len = 0; 2875 } 2876 goto out_addrs; 2877 } 2878 if (image) { 2879 if (proglen != oldproglen) { 2880 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", 2881 proglen, oldproglen); 2882 goto out_image; 2883 } 2884 break; 2885 } 2886 if (proglen == oldproglen) { 2887 /* 2888 * The number of entries in extable is the number of BPF_LDX 2889 * insns that access kernel memory via "pointer to BTF type". 2890 * The verifier changed their opcode from LDX|MEM|size 2891 * to LDX|PROBE_MEM|size to make JITing easier. 2892 */ 2893 u32 align = __alignof__(struct exception_table_entry); 2894 u32 extable_size = prog->aux->num_exentries * 2895 sizeof(struct exception_table_entry); 2896 2897 /* allocate module memory for x86 insns and extable */ 2898 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size, 2899 &image, align, &rw_header, &rw_image, 2900 jit_fill_hole); 2901 if (!header) { 2902 prog = orig_prog; 2903 goto out_addrs; 2904 } 2905 prog->aux->extable = (void *) image + roundup(proglen, align); 2906 } 2907 oldproglen = proglen; 2908 cond_resched(); 2909 } 2910 2911 if (bpf_jit_enable > 1) 2912 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image); 2913 2914 if (image) { 2915 if (!prog->is_func || extra_pass) { 2916 /* 2917 * bpf_jit_binary_pack_finalize fails in two scenarios: 2918 * 1) header is not pointing to proper module memory; 2919 * 2) the arch doesn't support bpf_arch_text_copy(). 2920 * 2921 * Both cases are serious bugs and justify WARN_ON. 2922 */ 2923 if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) { 2924 /* header has been freed */ 2925 header = NULL; 2926 goto out_image; 2927 } 2928 2929 bpf_tail_call_direct_fixup(prog); 2930 } else { 2931 jit_data->addrs = addrs; 2932 jit_data->ctx = ctx; 2933 jit_data->proglen = proglen; 2934 jit_data->image = image; 2935 jit_data->header = header; 2936 jit_data->rw_header = rw_header; 2937 } 2938 prog->bpf_func = (void *)image; 2939 prog->jited = 1; 2940 prog->jited_len = proglen; 2941 } else { 2942 prog = orig_prog; 2943 } 2944 2945 if (!image || !prog->is_func || extra_pass) { 2946 if (image) 2947 bpf_prog_fill_jited_linfo(prog, addrs + 1); 2948 out_addrs: 2949 kvfree(addrs); 2950 kfree(jit_data); 2951 prog->aux->jit_data = NULL; 2952 } 2953 out: 2954 if (tmp_blinded) 2955 bpf_jit_prog_release_other(prog, prog == orig_prog ? 2956 tmp : orig_prog); 2957 return prog; 2958 } 2959 2960 bool bpf_jit_supports_kfunc_call(void) 2961 { 2962 return true; 2963 } 2964 2965 void *bpf_arch_text_copy(void *dst, void *src, size_t len) 2966 { 2967 if (text_poke_copy(dst, src, len) == NULL) 2968 return ERR_PTR(-EINVAL); 2969 return dst; 2970 } 2971 2972 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ 2973 bool bpf_jit_supports_subprog_tailcalls(void) 2974 { 2975 return true; 2976 } 2977 2978 void bpf_jit_free(struct bpf_prog *prog) 2979 { 2980 if (prog->jited) { 2981 struct x64_jit_data *jit_data = prog->aux->jit_data; 2982 struct bpf_binary_header *hdr; 2983 2984 /* 2985 * If we fail the final pass of JIT (from jit_subprogs), 2986 * the program may not be finalized yet. Call finalize here 2987 * before freeing it. 2988 */ 2989 if (jit_data) { 2990 bpf_jit_binary_pack_finalize(prog, jit_data->header, 2991 jit_data->rw_header); 2992 kvfree(jit_data->addrs); 2993 kfree(jit_data); 2994 } 2995 hdr = bpf_jit_binary_pack_hdr(prog); 2996 bpf_jit_binary_pack_free(hdr, NULL); 2997 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); 2998 } 2999 3000 bpf_prog_unlock_free(prog); 3001 } 3002 3003 bool bpf_jit_supports_exceptions(void) 3004 { 3005 /* We unwind through both kernel frames (starting from within bpf_throw 3006 * call) and BPF frames. Therefore we require ORC unwinder to be enabled 3007 * to walk kernel frames and reach BPF frames in the stack trace. 3008 */ 3009 return IS_ENABLED(CONFIG_UNWINDER_ORC); 3010 } 3011 3012 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie) 3013 { 3014 #if defined(CONFIG_UNWINDER_ORC) 3015 struct unwind_state state; 3016 unsigned long addr; 3017 3018 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state); 3019 unwind_next_frame(&state)) { 3020 addr = unwind_get_return_address(&state); 3021 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp)) 3022 break; 3023 } 3024 return; 3025 #endif 3026 WARN(1, "verification of programs using bpf_throw should have failed\n"); 3027 } 3028