1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BPF JIT compiler 4 * 5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) 6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 7 */ 8 #include <linux/netdevice.h> 9 #include <linux/filter.h> 10 #include <linux/if_vlan.h> 11 #include <linux/bpf.h> 12 #include <linux/memory.h> 13 #include <linux/sort.h> 14 #include <asm/extable.h> 15 #include <asm/ftrace.h> 16 #include <asm/set_memory.h> 17 #include <asm/nospec-branch.h> 18 #include <asm/text-patching.h> 19 #include <asm/unwind.h> 20 #include <asm/cfi.h> 21 22 static bool all_callee_regs_used[4] = {true, true, true, true}; 23 24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) 25 { 26 if (len == 1) 27 *ptr = bytes; 28 else if (len == 2) 29 *(u16 *)ptr = bytes; 30 else { 31 *(u32 *)ptr = bytes; 32 barrier(); 33 } 34 return ptr + len; 35 } 36 37 #define EMIT(bytes, len) \ 38 do { prog = emit_code(prog, bytes, len); } while (0) 39 40 #define EMIT1(b1) EMIT(b1, 1) 41 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) 42 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) 43 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) 44 45 #define EMIT1_off32(b1, off) \ 46 do { EMIT1(b1); EMIT(off, 4); } while (0) 47 #define EMIT2_off32(b1, b2, off) \ 48 do { EMIT2(b1, b2); EMIT(off, 4); } while (0) 49 #define EMIT3_off32(b1, b2, b3, off) \ 50 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) 51 #define EMIT4_off32(b1, b2, b3, b4, off) \ 52 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) 53 54 #ifdef CONFIG_X86_KERNEL_IBT 55 #define EMIT_ENDBR() EMIT(gen_endbr(), 4) 56 #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4) 57 #else 58 #define EMIT_ENDBR() 59 #define EMIT_ENDBR_POISON() 60 #endif 61 62 static bool is_imm8(int value) 63 { 64 return value <= 127 && value >= -128; 65 } 66 67 static bool is_simm32(s64 value) 68 { 69 return value == (s64)(s32)value; 70 } 71 72 static bool is_uimm32(u64 value) 73 { 74 return value == (u64)(u32)value; 75 } 76 77 /* mov dst, src */ 78 #define EMIT_mov(DST, SRC) \ 79 do { \ 80 if (DST != SRC) \ 81 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ 82 } while (0) 83 84 static int bpf_size_to_x86_bytes(int bpf_size) 85 { 86 if (bpf_size == BPF_W) 87 return 4; 88 else if (bpf_size == BPF_H) 89 return 2; 90 else if (bpf_size == BPF_B) 91 return 1; 92 else if (bpf_size == BPF_DW) 93 return 4; /* imm32 */ 94 else 95 return 0; 96 } 97 98 /* 99 * List of x86 cond jumps opcodes (. + s8) 100 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) 101 */ 102 #define X86_JB 0x72 103 #define X86_JAE 0x73 104 #define X86_JE 0x74 105 #define X86_JNE 0x75 106 #define X86_JBE 0x76 107 #define X86_JA 0x77 108 #define X86_JL 0x7C 109 #define X86_JGE 0x7D 110 #define X86_JLE 0x7E 111 #define X86_JG 0x7F 112 113 /* Pick a register outside of BPF range for JIT internal work */ 114 #define AUX_REG (MAX_BPF_JIT_REG + 1) 115 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) 116 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3) 117 118 /* 119 * The following table maps BPF registers to x86-64 registers. 120 * 121 * x86-64 register R12 is unused, since if used as base address 122 * register in load/store instructions, it always needs an 123 * extra byte of encoding and is callee saved. 124 * 125 * x86-64 register R9 is not used by BPF programs, but can be used by BPF 126 * trampoline. x86-64 register R10 is used for blinding (if enabled). 127 */ 128 static const int reg2hex[] = { 129 [BPF_REG_0] = 0, /* RAX */ 130 [BPF_REG_1] = 7, /* RDI */ 131 [BPF_REG_2] = 6, /* RSI */ 132 [BPF_REG_3] = 2, /* RDX */ 133 [BPF_REG_4] = 1, /* RCX */ 134 [BPF_REG_5] = 0, /* R8 */ 135 [BPF_REG_6] = 3, /* RBX callee saved */ 136 [BPF_REG_7] = 5, /* R13 callee saved */ 137 [BPF_REG_8] = 6, /* R14 callee saved */ 138 [BPF_REG_9] = 7, /* R15 callee saved */ 139 [BPF_REG_FP] = 5, /* RBP readonly */ 140 [BPF_REG_AX] = 2, /* R10 temp register */ 141 [AUX_REG] = 3, /* R11 temp register */ 142 [X86_REG_R9] = 1, /* R9 register, 6th function argument */ 143 [X86_REG_R12] = 4, /* R12 callee saved */ 144 }; 145 146 static const int reg2pt_regs[] = { 147 [BPF_REG_0] = offsetof(struct pt_regs, ax), 148 [BPF_REG_1] = offsetof(struct pt_regs, di), 149 [BPF_REG_2] = offsetof(struct pt_regs, si), 150 [BPF_REG_3] = offsetof(struct pt_regs, dx), 151 [BPF_REG_4] = offsetof(struct pt_regs, cx), 152 [BPF_REG_5] = offsetof(struct pt_regs, r8), 153 [BPF_REG_6] = offsetof(struct pt_regs, bx), 154 [BPF_REG_7] = offsetof(struct pt_regs, r13), 155 [BPF_REG_8] = offsetof(struct pt_regs, r14), 156 [BPF_REG_9] = offsetof(struct pt_regs, r15), 157 }; 158 159 /* 160 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 161 * which need extra byte of encoding. 162 * rax,rcx,...,rbp have simpler encoding 163 */ 164 static bool is_ereg(u32 reg) 165 { 166 return (1 << reg) & (BIT(BPF_REG_5) | 167 BIT(AUX_REG) | 168 BIT(BPF_REG_7) | 169 BIT(BPF_REG_8) | 170 BIT(BPF_REG_9) | 171 BIT(X86_REG_R9) | 172 BIT(X86_REG_R12) | 173 BIT(BPF_REG_AX)); 174 } 175 176 /* 177 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 178 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte 179 * of encoding. al,cl,dl,bl have simpler encoding. 180 */ 181 static bool is_ereg_8l(u32 reg) 182 { 183 return is_ereg(reg) || 184 (1 << reg) & (BIT(BPF_REG_1) | 185 BIT(BPF_REG_2) | 186 BIT(BPF_REG_FP)); 187 } 188 189 static bool is_axreg(u32 reg) 190 { 191 return reg == BPF_REG_0; 192 } 193 194 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ 195 static u8 add_1mod(u8 byte, u32 reg) 196 { 197 if (is_ereg(reg)) 198 byte |= 1; 199 return byte; 200 } 201 202 static u8 add_2mod(u8 byte, u32 r1, u32 r2) 203 { 204 if (is_ereg(r1)) 205 byte |= 1; 206 if (is_ereg(r2)) 207 byte |= 4; 208 return byte; 209 } 210 211 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index) 212 { 213 if (is_ereg(r1)) 214 byte |= 1; 215 if (is_ereg(index)) 216 byte |= 2; 217 if (is_ereg(r2)) 218 byte |= 4; 219 return byte; 220 } 221 222 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ 223 static u8 add_1reg(u8 byte, u32 dst_reg) 224 { 225 return byte + reg2hex[dst_reg]; 226 } 227 228 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ 229 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) 230 { 231 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); 232 } 233 234 /* Some 1-byte opcodes for binary ALU operations */ 235 static u8 simple_alu_opcodes[] = { 236 [BPF_ADD] = 0x01, 237 [BPF_SUB] = 0x29, 238 [BPF_AND] = 0x21, 239 [BPF_OR] = 0x09, 240 [BPF_XOR] = 0x31, 241 [BPF_LSH] = 0xE0, 242 [BPF_RSH] = 0xE8, 243 [BPF_ARSH] = 0xF8, 244 }; 245 246 static void jit_fill_hole(void *area, unsigned int size) 247 { 248 /* Fill whole space with INT3 instructions */ 249 memset(area, 0xcc, size); 250 } 251 252 int bpf_arch_text_invalidate(void *dst, size_t len) 253 { 254 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len)); 255 } 256 257 struct jit_context { 258 int cleanup_addr; /* Epilogue code offset */ 259 260 /* 261 * Program specific offsets of labels in the code; these rely on the 262 * JIT doing at least 2 passes, recording the position on the first 263 * pass, only to generate the correct offset on the second pass. 264 */ 265 int tail_call_direct_label; 266 int tail_call_indirect_label; 267 }; 268 269 /* Maximum number of bytes emitted while JITing one eBPF insn */ 270 #define BPF_MAX_INSN_SIZE 128 271 #define BPF_INSN_SAFETY 64 272 273 /* Number of bytes emit_patch() needs to generate instructions */ 274 #define X86_PATCH_SIZE 5 275 /* Number of bytes that will be skipped on tailcall */ 276 #define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE) 277 278 static void push_r12(u8 **pprog) 279 { 280 u8 *prog = *pprog; 281 282 EMIT2(0x41, 0x54); /* push r12 */ 283 *pprog = prog; 284 } 285 286 static void push_callee_regs(u8 **pprog, bool *callee_regs_used) 287 { 288 u8 *prog = *pprog; 289 290 if (callee_regs_used[0]) 291 EMIT1(0x53); /* push rbx */ 292 if (callee_regs_used[1]) 293 EMIT2(0x41, 0x55); /* push r13 */ 294 if (callee_regs_used[2]) 295 EMIT2(0x41, 0x56); /* push r14 */ 296 if (callee_regs_used[3]) 297 EMIT2(0x41, 0x57); /* push r15 */ 298 *pprog = prog; 299 } 300 301 static void pop_r12(u8 **pprog) 302 { 303 u8 *prog = *pprog; 304 305 EMIT2(0x41, 0x5C); /* pop r12 */ 306 *pprog = prog; 307 } 308 309 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) 310 { 311 u8 *prog = *pprog; 312 313 if (callee_regs_used[3]) 314 EMIT2(0x41, 0x5F); /* pop r15 */ 315 if (callee_regs_used[2]) 316 EMIT2(0x41, 0x5E); /* pop r14 */ 317 if (callee_regs_used[1]) 318 EMIT2(0x41, 0x5D); /* pop r13 */ 319 if (callee_regs_used[0]) 320 EMIT1(0x5B); /* pop rbx */ 321 *pprog = prog; 322 } 323 324 static void emit_nops(u8 **pprog, int len) 325 { 326 u8 *prog = *pprog; 327 int i, noplen; 328 329 while (len > 0) { 330 noplen = len; 331 332 if (noplen > ASM_NOP_MAX) 333 noplen = ASM_NOP_MAX; 334 335 for (i = 0; i < noplen; i++) 336 EMIT1(x86_nops[noplen][i]); 337 len -= noplen; 338 } 339 340 *pprog = prog; 341 } 342 343 /* 344 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT 345 * in arch/x86/kernel/alternative.c 346 */ 347 348 static void emit_fineibt(u8 **pprog, u32 hash) 349 { 350 u8 *prog = *pprog; 351 352 EMIT_ENDBR(); 353 EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */ 354 EMIT2(0x74, 0x07); /* jz.d8 +7 */ 355 EMIT2(0x0f, 0x0b); /* ud2 */ 356 EMIT1(0x90); /* nop */ 357 EMIT_ENDBR_POISON(); 358 359 *pprog = prog; 360 } 361 362 static void emit_kcfi(u8 **pprog, u32 hash) 363 { 364 u8 *prog = *pprog; 365 366 EMIT1_off32(0xb8, hash); /* movl $hash, %eax */ 367 #ifdef CONFIG_CALL_PADDING 368 EMIT1(0x90); 369 EMIT1(0x90); 370 EMIT1(0x90); 371 EMIT1(0x90); 372 EMIT1(0x90); 373 EMIT1(0x90); 374 EMIT1(0x90); 375 EMIT1(0x90); 376 EMIT1(0x90); 377 EMIT1(0x90); 378 EMIT1(0x90); 379 #endif 380 EMIT_ENDBR(); 381 382 *pprog = prog; 383 } 384 385 static void emit_cfi(u8 **pprog, u32 hash) 386 { 387 u8 *prog = *pprog; 388 389 switch (cfi_mode) { 390 case CFI_FINEIBT: 391 emit_fineibt(&prog, hash); 392 break; 393 394 case CFI_KCFI: 395 emit_kcfi(&prog, hash); 396 break; 397 398 default: 399 EMIT_ENDBR(); 400 break; 401 } 402 403 *pprog = prog; 404 } 405 406 /* 407 * Emit x86-64 prologue code for BPF program. 408 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes 409 * while jumping to another program 410 */ 411 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf, 412 bool tail_call_reachable, bool is_subprog, 413 bool is_exception_cb) 414 { 415 u8 *prog = *pprog; 416 417 emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash); 418 /* BPF trampoline can be made to work without these nops, 419 * but let's waste 5 bytes for now and optimize later 420 */ 421 emit_nops(&prog, X86_PATCH_SIZE); 422 if (!ebpf_from_cbpf) { 423 if (tail_call_reachable && !is_subprog) 424 /* When it's the entry of the whole tailcall context, 425 * zeroing rax means initialising tail_call_cnt. 426 */ 427 EMIT2(0x31, 0xC0); /* xor eax, eax */ 428 else 429 /* Keep the same instruction layout. */ 430 EMIT2(0x66, 0x90); /* nop2 */ 431 } 432 /* Exception callback receives FP as third parameter */ 433 if (is_exception_cb) { 434 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */ 435 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */ 436 /* The main frame must have exception_boundary as true, so we 437 * first restore those callee-saved regs from stack, before 438 * reusing the stack frame. 439 */ 440 pop_callee_regs(&prog, all_callee_regs_used); 441 pop_r12(&prog); 442 /* Reset the stack frame. */ 443 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */ 444 } else { 445 EMIT1(0x55); /* push rbp */ 446 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 447 } 448 449 /* X86_TAIL_CALL_OFFSET is here */ 450 EMIT_ENDBR(); 451 452 /* sub rsp, rounded_stack_depth */ 453 if (stack_depth) 454 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); 455 if (tail_call_reachable) 456 EMIT1(0x50); /* push rax */ 457 *pprog = prog; 458 } 459 460 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) 461 { 462 u8 *prog = *pprog; 463 s64 offset; 464 465 offset = func - (ip + X86_PATCH_SIZE); 466 if (!is_simm32(offset)) { 467 pr_err("Target call %p is out of range\n", func); 468 return -ERANGE; 469 } 470 EMIT1_off32(opcode, offset); 471 *pprog = prog; 472 return 0; 473 } 474 475 static int emit_call(u8 **pprog, void *func, void *ip) 476 { 477 return emit_patch(pprog, func, ip, 0xE8); 478 } 479 480 static int emit_rsb_call(u8 **pprog, void *func, void *ip) 481 { 482 OPTIMIZER_HIDE_VAR(func); 483 ip += x86_call_depth_emit_accounting(pprog, func, ip); 484 return emit_patch(pprog, func, ip, 0xE8); 485 } 486 487 static int emit_jump(u8 **pprog, void *func, void *ip) 488 { 489 return emit_patch(pprog, func, ip, 0xE9); 490 } 491 492 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 493 void *old_addr, void *new_addr) 494 { 495 const u8 *nop_insn = x86_nops[5]; 496 u8 old_insn[X86_PATCH_SIZE]; 497 u8 new_insn[X86_PATCH_SIZE]; 498 u8 *prog; 499 int ret; 500 501 memcpy(old_insn, nop_insn, X86_PATCH_SIZE); 502 if (old_addr) { 503 prog = old_insn; 504 ret = t == BPF_MOD_CALL ? 505 emit_call(&prog, old_addr, ip) : 506 emit_jump(&prog, old_addr, ip); 507 if (ret) 508 return ret; 509 } 510 511 memcpy(new_insn, nop_insn, X86_PATCH_SIZE); 512 if (new_addr) { 513 prog = new_insn; 514 ret = t == BPF_MOD_CALL ? 515 emit_call(&prog, new_addr, ip) : 516 emit_jump(&prog, new_addr, ip); 517 if (ret) 518 return ret; 519 } 520 521 ret = -EBUSY; 522 mutex_lock(&text_mutex); 523 if (memcmp(ip, old_insn, X86_PATCH_SIZE)) 524 goto out; 525 ret = 1; 526 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { 527 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL); 528 ret = 0; 529 } 530 out: 531 mutex_unlock(&text_mutex); 532 return ret; 533 } 534 535 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 536 void *old_addr, void *new_addr) 537 { 538 if (!is_kernel_text((long)ip) && 539 !is_bpf_text_address((long)ip)) 540 /* BPF poking in modules is not supported */ 541 return -EINVAL; 542 543 /* 544 * See emit_prologue(), for IBT builds the trampoline hook is preceded 545 * with an ENDBR instruction. 546 */ 547 if (is_endbr(*(u32 *)ip)) 548 ip += ENDBR_INSN_SIZE; 549 550 return __bpf_arch_text_poke(ip, t, old_addr, new_addr); 551 } 552 553 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8) 554 555 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip) 556 { 557 u8 *prog = *pprog; 558 559 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 560 EMIT_LFENCE(); 561 EMIT2(0xFF, 0xE0 + reg); 562 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) { 563 OPTIMIZER_HIDE_VAR(reg); 564 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 565 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip); 566 else 567 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip); 568 } else { 569 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */ 570 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS)) 571 EMIT1(0xCC); /* int3 */ 572 } 573 574 *pprog = prog; 575 } 576 577 static void emit_return(u8 **pprog, u8 *ip) 578 { 579 u8 *prog = *pprog; 580 581 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) { 582 emit_jump(&prog, x86_return_thunk, ip); 583 } else { 584 EMIT1(0xC3); /* ret */ 585 if (IS_ENABLED(CONFIG_MITIGATION_SLS)) 586 EMIT1(0xCC); /* int3 */ 587 } 588 589 *pprog = prog; 590 } 591 592 /* 593 * Generate the following code: 594 * 595 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... 596 * if (index >= array->map.max_entries) 597 * goto out; 598 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) 599 * goto out; 600 * prog = array->ptrs[index]; 601 * if (prog == NULL) 602 * goto out; 603 * goto *(prog->bpf_func + prologue_size); 604 * out: 605 */ 606 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog, 607 u8 **pprog, bool *callee_regs_used, 608 u32 stack_depth, u8 *ip, 609 struct jit_context *ctx) 610 { 611 int tcc_off = -4 - round_up(stack_depth, 8); 612 u8 *prog = *pprog, *start = *pprog; 613 int offset; 614 615 /* 616 * rdi - pointer to ctx 617 * rsi - pointer to bpf_array 618 * rdx - index in bpf_array 619 */ 620 621 /* 622 * if (index >= array->map.max_entries) 623 * goto out; 624 */ 625 EMIT2(0x89, 0xD2); /* mov edx, edx */ 626 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ 627 offsetof(struct bpf_array, map.max_entries)); 628 629 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 630 EMIT2(X86_JBE, offset); /* jbe out */ 631 632 /* 633 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) 634 * goto out; 635 */ 636 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ 637 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ 638 639 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 640 EMIT2(X86_JAE, offset); /* jae out */ 641 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ 642 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ 643 644 /* prog = array->ptrs[index]; */ 645 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ 646 offsetof(struct bpf_array, ptrs)); 647 648 /* 649 * if (prog == NULL) 650 * goto out; 651 */ 652 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ 653 654 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 655 EMIT2(X86_JE, offset); /* je out */ 656 657 if (bpf_prog->aux->exception_boundary) { 658 pop_callee_regs(&prog, all_callee_regs_used); 659 pop_r12(&prog); 660 } else { 661 pop_callee_regs(&prog, callee_regs_used); 662 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) 663 pop_r12(&prog); 664 } 665 666 EMIT1(0x58); /* pop rax */ 667 if (stack_depth) 668 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ 669 round_up(stack_depth, 8)); 670 671 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ 672 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ 673 offsetof(struct bpf_prog, bpf_func)); 674 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ 675 X86_TAIL_CALL_OFFSET); 676 /* 677 * Now we're ready to jump into next BPF program 678 * rdi == ctx (1st arg) 679 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET 680 */ 681 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start)); 682 683 /* out: */ 684 ctx->tail_call_indirect_label = prog - start; 685 *pprog = prog; 686 } 687 688 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog, 689 struct bpf_jit_poke_descriptor *poke, 690 u8 **pprog, u8 *ip, 691 bool *callee_regs_used, u32 stack_depth, 692 struct jit_context *ctx) 693 { 694 int tcc_off = -4 - round_up(stack_depth, 8); 695 u8 *prog = *pprog, *start = *pprog; 696 int offset; 697 698 /* 699 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) 700 * goto out; 701 */ 702 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ 703 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ 704 705 offset = ctx->tail_call_direct_label - (prog + 2 - start); 706 EMIT2(X86_JAE, offset); /* jae out */ 707 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ 708 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ 709 710 poke->tailcall_bypass = ip + (prog - start); 711 poke->adj_off = X86_TAIL_CALL_OFFSET; 712 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE; 713 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; 714 715 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, 716 poke->tailcall_bypass); 717 718 if (bpf_prog->aux->exception_boundary) { 719 pop_callee_regs(&prog, all_callee_regs_used); 720 pop_r12(&prog); 721 } else { 722 pop_callee_regs(&prog, callee_regs_used); 723 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) 724 pop_r12(&prog); 725 } 726 727 EMIT1(0x58); /* pop rax */ 728 if (stack_depth) 729 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); 730 731 emit_nops(&prog, X86_PATCH_SIZE); 732 733 /* out: */ 734 ctx->tail_call_direct_label = prog - start; 735 736 *pprog = prog; 737 } 738 739 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) 740 { 741 struct bpf_jit_poke_descriptor *poke; 742 struct bpf_array *array; 743 struct bpf_prog *target; 744 int i, ret; 745 746 for (i = 0; i < prog->aux->size_poke_tab; i++) { 747 poke = &prog->aux->poke_tab[i]; 748 if (poke->aux && poke->aux != prog->aux) 749 continue; 750 751 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); 752 753 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 754 continue; 755 756 array = container_of(poke->tail_call.map, struct bpf_array, map); 757 mutex_lock(&array->aux->poke_mutex); 758 target = array->ptrs[poke->tail_call.key]; 759 if (target) { 760 ret = __bpf_arch_text_poke(poke->tailcall_target, 761 BPF_MOD_JUMP, NULL, 762 (u8 *)target->bpf_func + 763 poke->adj_off); 764 BUG_ON(ret < 0); 765 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 766 BPF_MOD_JUMP, 767 (u8 *)poke->tailcall_target + 768 X86_PATCH_SIZE, NULL); 769 BUG_ON(ret < 0); 770 } 771 WRITE_ONCE(poke->tailcall_target_stable, true); 772 mutex_unlock(&array->aux->poke_mutex); 773 } 774 } 775 776 static void emit_mov_imm32(u8 **pprog, bool sign_propagate, 777 u32 dst_reg, const u32 imm32) 778 { 779 u8 *prog = *pprog; 780 u8 b1, b2, b3; 781 782 /* 783 * Optimization: if imm32 is positive, use 'mov %eax, imm32' 784 * (which zero-extends imm32) to save 2 bytes. 785 */ 786 if (sign_propagate && (s32)imm32 < 0) { 787 /* 'mov %rax, imm32' sign extends imm32 */ 788 b1 = add_1mod(0x48, dst_reg); 789 b2 = 0xC7; 790 b3 = 0xC0; 791 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); 792 goto done; 793 } 794 795 /* 796 * Optimization: if imm32 is zero, use 'xor %eax, %eax' 797 * to save 3 bytes. 798 */ 799 if (imm32 == 0) { 800 if (is_ereg(dst_reg)) 801 EMIT1(add_2mod(0x40, dst_reg, dst_reg)); 802 b2 = 0x31; /* xor */ 803 b3 = 0xC0; 804 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); 805 goto done; 806 } 807 808 /* mov %eax, imm32 */ 809 if (is_ereg(dst_reg)) 810 EMIT1(add_1mod(0x40, dst_reg)); 811 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); 812 done: 813 *pprog = prog; 814 } 815 816 static void emit_mov_imm64(u8 **pprog, u32 dst_reg, 817 const u32 imm32_hi, const u32 imm32_lo) 818 { 819 u8 *prog = *pprog; 820 821 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) { 822 /* 823 * For emitting plain u32, where sign bit must not be 824 * propagated LLVM tends to load imm64 over mov32 825 * directly, so save couple of bytes by just doing 826 * 'mov %eax, imm32' instead. 827 */ 828 emit_mov_imm32(&prog, false, dst_reg, imm32_lo); 829 } else { 830 /* movabsq rax, imm64 */ 831 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); 832 EMIT(imm32_lo, 4); 833 EMIT(imm32_hi, 4); 834 } 835 836 *pprog = prog; 837 } 838 839 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) 840 { 841 u8 *prog = *pprog; 842 843 if (is64) { 844 /* mov dst, src */ 845 EMIT_mov(dst_reg, src_reg); 846 } else { 847 /* mov32 dst, src */ 848 if (is_ereg(dst_reg) || is_ereg(src_reg)) 849 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 850 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); 851 } 852 853 *pprog = prog; 854 } 855 856 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg, 857 u32 src_reg) 858 { 859 u8 *prog = *pprog; 860 861 if (is64) { 862 /* movs[b,w,l]q dst, src */ 863 if (num_bits == 8) 864 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe, 865 add_2reg(0xC0, src_reg, dst_reg)); 866 else if (num_bits == 16) 867 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf, 868 add_2reg(0xC0, src_reg, dst_reg)); 869 else if (num_bits == 32) 870 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63, 871 add_2reg(0xC0, src_reg, dst_reg)); 872 } else { 873 /* movs[b,w]l dst, src */ 874 if (num_bits == 8) { 875 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe, 876 add_2reg(0xC0, src_reg, dst_reg)); 877 } else if (num_bits == 16) { 878 if (is_ereg(dst_reg) || is_ereg(src_reg)) 879 EMIT1(add_2mod(0x40, src_reg, dst_reg)); 880 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf, 881 add_2reg(0xC0, src_reg, dst_reg)); 882 } 883 } 884 885 *pprog = prog; 886 } 887 888 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ 889 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) 890 { 891 u8 *prog = *pprog; 892 893 if (is_imm8(off)) { 894 /* 1-byte signed displacement. 895 * 896 * If off == 0 we could skip this and save one extra byte, but 897 * special case of x86 R13 which always needs an offset is not 898 * worth the hassle 899 */ 900 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); 901 } else { 902 /* 4-byte signed displacement */ 903 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); 904 } 905 *pprog = prog; 906 } 907 908 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off) 909 { 910 u8 *prog = *pprog; 911 912 if (is_imm8(off)) { 913 EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); 914 } else { 915 EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); 916 } 917 *pprog = prog; 918 } 919 920 /* 921 * Emit a REX byte if it will be necessary to address these registers 922 */ 923 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) 924 { 925 u8 *prog = *pprog; 926 927 if (is64) 928 EMIT1(add_2mod(0x48, dst_reg, src_reg)); 929 else if (is_ereg(dst_reg) || is_ereg(src_reg)) 930 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 931 *pprog = prog; 932 } 933 934 /* 935 * Similar version of maybe_emit_mod() for a single register 936 */ 937 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64) 938 { 939 u8 *prog = *pprog; 940 941 if (is64) 942 EMIT1(add_1mod(0x48, reg)); 943 else if (is_ereg(reg)) 944 EMIT1(add_1mod(0x40, reg)); 945 *pprog = prog; 946 } 947 948 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 949 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 950 { 951 u8 *prog = *pprog; 952 953 switch (size) { 954 case BPF_B: 955 /* Emit 'movzx rax, byte ptr [rax + off]' */ 956 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); 957 break; 958 case BPF_H: 959 /* Emit 'movzx rax, word ptr [rax + off]' */ 960 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); 961 break; 962 case BPF_W: 963 /* Emit 'mov eax, dword ptr [rax+0x14]' */ 964 if (is_ereg(dst_reg) || is_ereg(src_reg)) 965 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); 966 else 967 EMIT1(0x8B); 968 break; 969 case BPF_DW: 970 /* Emit 'mov rax, qword ptr [rax+0x14]' */ 971 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); 972 break; 973 } 974 emit_insn_suffix(&prog, src_reg, dst_reg, off); 975 *pprog = prog; 976 } 977 978 /* LDSX: dst_reg = *(s8*)(src_reg + off) */ 979 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 980 { 981 u8 *prog = *pprog; 982 983 switch (size) { 984 case BPF_B: 985 /* Emit 'movsx rax, byte ptr [rax + off]' */ 986 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE); 987 break; 988 case BPF_H: 989 /* Emit 'movsx rax, word ptr [rax + off]' */ 990 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF); 991 break; 992 case BPF_W: 993 /* Emit 'movsx rax, dword ptr [rax+0x14]' */ 994 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63); 995 break; 996 } 997 emit_insn_suffix(&prog, src_reg, dst_reg, off); 998 *pprog = prog; 999 } 1000 1001 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1002 { 1003 u8 *prog = *pprog; 1004 1005 switch (size) { 1006 case BPF_B: 1007 /* movzx rax, byte ptr [rax + r12 + off] */ 1008 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6); 1009 break; 1010 case BPF_H: 1011 /* movzx rax, word ptr [rax + r12 + off] */ 1012 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7); 1013 break; 1014 case BPF_W: 1015 /* mov eax, dword ptr [rax + r12 + off] */ 1016 EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B); 1017 break; 1018 case BPF_DW: 1019 /* mov rax, qword ptr [rax + r12 + off] */ 1020 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B); 1021 break; 1022 } 1023 emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off); 1024 *pprog = prog; 1025 } 1026 1027 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1028 { 1029 emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); 1030 } 1031 1032 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1033 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1034 { 1035 u8 *prog = *pprog; 1036 1037 switch (size) { 1038 case BPF_B: 1039 /* Emit 'mov byte ptr [rax + off], al' */ 1040 if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) 1041 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ 1042 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); 1043 else 1044 EMIT1(0x88); 1045 break; 1046 case BPF_H: 1047 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1048 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); 1049 else 1050 EMIT2(0x66, 0x89); 1051 break; 1052 case BPF_W: 1053 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1054 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); 1055 else 1056 EMIT1(0x89); 1057 break; 1058 case BPF_DW: 1059 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); 1060 break; 1061 } 1062 emit_insn_suffix(&prog, dst_reg, src_reg, off); 1063 *pprog = prog; 1064 } 1065 1066 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */ 1067 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1068 { 1069 u8 *prog = *pprog; 1070 1071 switch (size) { 1072 case BPF_B: 1073 /* mov byte ptr [rax + r12 + off], al */ 1074 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88); 1075 break; 1076 case BPF_H: 1077 /* mov word ptr [rax + r12 + off], ax */ 1078 EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); 1079 break; 1080 case BPF_W: 1081 /* mov dword ptr [rax + r12 + 1], eax */ 1082 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); 1083 break; 1084 case BPF_DW: 1085 /* mov qword ptr [rax + r12 + 1], rax */ 1086 EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89); 1087 break; 1088 } 1089 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); 1090 *pprog = prog; 1091 } 1092 1093 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1094 { 1095 emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); 1096 } 1097 1098 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */ 1099 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm) 1100 { 1101 u8 *prog = *pprog; 1102 1103 switch (size) { 1104 case BPF_B: 1105 /* mov byte ptr [rax + r12 + off], imm8 */ 1106 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6); 1107 break; 1108 case BPF_H: 1109 /* mov word ptr [rax + r12 + off], imm16 */ 1110 EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); 1111 break; 1112 case BPF_W: 1113 /* mov dword ptr [rax + r12 + 1], imm32 */ 1114 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); 1115 break; 1116 case BPF_DW: 1117 /* mov qword ptr [rax + r12 + 1], imm32 */ 1118 EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7); 1119 break; 1120 } 1121 emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off); 1122 EMIT(imm, bpf_size_to_x86_bytes(size)); 1123 *pprog = prog; 1124 } 1125 1126 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm) 1127 { 1128 emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm); 1129 } 1130 1131 static int emit_atomic(u8 **pprog, u8 atomic_op, 1132 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) 1133 { 1134 u8 *prog = *pprog; 1135 1136 EMIT1(0xF0); /* lock prefix */ 1137 1138 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); 1139 1140 /* emit opcode */ 1141 switch (atomic_op) { 1142 case BPF_ADD: 1143 case BPF_AND: 1144 case BPF_OR: 1145 case BPF_XOR: 1146 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ 1147 EMIT1(simple_alu_opcodes[atomic_op]); 1148 break; 1149 case BPF_ADD | BPF_FETCH: 1150 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ 1151 EMIT2(0x0F, 0xC1); 1152 break; 1153 case BPF_XCHG: 1154 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 1155 EMIT1(0x87); 1156 break; 1157 case BPF_CMPXCHG: 1158 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 1159 EMIT2(0x0F, 0xB1); 1160 break; 1161 default: 1162 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 1163 return -EFAULT; 1164 } 1165 1166 emit_insn_suffix(&prog, dst_reg, src_reg, off); 1167 1168 *pprog = prog; 1169 return 0; 1170 } 1171 1172 #define DONT_CLEAR 1 1173 1174 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) 1175 { 1176 u32 reg = x->fixup >> 8; 1177 1178 /* jump over faulting load and clear dest register */ 1179 if (reg != DONT_CLEAR) 1180 *(unsigned long *)((void *)regs + reg) = 0; 1181 regs->ip += x->fixup & 0xff; 1182 return true; 1183 } 1184 1185 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, 1186 bool *regs_used, bool *tail_call_seen) 1187 { 1188 int i; 1189 1190 for (i = 1; i <= insn_cnt; i++, insn++) { 1191 if (insn->code == (BPF_JMP | BPF_TAIL_CALL)) 1192 *tail_call_seen = true; 1193 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 1194 regs_used[0] = true; 1195 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 1196 regs_used[1] = true; 1197 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 1198 regs_used[2] = true; 1199 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 1200 regs_used[3] = true; 1201 } 1202 } 1203 1204 /* emit the 3-byte VEX prefix 1205 * 1206 * r: same as rex.r, extra bit for ModRM reg field 1207 * x: same as rex.x, extra bit for SIB index field 1208 * b: same as rex.b, extra bit for ModRM r/m, or SIB base 1209 * m: opcode map select, encoding escape bytes e.g. 0x0f38 1210 * w: same as rex.w (32 bit or 64 bit) or opcode specific 1211 * src_reg2: additional source reg (encoded as BPF reg) 1212 * l: vector length (128 bit or 256 bit) or reserved 1213 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3) 1214 */ 1215 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m, 1216 bool w, u8 src_reg2, bool l, u8 pp) 1217 { 1218 u8 *prog = *pprog; 1219 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */ 1220 u8 b1, b2; 1221 u8 vvvv = reg2hex[src_reg2]; 1222 1223 /* reg2hex gives only the lower 3 bit of vvvv */ 1224 if (is_ereg(src_reg2)) 1225 vvvv |= 1 << 3; 1226 1227 /* 1228 * 2nd byte of 3-byte VEX prefix 1229 * ~ means bit inverted encoding 1230 * 1231 * 7 0 1232 * +---+---+---+---+---+---+---+---+ 1233 * |~R |~X |~B | m | 1234 * +---+---+---+---+---+---+---+---+ 1235 */ 1236 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f); 1237 /* 1238 * 3rd byte of 3-byte VEX prefix 1239 * 1240 * 7 0 1241 * +---+---+---+---+---+---+---+---+ 1242 * | W | ~vvvv | L | pp | 1243 * +---+---+---+---+---+---+---+---+ 1244 */ 1245 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3); 1246 1247 EMIT3(b0, b1, b2); 1248 *pprog = prog; 1249 } 1250 1251 /* emit BMI2 shift instruction */ 1252 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op) 1253 { 1254 u8 *prog = *pprog; 1255 bool r = is_ereg(dst_reg); 1256 u8 m = 2; /* escape code 0f38 */ 1257 1258 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op); 1259 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg)); 1260 *pprog = prog; 1261 } 1262 1263 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) 1264 1265 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */ 1266 #define RESTORE_TAIL_CALL_CNT(stack) \ 1267 EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8) 1268 1269 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image, 1270 int oldproglen, struct jit_context *ctx, bool jmp_padding) 1271 { 1272 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; 1273 struct bpf_insn *insn = bpf_prog->insnsi; 1274 bool callee_regs_used[4] = {}; 1275 int insn_cnt = bpf_prog->len; 1276 bool tail_call_seen = false; 1277 bool seen_exit = false; 1278 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; 1279 u64 arena_vm_start, user_vm_start; 1280 int i, excnt = 0; 1281 int ilen, proglen = 0; 1282 u8 *prog = temp; 1283 int err; 1284 1285 arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena); 1286 user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena); 1287 1288 detect_reg_usage(insn, insn_cnt, callee_regs_used, 1289 &tail_call_seen); 1290 1291 /* tail call's presence in current prog implies it is reachable */ 1292 tail_call_reachable |= tail_call_seen; 1293 1294 emit_prologue(&prog, bpf_prog->aux->stack_depth, 1295 bpf_prog_was_classic(bpf_prog), tail_call_reachable, 1296 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb); 1297 /* Exception callback will clobber callee regs for its own use, and 1298 * restore the original callee regs from main prog's stack frame. 1299 */ 1300 if (bpf_prog->aux->exception_boundary) { 1301 /* We also need to save r12, which is not mapped to any BPF 1302 * register, as we throw after entry into the kernel, which may 1303 * overwrite r12. 1304 */ 1305 push_r12(&prog); 1306 push_callee_regs(&prog, all_callee_regs_used); 1307 } else { 1308 if (arena_vm_start) 1309 push_r12(&prog); 1310 push_callee_regs(&prog, callee_regs_used); 1311 } 1312 if (arena_vm_start) 1313 emit_mov_imm64(&prog, X86_REG_R12, 1314 arena_vm_start >> 32, (u32) arena_vm_start); 1315 1316 ilen = prog - temp; 1317 if (rw_image) 1318 memcpy(rw_image + proglen, temp, ilen); 1319 proglen += ilen; 1320 addrs[0] = proglen; 1321 prog = temp; 1322 1323 for (i = 1; i <= insn_cnt; i++, insn++) { 1324 const s32 imm32 = insn->imm; 1325 u32 dst_reg = insn->dst_reg; 1326 u32 src_reg = insn->src_reg; 1327 u8 b2 = 0, b3 = 0; 1328 u8 *start_of_ldx; 1329 s64 jmp_offset; 1330 s16 insn_off; 1331 u8 jmp_cond; 1332 u8 *func; 1333 int nops; 1334 1335 switch (insn->code) { 1336 /* ALU */ 1337 case BPF_ALU | BPF_ADD | BPF_X: 1338 case BPF_ALU | BPF_SUB | BPF_X: 1339 case BPF_ALU | BPF_AND | BPF_X: 1340 case BPF_ALU | BPF_OR | BPF_X: 1341 case BPF_ALU | BPF_XOR | BPF_X: 1342 case BPF_ALU64 | BPF_ADD | BPF_X: 1343 case BPF_ALU64 | BPF_SUB | BPF_X: 1344 case BPF_ALU64 | BPF_AND | BPF_X: 1345 case BPF_ALU64 | BPF_OR | BPF_X: 1346 case BPF_ALU64 | BPF_XOR | BPF_X: 1347 maybe_emit_mod(&prog, dst_reg, src_reg, 1348 BPF_CLASS(insn->code) == BPF_ALU64); 1349 b2 = simple_alu_opcodes[BPF_OP(insn->code)]; 1350 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); 1351 break; 1352 1353 case BPF_ALU64 | BPF_MOV | BPF_X: 1354 if (insn_is_cast_user(insn)) { 1355 if (dst_reg != src_reg) 1356 /* 32-bit mov */ 1357 emit_mov_reg(&prog, false, dst_reg, src_reg); 1358 /* shl dst_reg, 32 */ 1359 maybe_emit_1mod(&prog, dst_reg, true); 1360 EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32); 1361 1362 /* or dst_reg, user_vm_start */ 1363 maybe_emit_1mod(&prog, dst_reg, true); 1364 if (is_axreg(dst_reg)) 1365 EMIT1_off32(0x0D, user_vm_start >> 32); 1366 else 1367 EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32); 1368 1369 /* rol dst_reg, 32 */ 1370 maybe_emit_1mod(&prog, dst_reg, true); 1371 EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32); 1372 1373 /* xor r11, r11 */ 1374 EMIT3(0x4D, 0x31, 0xDB); 1375 1376 /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */ 1377 maybe_emit_mod(&prog, dst_reg, dst_reg, false); 1378 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 1379 1380 /* cmove r11, dst_reg; if so, set dst_reg to zero */ 1381 /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */ 1382 maybe_emit_mod(&prog, AUX_REG, dst_reg, true); 1383 EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg)); 1384 break; 1385 } 1386 fallthrough; 1387 case BPF_ALU | BPF_MOV | BPF_X: 1388 if (insn->off == 0) 1389 emit_mov_reg(&prog, 1390 BPF_CLASS(insn->code) == BPF_ALU64, 1391 dst_reg, src_reg); 1392 else 1393 emit_movsx_reg(&prog, insn->off, 1394 BPF_CLASS(insn->code) == BPF_ALU64, 1395 dst_reg, src_reg); 1396 break; 1397 1398 /* neg dst */ 1399 case BPF_ALU | BPF_NEG: 1400 case BPF_ALU64 | BPF_NEG: 1401 maybe_emit_1mod(&prog, dst_reg, 1402 BPF_CLASS(insn->code) == BPF_ALU64); 1403 EMIT2(0xF7, add_1reg(0xD8, dst_reg)); 1404 break; 1405 1406 case BPF_ALU | BPF_ADD | BPF_K: 1407 case BPF_ALU | BPF_SUB | BPF_K: 1408 case BPF_ALU | BPF_AND | BPF_K: 1409 case BPF_ALU | BPF_OR | BPF_K: 1410 case BPF_ALU | BPF_XOR | BPF_K: 1411 case BPF_ALU64 | BPF_ADD | BPF_K: 1412 case BPF_ALU64 | BPF_SUB | BPF_K: 1413 case BPF_ALU64 | BPF_AND | BPF_K: 1414 case BPF_ALU64 | BPF_OR | BPF_K: 1415 case BPF_ALU64 | BPF_XOR | BPF_K: 1416 maybe_emit_1mod(&prog, dst_reg, 1417 BPF_CLASS(insn->code) == BPF_ALU64); 1418 1419 /* 1420 * b3 holds 'normal' opcode, b2 short form only valid 1421 * in case dst is eax/rax. 1422 */ 1423 switch (BPF_OP(insn->code)) { 1424 case BPF_ADD: 1425 b3 = 0xC0; 1426 b2 = 0x05; 1427 break; 1428 case BPF_SUB: 1429 b3 = 0xE8; 1430 b2 = 0x2D; 1431 break; 1432 case BPF_AND: 1433 b3 = 0xE0; 1434 b2 = 0x25; 1435 break; 1436 case BPF_OR: 1437 b3 = 0xC8; 1438 b2 = 0x0D; 1439 break; 1440 case BPF_XOR: 1441 b3 = 0xF0; 1442 b2 = 0x35; 1443 break; 1444 } 1445 1446 if (is_imm8(imm32)) 1447 EMIT3(0x83, add_1reg(b3, dst_reg), imm32); 1448 else if (is_axreg(dst_reg)) 1449 EMIT1_off32(b2, imm32); 1450 else 1451 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); 1452 break; 1453 1454 case BPF_ALU64 | BPF_MOV | BPF_K: 1455 case BPF_ALU | BPF_MOV | BPF_K: 1456 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, 1457 dst_reg, imm32); 1458 break; 1459 1460 case BPF_LD | BPF_IMM | BPF_DW: 1461 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); 1462 insn++; 1463 i++; 1464 break; 1465 1466 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ 1467 case BPF_ALU | BPF_MOD | BPF_X: 1468 case BPF_ALU | BPF_DIV | BPF_X: 1469 case BPF_ALU | BPF_MOD | BPF_K: 1470 case BPF_ALU | BPF_DIV | BPF_K: 1471 case BPF_ALU64 | BPF_MOD | BPF_X: 1472 case BPF_ALU64 | BPF_DIV | BPF_X: 1473 case BPF_ALU64 | BPF_MOD | BPF_K: 1474 case BPF_ALU64 | BPF_DIV | BPF_K: { 1475 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 1476 1477 if (dst_reg != BPF_REG_0) 1478 EMIT1(0x50); /* push rax */ 1479 if (dst_reg != BPF_REG_3) 1480 EMIT1(0x52); /* push rdx */ 1481 1482 if (BPF_SRC(insn->code) == BPF_X) { 1483 if (src_reg == BPF_REG_0 || 1484 src_reg == BPF_REG_3) { 1485 /* mov r11, src_reg */ 1486 EMIT_mov(AUX_REG, src_reg); 1487 src_reg = AUX_REG; 1488 } 1489 } else { 1490 /* mov r11, imm32 */ 1491 EMIT3_off32(0x49, 0xC7, 0xC3, imm32); 1492 src_reg = AUX_REG; 1493 } 1494 1495 if (dst_reg != BPF_REG_0) 1496 /* mov rax, dst_reg */ 1497 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg); 1498 1499 if (insn->off == 0) { 1500 /* 1501 * xor edx, edx 1502 * equivalent to 'xor rdx, rdx', but one byte less 1503 */ 1504 EMIT2(0x31, 0xd2); 1505 1506 /* div src_reg */ 1507 maybe_emit_1mod(&prog, src_reg, is64); 1508 EMIT2(0xF7, add_1reg(0xF0, src_reg)); 1509 } else { 1510 if (BPF_CLASS(insn->code) == BPF_ALU) 1511 EMIT1(0x99); /* cdq */ 1512 else 1513 EMIT2(0x48, 0x99); /* cqo */ 1514 1515 /* idiv src_reg */ 1516 maybe_emit_1mod(&prog, src_reg, is64); 1517 EMIT2(0xF7, add_1reg(0xF8, src_reg)); 1518 } 1519 1520 if (BPF_OP(insn->code) == BPF_MOD && 1521 dst_reg != BPF_REG_3) 1522 /* mov dst_reg, rdx */ 1523 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3); 1524 else if (BPF_OP(insn->code) == BPF_DIV && 1525 dst_reg != BPF_REG_0) 1526 /* mov dst_reg, rax */ 1527 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0); 1528 1529 if (dst_reg != BPF_REG_3) 1530 EMIT1(0x5A); /* pop rdx */ 1531 if (dst_reg != BPF_REG_0) 1532 EMIT1(0x58); /* pop rax */ 1533 break; 1534 } 1535 1536 case BPF_ALU | BPF_MUL | BPF_K: 1537 case BPF_ALU64 | BPF_MUL | BPF_K: 1538 maybe_emit_mod(&prog, dst_reg, dst_reg, 1539 BPF_CLASS(insn->code) == BPF_ALU64); 1540 1541 if (is_imm8(imm32)) 1542 /* imul dst_reg, dst_reg, imm8 */ 1543 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg), 1544 imm32); 1545 else 1546 /* imul dst_reg, dst_reg, imm32 */ 1547 EMIT2_off32(0x69, 1548 add_2reg(0xC0, dst_reg, dst_reg), 1549 imm32); 1550 break; 1551 1552 case BPF_ALU | BPF_MUL | BPF_X: 1553 case BPF_ALU64 | BPF_MUL | BPF_X: 1554 maybe_emit_mod(&prog, src_reg, dst_reg, 1555 BPF_CLASS(insn->code) == BPF_ALU64); 1556 1557 /* imul dst_reg, src_reg */ 1558 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg)); 1559 break; 1560 1561 /* Shifts */ 1562 case BPF_ALU | BPF_LSH | BPF_K: 1563 case BPF_ALU | BPF_RSH | BPF_K: 1564 case BPF_ALU | BPF_ARSH | BPF_K: 1565 case BPF_ALU64 | BPF_LSH | BPF_K: 1566 case BPF_ALU64 | BPF_RSH | BPF_K: 1567 case BPF_ALU64 | BPF_ARSH | BPF_K: 1568 maybe_emit_1mod(&prog, dst_reg, 1569 BPF_CLASS(insn->code) == BPF_ALU64); 1570 1571 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1572 if (imm32 == 1) 1573 EMIT2(0xD1, add_1reg(b3, dst_reg)); 1574 else 1575 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); 1576 break; 1577 1578 case BPF_ALU | BPF_LSH | BPF_X: 1579 case BPF_ALU | BPF_RSH | BPF_X: 1580 case BPF_ALU | BPF_ARSH | BPF_X: 1581 case BPF_ALU64 | BPF_LSH | BPF_X: 1582 case BPF_ALU64 | BPF_RSH | BPF_X: 1583 case BPF_ALU64 | BPF_ARSH | BPF_X: 1584 /* BMI2 shifts aren't better when shift count is already in rcx */ 1585 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) { 1586 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */ 1587 bool w = (BPF_CLASS(insn->code) == BPF_ALU64); 1588 u8 op; 1589 1590 switch (BPF_OP(insn->code)) { 1591 case BPF_LSH: 1592 op = 1; /* prefix 0x66 */ 1593 break; 1594 case BPF_RSH: 1595 op = 3; /* prefix 0xf2 */ 1596 break; 1597 case BPF_ARSH: 1598 op = 2; /* prefix 0xf3 */ 1599 break; 1600 } 1601 1602 emit_shiftx(&prog, dst_reg, src_reg, w, op); 1603 1604 break; 1605 } 1606 1607 if (src_reg != BPF_REG_4) { /* common case */ 1608 /* Check for bad case when dst_reg == rcx */ 1609 if (dst_reg == BPF_REG_4) { 1610 /* mov r11, dst_reg */ 1611 EMIT_mov(AUX_REG, dst_reg); 1612 dst_reg = AUX_REG; 1613 } else { 1614 EMIT1(0x51); /* push rcx */ 1615 } 1616 /* mov rcx, src_reg */ 1617 EMIT_mov(BPF_REG_4, src_reg); 1618 } 1619 1620 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ 1621 maybe_emit_1mod(&prog, dst_reg, 1622 BPF_CLASS(insn->code) == BPF_ALU64); 1623 1624 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1625 EMIT2(0xD3, add_1reg(b3, dst_reg)); 1626 1627 if (src_reg != BPF_REG_4) { 1628 if (insn->dst_reg == BPF_REG_4) 1629 /* mov dst_reg, r11 */ 1630 EMIT_mov(insn->dst_reg, AUX_REG); 1631 else 1632 EMIT1(0x59); /* pop rcx */ 1633 } 1634 1635 break; 1636 1637 case BPF_ALU | BPF_END | BPF_FROM_BE: 1638 case BPF_ALU64 | BPF_END | BPF_FROM_LE: 1639 switch (imm32) { 1640 case 16: 1641 /* Emit 'ror %ax, 8' to swap lower 2 bytes */ 1642 EMIT1(0x66); 1643 if (is_ereg(dst_reg)) 1644 EMIT1(0x41); 1645 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); 1646 1647 /* Emit 'movzwl eax, ax' */ 1648 if (is_ereg(dst_reg)) 1649 EMIT3(0x45, 0x0F, 0xB7); 1650 else 1651 EMIT2(0x0F, 0xB7); 1652 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1653 break; 1654 case 32: 1655 /* Emit 'bswap eax' to swap lower 4 bytes */ 1656 if (is_ereg(dst_reg)) 1657 EMIT2(0x41, 0x0F); 1658 else 1659 EMIT1(0x0F); 1660 EMIT1(add_1reg(0xC8, dst_reg)); 1661 break; 1662 case 64: 1663 /* Emit 'bswap rax' to swap 8 bytes */ 1664 EMIT3(add_1mod(0x48, dst_reg), 0x0F, 1665 add_1reg(0xC8, dst_reg)); 1666 break; 1667 } 1668 break; 1669 1670 case BPF_ALU | BPF_END | BPF_FROM_LE: 1671 switch (imm32) { 1672 case 16: 1673 /* 1674 * Emit 'movzwl eax, ax' to zero extend 16-bit 1675 * into 64 bit 1676 */ 1677 if (is_ereg(dst_reg)) 1678 EMIT3(0x45, 0x0F, 0xB7); 1679 else 1680 EMIT2(0x0F, 0xB7); 1681 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1682 break; 1683 case 32: 1684 /* Emit 'mov eax, eax' to clear upper 32-bits */ 1685 if (is_ereg(dst_reg)) 1686 EMIT1(0x45); 1687 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); 1688 break; 1689 case 64: 1690 /* nop */ 1691 break; 1692 } 1693 break; 1694 1695 /* speculation barrier */ 1696 case BPF_ST | BPF_NOSPEC: 1697 EMIT_LFENCE(); 1698 break; 1699 1700 /* ST: *(u8*)(dst_reg + off) = imm */ 1701 case BPF_ST | BPF_MEM | BPF_B: 1702 if (is_ereg(dst_reg)) 1703 EMIT2(0x41, 0xC6); 1704 else 1705 EMIT1(0xC6); 1706 goto st; 1707 case BPF_ST | BPF_MEM | BPF_H: 1708 if (is_ereg(dst_reg)) 1709 EMIT3(0x66, 0x41, 0xC7); 1710 else 1711 EMIT2(0x66, 0xC7); 1712 goto st; 1713 case BPF_ST | BPF_MEM | BPF_W: 1714 if (is_ereg(dst_reg)) 1715 EMIT2(0x41, 0xC7); 1716 else 1717 EMIT1(0xC7); 1718 goto st; 1719 case BPF_ST | BPF_MEM | BPF_DW: 1720 EMIT2(add_1mod(0x48, dst_reg), 0xC7); 1721 1722 st: if (is_imm8(insn->off)) 1723 EMIT2(add_1reg(0x40, dst_reg), insn->off); 1724 else 1725 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); 1726 1727 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); 1728 break; 1729 1730 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1731 case BPF_STX | BPF_MEM | BPF_B: 1732 case BPF_STX | BPF_MEM | BPF_H: 1733 case BPF_STX | BPF_MEM | BPF_W: 1734 case BPF_STX | BPF_MEM | BPF_DW: 1735 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 1736 break; 1737 1738 case BPF_ST | BPF_PROBE_MEM32 | BPF_B: 1739 case BPF_ST | BPF_PROBE_MEM32 | BPF_H: 1740 case BPF_ST | BPF_PROBE_MEM32 | BPF_W: 1741 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW: 1742 start_of_ldx = prog; 1743 emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm); 1744 goto populate_extable; 1745 1746 /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */ 1747 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B: 1748 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H: 1749 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W: 1750 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW: 1751 case BPF_STX | BPF_PROBE_MEM32 | BPF_B: 1752 case BPF_STX | BPF_PROBE_MEM32 | BPF_H: 1753 case BPF_STX | BPF_PROBE_MEM32 | BPF_W: 1754 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW: 1755 start_of_ldx = prog; 1756 if (BPF_CLASS(insn->code) == BPF_LDX) 1757 emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 1758 else 1759 emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 1760 populate_extable: 1761 { 1762 struct exception_table_entry *ex; 1763 u8 *_insn = image + proglen + (start_of_ldx - temp); 1764 s64 delta; 1765 1766 if (!bpf_prog->aux->extable) 1767 break; 1768 1769 if (excnt >= bpf_prog->aux->num_exentries) { 1770 pr_err("mem32 extable bug\n"); 1771 return -EFAULT; 1772 } 1773 ex = &bpf_prog->aux->extable[excnt++]; 1774 1775 delta = _insn - (u8 *)&ex->insn; 1776 /* switch ex to rw buffer for writes */ 1777 ex = (void *)rw_image + ((void *)ex - (void *)image); 1778 1779 ex->insn = delta; 1780 1781 ex->data = EX_TYPE_BPF; 1782 1783 ex->fixup = (prog - start_of_ldx) | 1784 ((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8); 1785 } 1786 break; 1787 1788 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 1789 case BPF_LDX | BPF_MEM | BPF_B: 1790 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 1791 case BPF_LDX | BPF_MEM | BPF_H: 1792 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 1793 case BPF_LDX | BPF_MEM | BPF_W: 1794 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 1795 case BPF_LDX | BPF_MEM | BPF_DW: 1796 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 1797 /* LDXS: dst_reg = *(s8*)(src_reg + off) */ 1798 case BPF_LDX | BPF_MEMSX | BPF_B: 1799 case BPF_LDX | BPF_MEMSX | BPF_H: 1800 case BPF_LDX | BPF_MEMSX | BPF_W: 1801 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: 1802 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: 1803 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: 1804 insn_off = insn->off; 1805 1806 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 1807 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 1808 /* Conservatively check that src_reg + insn->off is a kernel address: 1809 * src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE 1810 * src_reg is used as scratch for src_reg += insn->off and restored 1811 * after emit_ldx if necessary 1812 */ 1813 1814 u64 limit = TASK_SIZE_MAX + PAGE_SIZE; 1815 u8 *end_of_jmp; 1816 1817 /* At end of these emitted checks, insn->off will have been added 1818 * to src_reg, so no need to do relative load with insn->off offset 1819 */ 1820 insn_off = 0; 1821 1822 /* movabsq r11, limit */ 1823 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG)); 1824 EMIT((u32)limit, 4); 1825 EMIT(limit >> 32, 4); 1826 1827 if (insn->off) { 1828 /* add src_reg, insn->off */ 1829 maybe_emit_1mod(&prog, src_reg, true); 1830 EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off); 1831 } 1832 1833 /* cmp src_reg, r11 */ 1834 maybe_emit_mod(&prog, src_reg, AUX_REG, true); 1835 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG)); 1836 1837 /* if unsigned '>=', goto load */ 1838 EMIT2(X86_JAE, 0); 1839 end_of_jmp = prog; 1840 1841 /* xor dst_reg, dst_reg */ 1842 emit_mov_imm32(&prog, false, dst_reg, 0); 1843 /* jmp byte_after_ldx */ 1844 EMIT2(0xEB, 0); 1845 1846 /* populate jmp_offset for JAE above to jump to start_of_ldx */ 1847 start_of_ldx = prog; 1848 end_of_jmp[-1] = start_of_ldx - end_of_jmp; 1849 } 1850 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || 1851 BPF_MODE(insn->code) == BPF_MEMSX) 1852 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 1853 else 1854 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 1855 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 1856 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 1857 struct exception_table_entry *ex; 1858 u8 *_insn = image + proglen + (start_of_ldx - temp); 1859 s64 delta; 1860 1861 /* populate jmp_offset for JMP above */ 1862 start_of_ldx[-1] = prog - start_of_ldx; 1863 1864 if (insn->off && src_reg != dst_reg) { 1865 /* sub src_reg, insn->off 1866 * Restore src_reg after "add src_reg, insn->off" in prev 1867 * if statement. But if src_reg == dst_reg, emit_ldx 1868 * above already clobbered src_reg, so no need to restore. 1869 * If add src_reg, insn->off was unnecessary, no need to 1870 * restore either. 1871 */ 1872 maybe_emit_1mod(&prog, src_reg, true); 1873 EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off); 1874 } 1875 1876 if (!bpf_prog->aux->extable) 1877 break; 1878 1879 if (excnt >= bpf_prog->aux->num_exentries) { 1880 pr_err("ex gen bug\n"); 1881 return -EFAULT; 1882 } 1883 ex = &bpf_prog->aux->extable[excnt++]; 1884 1885 delta = _insn - (u8 *)&ex->insn; 1886 if (!is_simm32(delta)) { 1887 pr_err("extable->insn doesn't fit into 32-bit\n"); 1888 return -EFAULT; 1889 } 1890 /* switch ex to rw buffer for writes */ 1891 ex = (void *)rw_image + ((void *)ex - (void *)image); 1892 1893 ex->insn = delta; 1894 1895 ex->data = EX_TYPE_BPF; 1896 1897 if (dst_reg > BPF_REG_9) { 1898 pr_err("verifier error\n"); 1899 return -EFAULT; 1900 } 1901 /* 1902 * Compute size of x86 insn and its target dest x86 register. 1903 * ex_handler_bpf() will use lower 8 bits to adjust 1904 * pt_regs->ip to jump over this x86 instruction 1905 * and upper bits to figure out which pt_regs to zero out. 1906 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" 1907 * of 4 bytes will be ignored and rbx will be zero inited. 1908 */ 1909 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8); 1910 } 1911 break; 1912 1913 case BPF_STX | BPF_ATOMIC | BPF_W: 1914 case BPF_STX | BPF_ATOMIC | BPF_DW: 1915 if (insn->imm == (BPF_AND | BPF_FETCH) || 1916 insn->imm == (BPF_OR | BPF_FETCH) || 1917 insn->imm == (BPF_XOR | BPF_FETCH)) { 1918 bool is64 = BPF_SIZE(insn->code) == BPF_DW; 1919 u32 real_src_reg = src_reg; 1920 u32 real_dst_reg = dst_reg; 1921 u8 *branch_target; 1922 1923 /* 1924 * Can't be implemented with a single x86 insn. 1925 * Need to do a CMPXCHG loop. 1926 */ 1927 1928 /* Will need RAX as a CMPXCHG operand so save R0 */ 1929 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); 1930 if (src_reg == BPF_REG_0) 1931 real_src_reg = BPF_REG_AX; 1932 if (dst_reg == BPF_REG_0) 1933 real_dst_reg = BPF_REG_AX; 1934 1935 branch_target = prog; 1936 /* Load old value */ 1937 emit_ldx(&prog, BPF_SIZE(insn->code), 1938 BPF_REG_0, real_dst_reg, insn->off); 1939 /* 1940 * Perform the (commutative) operation locally, 1941 * put the result in the AUX_REG. 1942 */ 1943 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); 1944 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64); 1945 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], 1946 add_2reg(0xC0, AUX_REG, real_src_reg)); 1947 /* Attempt to swap in new value */ 1948 err = emit_atomic(&prog, BPF_CMPXCHG, 1949 real_dst_reg, AUX_REG, 1950 insn->off, 1951 BPF_SIZE(insn->code)); 1952 if (WARN_ON(err)) 1953 return err; 1954 /* 1955 * ZF tells us whether we won the race. If it's 1956 * cleared we need to try again. 1957 */ 1958 EMIT2(X86_JNE, -(prog - branch_target) - 2); 1959 /* Return the pre-modification value */ 1960 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0); 1961 /* Restore R0 after clobbering RAX */ 1962 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); 1963 break; 1964 } 1965 1966 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg, 1967 insn->off, BPF_SIZE(insn->code)); 1968 if (err) 1969 return err; 1970 break; 1971 1972 /* call */ 1973 case BPF_JMP | BPF_CALL: { 1974 u8 *ip = image + addrs[i - 1]; 1975 1976 func = (u8 *) __bpf_call_base + imm32; 1977 if (tail_call_reachable) { 1978 RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth); 1979 ip += 7; 1980 } 1981 if (!imm32) 1982 return -EINVAL; 1983 ip += x86_call_depth_emit_accounting(&prog, func, ip); 1984 if (emit_call(&prog, func, ip)) 1985 return -EINVAL; 1986 break; 1987 } 1988 1989 case BPF_JMP | BPF_TAIL_CALL: 1990 if (imm32) 1991 emit_bpf_tail_call_direct(bpf_prog, 1992 &bpf_prog->aux->poke_tab[imm32 - 1], 1993 &prog, image + addrs[i - 1], 1994 callee_regs_used, 1995 bpf_prog->aux->stack_depth, 1996 ctx); 1997 else 1998 emit_bpf_tail_call_indirect(bpf_prog, 1999 &prog, 2000 callee_regs_used, 2001 bpf_prog->aux->stack_depth, 2002 image + addrs[i - 1], 2003 ctx); 2004 break; 2005 2006 /* cond jump */ 2007 case BPF_JMP | BPF_JEQ | BPF_X: 2008 case BPF_JMP | BPF_JNE | BPF_X: 2009 case BPF_JMP | BPF_JGT | BPF_X: 2010 case BPF_JMP | BPF_JLT | BPF_X: 2011 case BPF_JMP | BPF_JGE | BPF_X: 2012 case BPF_JMP | BPF_JLE | BPF_X: 2013 case BPF_JMP | BPF_JSGT | BPF_X: 2014 case BPF_JMP | BPF_JSLT | BPF_X: 2015 case BPF_JMP | BPF_JSGE | BPF_X: 2016 case BPF_JMP | BPF_JSLE | BPF_X: 2017 case BPF_JMP32 | BPF_JEQ | BPF_X: 2018 case BPF_JMP32 | BPF_JNE | BPF_X: 2019 case BPF_JMP32 | BPF_JGT | BPF_X: 2020 case BPF_JMP32 | BPF_JLT | BPF_X: 2021 case BPF_JMP32 | BPF_JGE | BPF_X: 2022 case BPF_JMP32 | BPF_JLE | BPF_X: 2023 case BPF_JMP32 | BPF_JSGT | BPF_X: 2024 case BPF_JMP32 | BPF_JSLT | BPF_X: 2025 case BPF_JMP32 | BPF_JSGE | BPF_X: 2026 case BPF_JMP32 | BPF_JSLE | BPF_X: 2027 /* cmp dst_reg, src_reg */ 2028 maybe_emit_mod(&prog, dst_reg, src_reg, 2029 BPF_CLASS(insn->code) == BPF_JMP); 2030 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); 2031 goto emit_cond_jmp; 2032 2033 case BPF_JMP | BPF_JSET | BPF_X: 2034 case BPF_JMP32 | BPF_JSET | BPF_X: 2035 /* test dst_reg, src_reg */ 2036 maybe_emit_mod(&prog, dst_reg, src_reg, 2037 BPF_CLASS(insn->code) == BPF_JMP); 2038 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); 2039 goto emit_cond_jmp; 2040 2041 case BPF_JMP | BPF_JSET | BPF_K: 2042 case BPF_JMP32 | BPF_JSET | BPF_K: 2043 /* test dst_reg, imm32 */ 2044 maybe_emit_1mod(&prog, dst_reg, 2045 BPF_CLASS(insn->code) == BPF_JMP); 2046 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); 2047 goto emit_cond_jmp; 2048 2049 case BPF_JMP | BPF_JEQ | BPF_K: 2050 case BPF_JMP | BPF_JNE | BPF_K: 2051 case BPF_JMP | BPF_JGT | BPF_K: 2052 case BPF_JMP | BPF_JLT | BPF_K: 2053 case BPF_JMP | BPF_JGE | BPF_K: 2054 case BPF_JMP | BPF_JLE | BPF_K: 2055 case BPF_JMP | BPF_JSGT | BPF_K: 2056 case BPF_JMP | BPF_JSLT | BPF_K: 2057 case BPF_JMP | BPF_JSGE | BPF_K: 2058 case BPF_JMP | BPF_JSLE | BPF_K: 2059 case BPF_JMP32 | BPF_JEQ | BPF_K: 2060 case BPF_JMP32 | BPF_JNE | BPF_K: 2061 case BPF_JMP32 | BPF_JGT | BPF_K: 2062 case BPF_JMP32 | BPF_JLT | BPF_K: 2063 case BPF_JMP32 | BPF_JGE | BPF_K: 2064 case BPF_JMP32 | BPF_JLE | BPF_K: 2065 case BPF_JMP32 | BPF_JSGT | BPF_K: 2066 case BPF_JMP32 | BPF_JSLT | BPF_K: 2067 case BPF_JMP32 | BPF_JSGE | BPF_K: 2068 case BPF_JMP32 | BPF_JSLE | BPF_K: 2069 /* test dst_reg, dst_reg to save one extra byte */ 2070 if (imm32 == 0) { 2071 maybe_emit_mod(&prog, dst_reg, dst_reg, 2072 BPF_CLASS(insn->code) == BPF_JMP); 2073 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 2074 goto emit_cond_jmp; 2075 } 2076 2077 /* cmp dst_reg, imm8/32 */ 2078 maybe_emit_1mod(&prog, dst_reg, 2079 BPF_CLASS(insn->code) == BPF_JMP); 2080 2081 if (is_imm8(imm32)) 2082 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); 2083 else 2084 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); 2085 2086 emit_cond_jmp: /* Convert BPF opcode to x86 */ 2087 switch (BPF_OP(insn->code)) { 2088 case BPF_JEQ: 2089 jmp_cond = X86_JE; 2090 break; 2091 case BPF_JSET: 2092 case BPF_JNE: 2093 jmp_cond = X86_JNE; 2094 break; 2095 case BPF_JGT: 2096 /* GT is unsigned '>', JA in x86 */ 2097 jmp_cond = X86_JA; 2098 break; 2099 case BPF_JLT: 2100 /* LT is unsigned '<', JB in x86 */ 2101 jmp_cond = X86_JB; 2102 break; 2103 case BPF_JGE: 2104 /* GE is unsigned '>=', JAE in x86 */ 2105 jmp_cond = X86_JAE; 2106 break; 2107 case BPF_JLE: 2108 /* LE is unsigned '<=', JBE in x86 */ 2109 jmp_cond = X86_JBE; 2110 break; 2111 case BPF_JSGT: 2112 /* Signed '>', GT in x86 */ 2113 jmp_cond = X86_JG; 2114 break; 2115 case BPF_JSLT: 2116 /* Signed '<', LT in x86 */ 2117 jmp_cond = X86_JL; 2118 break; 2119 case BPF_JSGE: 2120 /* Signed '>=', GE in x86 */ 2121 jmp_cond = X86_JGE; 2122 break; 2123 case BPF_JSLE: 2124 /* Signed '<=', LE in x86 */ 2125 jmp_cond = X86_JLE; 2126 break; 2127 default: /* to silence GCC warning */ 2128 return -EFAULT; 2129 } 2130 jmp_offset = addrs[i + insn->off] - addrs[i]; 2131 if (is_imm8(jmp_offset)) { 2132 if (jmp_padding) { 2133 /* To keep the jmp_offset valid, the extra bytes are 2134 * padded before the jump insn, so we subtract the 2135 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. 2136 * 2137 * If the previous pass already emits an imm8 2138 * jmp_cond, then this BPF insn won't shrink, so 2139 * "nops" is 0. 2140 * 2141 * On the other hand, if the previous pass emits an 2142 * imm32 jmp_cond, the extra 4 bytes(*) is padded to 2143 * keep the image from shrinking further. 2144 * 2145 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond 2146 * is 2 bytes, so the size difference is 4 bytes. 2147 */ 2148 nops = INSN_SZ_DIFF - 2; 2149 if (nops != 0 && nops != 4) { 2150 pr_err("unexpected jmp_cond padding: %d bytes\n", 2151 nops); 2152 return -EFAULT; 2153 } 2154 emit_nops(&prog, nops); 2155 } 2156 EMIT2(jmp_cond, jmp_offset); 2157 } else if (is_simm32(jmp_offset)) { 2158 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 2159 } else { 2160 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 2161 return -EFAULT; 2162 } 2163 2164 break; 2165 2166 case BPF_JMP | BPF_JA: 2167 case BPF_JMP32 | BPF_JA: 2168 if (BPF_CLASS(insn->code) == BPF_JMP) { 2169 if (insn->off == -1) 2170 /* -1 jmp instructions will always jump 2171 * backwards two bytes. Explicitly handling 2172 * this case avoids wasting too many passes 2173 * when there are long sequences of replaced 2174 * dead code. 2175 */ 2176 jmp_offset = -2; 2177 else 2178 jmp_offset = addrs[i + insn->off] - addrs[i]; 2179 } else { 2180 if (insn->imm == -1) 2181 jmp_offset = -2; 2182 else 2183 jmp_offset = addrs[i + insn->imm] - addrs[i]; 2184 } 2185 2186 if (!jmp_offset) { 2187 /* 2188 * If jmp_padding is enabled, the extra nops will 2189 * be inserted. Otherwise, optimize out nop jumps. 2190 */ 2191 if (jmp_padding) { 2192 /* There are 3 possible conditions. 2193 * (1) This BPF_JA is already optimized out in 2194 * the previous run, so there is no need 2195 * to pad any extra byte (0 byte). 2196 * (2) The previous pass emits an imm8 jmp, 2197 * so we pad 2 bytes to match the previous 2198 * insn size. 2199 * (3) Similarly, the previous pass emits an 2200 * imm32 jmp, and 5 bytes is padded. 2201 */ 2202 nops = INSN_SZ_DIFF; 2203 if (nops != 0 && nops != 2 && nops != 5) { 2204 pr_err("unexpected nop jump padding: %d bytes\n", 2205 nops); 2206 return -EFAULT; 2207 } 2208 emit_nops(&prog, nops); 2209 } 2210 break; 2211 } 2212 emit_jmp: 2213 if (is_imm8(jmp_offset)) { 2214 if (jmp_padding) { 2215 /* To avoid breaking jmp_offset, the extra bytes 2216 * are padded before the actual jmp insn, so 2217 * 2 bytes is subtracted from INSN_SZ_DIFF. 2218 * 2219 * If the previous pass already emits an imm8 2220 * jmp, there is nothing to pad (0 byte). 2221 * 2222 * If it emits an imm32 jmp (5 bytes) previously 2223 * and now an imm8 jmp (2 bytes), then we pad 2224 * (5 - 2 = 3) bytes to stop the image from 2225 * shrinking further. 2226 */ 2227 nops = INSN_SZ_DIFF - 2; 2228 if (nops != 0 && nops != 3) { 2229 pr_err("unexpected jump padding: %d bytes\n", 2230 nops); 2231 return -EFAULT; 2232 } 2233 emit_nops(&prog, INSN_SZ_DIFF - 2); 2234 } 2235 EMIT2(0xEB, jmp_offset); 2236 } else if (is_simm32(jmp_offset)) { 2237 EMIT1_off32(0xE9, jmp_offset); 2238 } else { 2239 pr_err("jmp gen bug %llx\n", jmp_offset); 2240 return -EFAULT; 2241 } 2242 break; 2243 2244 case BPF_JMP | BPF_EXIT: 2245 if (seen_exit) { 2246 jmp_offset = ctx->cleanup_addr - addrs[i]; 2247 goto emit_jmp; 2248 } 2249 seen_exit = true; 2250 /* Update cleanup_addr */ 2251 ctx->cleanup_addr = proglen; 2252 if (bpf_prog->aux->exception_boundary) { 2253 pop_callee_regs(&prog, all_callee_regs_used); 2254 pop_r12(&prog); 2255 } else { 2256 pop_callee_regs(&prog, callee_regs_used); 2257 if (arena_vm_start) 2258 pop_r12(&prog); 2259 } 2260 EMIT1(0xC9); /* leave */ 2261 emit_return(&prog, image + addrs[i - 1] + (prog - temp)); 2262 break; 2263 2264 default: 2265 /* 2266 * By design x86-64 JIT should support all BPF instructions. 2267 * This error will be seen if new instruction was added 2268 * to the interpreter, but not to the JIT, or if there is 2269 * junk in bpf_prog. 2270 */ 2271 pr_err("bpf_jit: unknown opcode %02x\n", insn->code); 2272 return -EINVAL; 2273 } 2274 2275 ilen = prog - temp; 2276 if (ilen > BPF_MAX_INSN_SIZE) { 2277 pr_err("bpf_jit: fatal insn size error\n"); 2278 return -EFAULT; 2279 } 2280 2281 if (image) { 2282 /* 2283 * When populating the image, assert that: 2284 * 2285 * i) We do not write beyond the allocated space, and 2286 * ii) addrs[i] did not change from the prior run, in order 2287 * to validate assumptions made for computing branch 2288 * displacements. 2289 */ 2290 if (unlikely(proglen + ilen > oldproglen || 2291 proglen + ilen != addrs[i])) { 2292 pr_err("bpf_jit: fatal error\n"); 2293 return -EFAULT; 2294 } 2295 memcpy(rw_image + proglen, temp, ilen); 2296 } 2297 proglen += ilen; 2298 addrs[i] = proglen; 2299 prog = temp; 2300 } 2301 2302 if (image && excnt != bpf_prog->aux->num_exentries) { 2303 pr_err("extable is not populated\n"); 2304 return -EFAULT; 2305 } 2306 return proglen; 2307 } 2308 2309 static void clean_stack_garbage(const struct btf_func_model *m, 2310 u8 **pprog, int nr_stack_slots, 2311 int stack_size) 2312 { 2313 int arg_size, off; 2314 u8 *prog; 2315 2316 /* Generally speaking, the compiler will pass the arguments 2317 * on-stack with "push" instruction, which will take 8-byte 2318 * on the stack. In this case, there won't be garbage values 2319 * while we copy the arguments from origin stack frame to current 2320 * in BPF_DW. 2321 * 2322 * However, sometimes the compiler will only allocate 4-byte on 2323 * the stack for the arguments. For now, this case will only 2324 * happen if there is only one argument on-stack and its size 2325 * not more than 4 byte. In this case, there will be garbage 2326 * values on the upper 4-byte where we store the argument on 2327 * current stack frame. 2328 * 2329 * arguments on origin stack: 2330 * 2331 * stack_arg_1(4-byte) xxx(4-byte) 2332 * 2333 * what we copy: 2334 * 2335 * stack_arg_1(8-byte): stack_arg_1(origin) xxx 2336 * 2337 * and the xxx is the garbage values which we should clean here. 2338 */ 2339 if (nr_stack_slots != 1) 2340 return; 2341 2342 /* the size of the last argument */ 2343 arg_size = m->arg_size[m->nr_args - 1]; 2344 if (arg_size <= 4) { 2345 off = -(stack_size - 4); 2346 prog = *pprog; 2347 /* mov DWORD PTR [rbp + off], 0 */ 2348 if (!is_imm8(off)) 2349 EMIT2_off32(0xC7, 0x85, off); 2350 else 2351 EMIT3(0xC7, 0x45, off); 2352 EMIT(0, 4); 2353 *pprog = prog; 2354 } 2355 } 2356 2357 /* get the count of the regs that are used to pass arguments */ 2358 static int get_nr_used_regs(const struct btf_func_model *m) 2359 { 2360 int i, arg_regs, nr_used_regs = 0; 2361 2362 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2363 arg_regs = (m->arg_size[i] + 7) / 8; 2364 if (nr_used_regs + arg_regs <= 6) 2365 nr_used_regs += arg_regs; 2366 2367 if (nr_used_regs >= 6) 2368 break; 2369 } 2370 2371 return nr_used_regs; 2372 } 2373 2374 static void save_args(const struct btf_func_model *m, u8 **prog, 2375 int stack_size, bool for_call_origin) 2376 { 2377 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0; 2378 int i, j; 2379 2380 /* Store function arguments to stack. 2381 * For a function that accepts two pointers the sequence will be: 2382 * mov QWORD PTR [rbp-0x10],rdi 2383 * mov QWORD PTR [rbp-0x8],rsi 2384 */ 2385 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2386 arg_regs = (m->arg_size[i] + 7) / 8; 2387 2388 /* According to the research of Yonghong, struct members 2389 * should be all in register or all on the stack. 2390 * Meanwhile, the compiler will pass the argument on regs 2391 * if the remaining regs can hold the argument. 2392 * 2393 * Disorder of the args can happen. For example: 2394 * 2395 * struct foo_struct { 2396 * long a; 2397 * int b; 2398 * }; 2399 * int foo(char, char, char, char, char, struct foo_struct, 2400 * char); 2401 * 2402 * the arg1-5,arg7 will be passed by regs, and arg6 will 2403 * by stack. 2404 */ 2405 if (nr_regs + arg_regs > 6) { 2406 /* copy function arguments from origin stack frame 2407 * into current stack frame. 2408 * 2409 * The starting address of the arguments on-stack 2410 * is: 2411 * rbp + 8(push rbp) + 2412 * 8(return addr of origin call) + 2413 * 8(return addr of the caller) 2414 * which means: rbp + 24 2415 */ 2416 for (j = 0; j < arg_regs; j++) { 2417 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 2418 nr_stack_slots * 8 + 0x18); 2419 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0, 2420 -stack_size); 2421 2422 if (!nr_stack_slots) 2423 first_off = stack_size; 2424 stack_size -= 8; 2425 nr_stack_slots++; 2426 } 2427 } else { 2428 /* Only copy the arguments on-stack to current 2429 * 'stack_size' and ignore the regs, used to 2430 * prepare the arguments on-stack for origin call. 2431 */ 2432 if (for_call_origin) { 2433 nr_regs += arg_regs; 2434 continue; 2435 } 2436 2437 /* copy the arguments from regs into stack */ 2438 for (j = 0; j < arg_regs; j++) { 2439 emit_stx(prog, BPF_DW, BPF_REG_FP, 2440 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2441 -stack_size); 2442 stack_size -= 8; 2443 nr_regs++; 2444 } 2445 } 2446 } 2447 2448 clean_stack_garbage(m, prog, nr_stack_slots, first_off); 2449 } 2450 2451 static void restore_regs(const struct btf_func_model *m, u8 **prog, 2452 int stack_size) 2453 { 2454 int i, j, arg_regs, nr_regs = 0; 2455 2456 /* Restore function arguments from stack. 2457 * For a function that accepts two pointers the sequence will be: 2458 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] 2459 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] 2460 * 2461 * The logic here is similar to what we do in save_args() 2462 */ 2463 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2464 arg_regs = (m->arg_size[i] + 7) / 8; 2465 if (nr_regs + arg_regs <= 6) { 2466 for (j = 0; j < arg_regs; j++) { 2467 emit_ldx(prog, BPF_DW, 2468 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2469 BPF_REG_FP, 2470 -stack_size); 2471 stack_size -= 8; 2472 nr_regs++; 2473 } 2474 } else { 2475 stack_size -= 8 * arg_regs; 2476 } 2477 2478 if (nr_regs >= 6) 2479 break; 2480 } 2481 } 2482 2483 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, 2484 struct bpf_tramp_link *l, int stack_size, 2485 int run_ctx_off, bool save_ret, 2486 void *image, void *rw_image) 2487 { 2488 u8 *prog = *pprog; 2489 u8 *jmp_insn; 2490 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); 2491 struct bpf_prog *p = l->link.prog; 2492 u64 cookie = l->cookie; 2493 2494 /* mov rdi, cookie */ 2495 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie); 2496 2497 /* Prepare struct bpf_tramp_run_ctx. 2498 * 2499 * bpf_tramp_run_ctx is already preserved by 2500 * arch_prepare_bpf_trampoline(). 2501 * 2502 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi 2503 */ 2504 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off); 2505 2506 /* arg1: mov rdi, progs[i] */ 2507 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2508 /* arg2: lea rsi, [rbp - ctx_cookie_off] */ 2509 if (!is_imm8(-run_ctx_off)) 2510 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off); 2511 else 2512 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off); 2513 2514 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image))) 2515 return -EINVAL; 2516 /* remember prog start time returned by __bpf_prog_enter */ 2517 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); 2518 2519 /* if (__bpf_prog_enter*(prog) == 0) 2520 * goto skip_exec_of_prog; 2521 */ 2522 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ 2523 /* emit 2 nops that will be replaced with JE insn */ 2524 jmp_insn = prog; 2525 emit_nops(&prog, 2); 2526 2527 /* arg1: lea rdi, [rbp - stack_size] */ 2528 if (!is_imm8(-stack_size)) 2529 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size); 2530 else 2531 EMIT4(0x48, 0x8D, 0x7D, -stack_size); 2532 /* arg2: progs[i]->insnsi for interpreter */ 2533 if (!p->jited) 2534 emit_mov_imm64(&prog, BPF_REG_2, 2535 (long) p->insnsi >> 32, 2536 (u32) (long) p->insnsi); 2537 /* call JITed bpf program or interpreter */ 2538 if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image))) 2539 return -EINVAL; 2540 2541 /* 2542 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return 2543 * of the previous call which is then passed on the stack to 2544 * the next BPF program. 2545 * 2546 * BPF_TRAMP_FENTRY trampoline may need to return the return 2547 * value of BPF_PROG_TYPE_STRUCT_OPS prog. 2548 */ 2549 if (save_ret) 2550 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2551 2552 /* replace 2 nops with JE insn, since jmp target is known */ 2553 jmp_insn[0] = X86_JE; 2554 jmp_insn[1] = prog - jmp_insn - 2; 2555 2556 /* arg1: mov rdi, progs[i] */ 2557 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2558 /* arg2: mov rsi, rbx <- start time in nsec */ 2559 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); 2560 /* arg3: lea rdx, [rbp - run_ctx_off] */ 2561 if (!is_imm8(-run_ctx_off)) 2562 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off); 2563 else 2564 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off); 2565 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image))) 2566 return -EINVAL; 2567 2568 *pprog = prog; 2569 return 0; 2570 } 2571 2572 static void emit_align(u8 **pprog, u32 align) 2573 { 2574 u8 *target, *prog = *pprog; 2575 2576 target = PTR_ALIGN(prog, align); 2577 if (target != prog) 2578 emit_nops(&prog, target - prog); 2579 2580 *pprog = prog; 2581 } 2582 2583 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) 2584 { 2585 u8 *prog = *pprog; 2586 s64 offset; 2587 2588 offset = func - (ip + 2 + 4); 2589 if (!is_simm32(offset)) { 2590 pr_err("Target %p is out of range\n", func); 2591 return -EINVAL; 2592 } 2593 EMIT2_off32(0x0F, jmp_cond + 0x10, offset); 2594 *pprog = prog; 2595 return 0; 2596 } 2597 2598 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, 2599 struct bpf_tramp_links *tl, int stack_size, 2600 int run_ctx_off, bool save_ret, 2601 void *image, void *rw_image) 2602 { 2603 int i; 2604 u8 *prog = *pprog; 2605 2606 for (i = 0; i < tl->nr_links; i++) { 2607 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, 2608 run_ctx_off, save_ret, image, rw_image)) 2609 return -EINVAL; 2610 } 2611 *pprog = prog; 2612 return 0; 2613 } 2614 2615 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, 2616 struct bpf_tramp_links *tl, int stack_size, 2617 int run_ctx_off, u8 **branches, 2618 void *image, void *rw_image) 2619 { 2620 u8 *prog = *pprog; 2621 int i; 2622 2623 /* The first fmod_ret program will receive a garbage return value. 2624 * Set this to 0 to avoid confusing the program. 2625 */ 2626 emit_mov_imm32(&prog, false, BPF_REG_0, 0); 2627 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2628 for (i = 0; i < tl->nr_links; i++) { 2629 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true, 2630 image, rw_image)) 2631 return -EINVAL; 2632 2633 /* mod_ret prog stored return value into [rbp - 8]. Emit: 2634 * if (*(u64 *)(rbp - 8) != 0) 2635 * goto do_fexit; 2636 */ 2637 /* cmp QWORD PTR [rbp - 0x8], 0x0 */ 2638 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); 2639 2640 /* Save the location of the branch and Generate 6 nops 2641 * (4 bytes for an offset and 2 bytes for the jump) These nops 2642 * are replaced with a conditional jump once do_fexit (i.e. the 2643 * start of the fexit invocation) is finalized. 2644 */ 2645 branches[i] = prog; 2646 emit_nops(&prog, 4 + 2); 2647 } 2648 2649 *pprog = prog; 2650 return 0; 2651 } 2652 2653 /* Example: 2654 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); 2655 * its 'struct btf_func_model' will be nr_args=2 2656 * The assembly code when eth_type_trans is executing after trampoline: 2657 * 2658 * push rbp 2659 * mov rbp, rsp 2660 * sub rsp, 16 // space for skb and dev 2661 * push rbx // temp regs to pass start time 2662 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack 2663 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack 2664 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 2665 * mov rbx, rax // remember start time in bpf stats are enabled 2666 * lea rdi, [rbp - 16] // R1==ctx of bpf prog 2667 * call addr_of_jited_FENTRY_prog 2668 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 2669 * mov rsi, rbx // prog start time 2670 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 2671 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack 2672 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack 2673 * pop rbx 2674 * leave 2675 * ret 2676 * 2677 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be 2678 * replaced with 'call generated_bpf_trampoline'. When it returns 2679 * eth_type_trans will continue executing with original skb and dev pointers. 2680 * 2681 * The assembly code when eth_type_trans is called from trampoline: 2682 * 2683 * push rbp 2684 * mov rbp, rsp 2685 * sub rsp, 24 // space for skb, dev, return value 2686 * push rbx // temp regs to pass start time 2687 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack 2688 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack 2689 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 2690 * mov rbx, rax // remember start time if bpf stats are enabled 2691 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 2692 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev 2693 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 2694 * mov rsi, rbx // prog start time 2695 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 2696 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack 2697 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack 2698 * call eth_type_trans+5 // execute body of eth_type_trans 2699 * mov qword ptr [rbp - 8], rax // save return value 2700 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 2701 * mov rbx, rax // remember start time in bpf stats are enabled 2702 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 2703 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value 2704 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 2705 * mov rsi, rbx // prog start time 2706 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 2707 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value 2708 * pop rbx 2709 * leave 2710 * add rsp, 8 // skip eth_type_trans's frame 2711 * ret // return to its caller 2712 */ 2713 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image, 2714 void *rw_image_end, void *image, 2715 const struct btf_func_model *m, u32 flags, 2716 struct bpf_tramp_links *tlinks, 2717 void *func_addr) 2718 { 2719 int i, ret, nr_regs = m->nr_args, stack_size = 0; 2720 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off; 2721 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; 2722 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; 2723 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; 2724 void *orig_call = func_addr; 2725 u8 **branches = NULL; 2726 u8 *prog; 2727 bool save_ret; 2728 2729 /* 2730 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is 2731 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG 2732 * because @func_addr. 2733 */ 2734 WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) && 2735 (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET))); 2736 2737 /* extra registers for struct arguments */ 2738 for (i = 0; i < m->nr_args; i++) { 2739 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) 2740 nr_regs += (m->arg_size[i] + 7) / 8 - 1; 2741 } 2742 2743 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6 2744 * are passed through regs, the remains are through stack. 2745 */ 2746 if (nr_regs > MAX_BPF_FUNC_ARGS) 2747 return -ENOTSUPP; 2748 2749 /* Generated trampoline stack layout: 2750 * 2751 * RBP + 8 [ return address ] 2752 * RBP + 0 [ RBP ] 2753 * 2754 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or 2755 * BPF_TRAMP_F_RET_FENTRY_RET flags 2756 * 2757 * [ reg_argN ] always 2758 * [ ... ] 2759 * RBP - regs_off [ reg_arg1 ] program's ctx pointer 2760 * 2761 * RBP - nregs_off [ regs count ] always 2762 * 2763 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag 2764 * 2765 * RBP - rbx_off [ rbx value ] always 2766 * 2767 * RBP - run_ctx_off [ bpf_tramp_run_ctx ] 2768 * 2769 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG 2770 * [ ... ] 2771 * [ stack_arg2 ] 2772 * RBP - arg_stack_off [ stack_arg1 ] 2773 * RSP [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX 2774 */ 2775 2776 /* room for return value of orig_call or fentry prog */ 2777 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); 2778 if (save_ret) 2779 stack_size += 8; 2780 2781 stack_size += nr_regs * 8; 2782 regs_off = stack_size; 2783 2784 /* regs count */ 2785 stack_size += 8; 2786 nregs_off = stack_size; 2787 2788 if (flags & BPF_TRAMP_F_IP_ARG) 2789 stack_size += 8; /* room for IP address argument */ 2790 2791 ip_off = stack_size; 2792 2793 stack_size += 8; 2794 rbx_off = stack_size; 2795 2796 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7; 2797 run_ctx_off = stack_size; 2798 2799 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) { 2800 /* the space that used to pass arguments on-stack */ 2801 stack_size += (nr_regs - get_nr_used_regs(m)) * 8; 2802 /* make sure the stack pointer is 16-byte aligned if we 2803 * need pass arguments on stack, which means 2804 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)] 2805 * should be 16-byte aligned. Following code depend on 2806 * that stack_size is already 8-byte aligned. 2807 */ 2808 stack_size += (stack_size % 16) ? 0 : 8; 2809 } 2810 2811 arg_stack_off = stack_size; 2812 2813 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 2814 /* skip patched call instruction and point orig_call to actual 2815 * body of the kernel function. 2816 */ 2817 if (is_endbr(*(u32 *)orig_call)) 2818 orig_call += ENDBR_INSN_SIZE; 2819 orig_call += X86_PATCH_SIZE; 2820 } 2821 2822 prog = rw_image; 2823 2824 if (flags & BPF_TRAMP_F_INDIRECT) { 2825 /* 2826 * Indirect call for bpf_struct_ops 2827 */ 2828 emit_cfi(&prog, cfi_get_func_hash(func_addr)); 2829 } else { 2830 /* 2831 * Direct-call fentry stub, as such it needs accounting for the 2832 * __fentry__ call. 2833 */ 2834 x86_call_depth_emit_accounting(&prog, NULL, image); 2835 } 2836 EMIT1(0x55); /* push rbp */ 2837 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 2838 if (!is_imm8(stack_size)) { 2839 /* sub rsp, stack_size */ 2840 EMIT3_off32(0x48, 0x81, 0xEC, stack_size); 2841 } else { 2842 /* sub rsp, stack_size */ 2843 EMIT4(0x48, 0x83, 0xEC, stack_size); 2844 } 2845 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) 2846 EMIT1(0x50); /* push rax */ 2847 /* mov QWORD PTR [rbp - rbx_off], rbx */ 2848 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off); 2849 2850 /* Store number of argument registers of the traced function: 2851 * mov rax, nr_regs 2852 * mov QWORD PTR [rbp - nregs_off], rax 2853 */ 2854 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs); 2855 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off); 2856 2857 if (flags & BPF_TRAMP_F_IP_ARG) { 2858 /* Store IP address of the traced function: 2859 * movabsq rax, func_addr 2860 * mov QWORD PTR [rbp - ip_off], rax 2861 */ 2862 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr); 2863 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off); 2864 } 2865 2866 save_args(m, &prog, regs_off, false); 2867 2868 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2869 /* arg1: mov rdi, im */ 2870 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 2871 if (emit_rsb_call(&prog, __bpf_tramp_enter, 2872 image + (prog - (u8 *)rw_image))) { 2873 ret = -EINVAL; 2874 goto cleanup; 2875 } 2876 } 2877 2878 if (fentry->nr_links) { 2879 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off, 2880 flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image)) 2881 return -EINVAL; 2882 } 2883 2884 if (fmod_ret->nr_links) { 2885 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *), 2886 GFP_KERNEL); 2887 if (!branches) 2888 return -ENOMEM; 2889 2890 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off, 2891 run_ctx_off, branches, image, rw_image)) { 2892 ret = -EINVAL; 2893 goto cleanup; 2894 } 2895 } 2896 2897 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2898 restore_regs(m, &prog, regs_off); 2899 save_args(m, &prog, arg_stack_off, true); 2900 2901 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { 2902 /* Before calling the original function, restore the 2903 * tail_call_cnt from stack to rax. 2904 */ 2905 RESTORE_TAIL_CALL_CNT(stack_size); 2906 } 2907 2908 if (flags & BPF_TRAMP_F_ORIG_STACK) { 2909 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8); 2910 EMIT2(0xff, 0xd3); /* call *rbx */ 2911 } else { 2912 /* call original function */ 2913 if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) { 2914 ret = -EINVAL; 2915 goto cleanup; 2916 } 2917 } 2918 /* remember return value in a stack for bpf prog to access */ 2919 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2920 im->ip_after_call = image + (prog - (u8 *)rw_image); 2921 emit_nops(&prog, X86_PATCH_SIZE); 2922 } 2923 2924 if (fmod_ret->nr_links) { 2925 /* From Intel 64 and IA-32 Architectures Optimization 2926 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 2927 * Coding Rule 11: All branch targets should be 16-byte 2928 * aligned. 2929 */ 2930 emit_align(&prog, 16); 2931 /* Update the branches saved in invoke_bpf_mod_ret with the 2932 * aligned address of do_fexit. 2933 */ 2934 for (i = 0; i < fmod_ret->nr_links; i++) { 2935 emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image), 2936 image + (branches[i] - (u8 *)rw_image), X86_JNE); 2937 } 2938 } 2939 2940 if (fexit->nr_links) { 2941 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, 2942 false, image, rw_image)) { 2943 ret = -EINVAL; 2944 goto cleanup; 2945 } 2946 } 2947 2948 if (flags & BPF_TRAMP_F_RESTORE_REGS) 2949 restore_regs(m, &prog, regs_off); 2950 2951 /* This needs to be done regardless. If there were fmod_ret programs, 2952 * the return value is only updated on the stack and still needs to be 2953 * restored to R0. 2954 */ 2955 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2956 im->ip_epilogue = image + (prog - (u8 *)rw_image); 2957 /* arg1: mov rdi, im */ 2958 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 2959 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) { 2960 ret = -EINVAL; 2961 goto cleanup; 2962 } 2963 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { 2964 /* Before running the original function, restore the 2965 * tail_call_cnt from stack to rax. 2966 */ 2967 RESTORE_TAIL_CALL_CNT(stack_size); 2968 } 2969 2970 /* restore return value of orig_call or fentry prog back into RAX */ 2971 if (save_ret) 2972 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); 2973 2974 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off); 2975 EMIT1(0xC9); /* leave */ 2976 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 2977 /* skip our return address and return to parent */ 2978 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ 2979 } 2980 emit_return(&prog, image + (prog - (u8 *)rw_image)); 2981 /* Make sure the trampoline generation logic doesn't overflow */ 2982 if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) { 2983 ret = -EFAULT; 2984 goto cleanup; 2985 } 2986 ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY; 2987 2988 cleanup: 2989 kfree(branches); 2990 return ret; 2991 } 2992 2993 void *arch_alloc_bpf_trampoline(unsigned int size) 2994 { 2995 return bpf_prog_pack_alloc(size, jit_fill_hole); 2996 } 2997 2998 void arch_free_bpf_trampoline(void *image, unsigned int size) 2999 { 3000 bpf_prog_pack_free(image, size); 3001 } 3002 3003 int arch_protect_bpf_trampoline(void *image, unsigned int size) 3004 { 3005 return 0; 3006 } 3007 3008 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 3009 const struct btf_func_model *m, u32 flags, 3010 struct bpf_tramp_links *tlinks, 3011 void *func_addr) 3012 { 3013 void *rw_image, *tmp; 3014 int ret; 3015 u32 size = image_end - image; 3016 3017 /* rw_image doesn't need to be in module memory range, so we can 3018 * use kvmalloc. 3019 */ 3020 rw_image = kvmalloc(size, GFP_KERNEL); 3021 if (!rw_image) 3022 return -ENOMEM; 3023 3024 ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m, 3025 flags, tlinks, func_addr); 3026 if (ret < 0) 3027 goto out; 3028 3029 tmp = bpf_arch_text_copy(image, rw_image, size); 3030 if (IS_ERR(tmp)) 3031 ret = PTR_ERR(tmp); 3032 out: 3033 kvfree(rw_image); 3034 return ret; 3035 } 3036 3037 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 3038 struct bpf_tramp_links *tlinks, void *func_addr) 3039 { 3040 struct bpf_tramp_image im; 3041 void *image; 3042 int ret; 3043 3044 /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline(). 3045 * This will NOT cause fragmentation in direct map, as we do not 3046 * call set_memory_*() on this buffer. 3047 * 3048 * We cannot use kvmalloc here, because we need image to be in 3049 * module memory range. 3050 */ 3051 image = bpf_jit_alloc_exec(PAGE_SIZE); 3052 if (!image) 3053 return -ENOMEM; 3054 3055 ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image, 3056 m, flags, tlinks, func_addr); 3057 bpf_jit_free_exec(image); 3058 return ret; 3059 } 3060 3061 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf) 3062 { 3063 u8 *jg_reloc, *prog = *pprog; 3064 int pivot, err, jg_bytes = 1; 3065 s64 jg_offset; 3066 3067 if (a == b) { 3068 /* Leaf node of recursion, i.e. not a range of indices 3069 * anymore. 3070 */ 3071 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 3072 if (!is_simm32(progs[a])) 3073 return -1; 3074 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), 3075 progs[a]); 3076 err = emit_cond_near_jump(&prog, /* je func */ 3077 (void *)progs[a], image + (prog - buf), 3078 X86_JE); 3079 if (err) 3080 return err; 3081 3082 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf)); 3083 3084 *pprog = prog; 3085 return 0; 3086 } 3087 3088 /* Not a leaf node, so we pivot, and recursively descend into 3089 * the lower and upper ranges. 3090 */ 3091 pivot = (b - a) / 2; 3092 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 3093 if (!is_simm32(progs[a + pivot])) 3094 return -1; 3095 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); 3096 3097 if (pivot > 2) { /* jg upper_part */ 3098 /* Require near jump. */ 3099 jg_bytes = 4; 3100 EMIT2_off32(0x0F, X86_JG + 0x10, 0); 3101 } else { 3102 EMIT2(X86_JG, 0); 3103 } 3104 jg_reloc = prog; 3105 3106 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ 3107 progs, image, buf); 3108 if (err) 3109 return err; 3110 3111 /* From Intel 64 and IA-32 Architectures Optimization 3112 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 3113 * Coding Rule 11: All branch targets should be 16-byte 3114 * aligned. 3115 */ 3116 emit_align(&prog, 16); 3117 jg_offset = prog - jg_reloc; 3118 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); 3119 3120 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ 3121 b, progs, image, buf); 3122 if (err) 3123 return err; 3124 3125 *pprog = prog; 3126 return 0; 3127 } 3128 3129 static int cmp_ips(const void *a, const void *b) 3130 { 3131 const s64 *ipa = a; 3132 const s64 *ipb = b; 3133 3134 if (*ipa > *ipb) 3135 return 1; 3136 if (*ipa < *ipb) 3137 return -1; 3138 return 0; 3139 } 3140 3141 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs) 3142 { 3143 u8 *prog = buf; 3144 3145 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); 3146 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf); 3147 } 3148 3149 struct x64_jit_data { 3150 struct bpf_binary_header *rw_header; 3151 struct bpf_binary_header *header; 3152 int *addrs; 3153 u8 *image; 3154 int proglen; 3155 struct jit_context ctx; 3156 }; 3157 3158 #define MAX_PASSES 20 3159 #define PADDING_PASSES (MAX_PASSES - 5) 3160 3161 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 3162 { 3163 struct bpf_binary_header *rw_header = NULL; 3164 struct bpf_binary_header *header = NULL; 3165 struct bpf_prog *tmp, *orig_prog = prog; 3166 struct x64_jit_data *jit_data; 3167 int proglen, oldproglen = 0; 3168 struct jit_context ctx = {}; 3169 bool tmp_blinded = false; 3170 bool extra_pass = false; 3171 bool padding = false; 3172 u8 *rw_image = NULL; 3173 u8 *image = NULL; 3174 int *addrs; 3175 int pass; 3176 int i; 3177 3178 if (!prog->jit_requested) 3179 return orig_prog; 3180 3181 tmp = bpf_jit_blind_constants(prog); 3182 /* 3183 * If blinding was requested and we failed during blinding, 3184 * we must fall back to the interpreter. 3185 */ 3186 if (IS_ERR(tmp)) 3187 return orig_prog; 3188 if (tmp != prog) { 3189 tmp_blinded = true; 3190 prog = tmp; 3191 } 3192 3193 jit_data = prog->aux->jit_data; 3194 if (!jit_data) { 3195 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 3196 if (!jit_data) { 3197 prog = orig_prog; 3198 goto out; 3199 } 3200 prog->aux->jit_data = jit_data; 3201 } 3202 addrs = jit_data->addrs; 3203 if (addrs) { 3204 ctx = jit_data->ctx; 3205 oldproglen = jit_data->proglen; 3206 image = jit_data->image; 3207 header = jit_data->header; 3208 rw_header = jit_data->rw_header; 3209 rw_image = (void *)rw_header + ((void *)image - (void *)header); 3210 extra_pass = true; 3211 padding = true; 3212 goto skip_init_addrs; 3213 } 3214 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); 3215 if (!addrs) { 3216 prog = orig_prog; 3217 goto out_addrs; 3218 } 3219 3220 /* 3221 * Before first pass, make a rough estimation of addrs[] 3222 * each BPF instruction is translated to less than 64 bytes 3223 */ 3224 for (proglen = 0, i = 0; i <= prog->len; i++) { 3225 proglen += 64; 3226 addrs[i] = proglen; 3227 } 3228 ctx.cleanup_addr = proglen; 3229 skip_init_addrs: 3230 3231 /* 3232 * JITed image shrinks with every pass and the loop iterates 3233 * until the image stops shrinking. Very large BPF programs 3234 * may converge on the last pass. In such case do one more 3235 * pass to emit the final image. 3236 */ 3237 for (pass = 0; pass < MAX_PASSES || image; pass++) { 3238 if (!padding && pass >= PADDING_PASSES) 3239 padding = true; 3240 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding); 3241 if (proglen <= 0) { 3242 out_image: 3243 image = NULL; 3244 if (header) { 3245 bpf_arch_text_copy(&header->size, &rw_header->size, 3246 sizeof(rw_header->size)); 3247 bpf_jit_binary_pack_free(header, rw_header); 3248 } 3249 /* Fall back to interpreter mode */ 3250 prog = orig_prog; 3251 if (extra_pass) { 3252 prog->bpf_func = NULL; 3253 prog->jited = 0; 3254 prog->jited_len = 0; 3255 } 3256 goto out_addrs; 3257 } 3258 if (image) { 3259 if (proglen != oldproglen) { 3260 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", 3261 proglen, oldproglen); 3262 goto out_image; 3263 } 3264 break; 3265 } 3266 if (proglen == oldproglen) { 3267 /* 3268 * The number of entries in extable is the number of BPF_LDX 3269 * insns that access kernel memory via "pointer to BTF type". 3270 * The verifier changed their opcode from LDX|MEM|size 3271 * to LDX|PROBE_MEM|size to make JITing easier. 3272 */ 3273 u32 align = __alignof__(struct exception_table_entry); 3274 u32 extable_size = prog->aux->num_exentries * 3275 sizeof(struct exception_table_entry); 3276 3277 /* allocate module memory for x86 insns and extable */ 3278 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size, 3279 &image, align, &rw_header, &rw_image, 3280 jit_fill_hole); 3281 if (!header) { 3282 prog = orig_prog; 3283 goto out_addrs; 3284 } 3285 prog->aux->extable = (void *) image + roundup(proglen, align); 3286 } 3287 oldproglen = proglen; 3288 cond_resched(); 3289 } 3290 3291 if (bpf_jit_enable > 1) 3292 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image); 3293 3294 if (image) { 3295 if (!prog->is_func || extra_pass) { 3296 /* 3297 * bpf_jit_binary_pack_finalize fails in two scenarios: 3298 * 1) header is not pointing to proper module memory; 3299 * 2) the arch doesn't support bpf_arch_text_copy(). 3300 * 3301 * Both cases are serious bugs and justify WARN_ON. 3302 */ 3303 if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) { 3304 /* header has been freed */ 3305 header = NULL; 3306 goto out_image; 3307 } 3308 3309 bpf_tail_call_direct_fixup(prog); 3310 } else { 3311 jit_data->addrs = addrs; 3312 jit_data->ctx = ctx; 3313 jit_data->proglen = proglen; 3314 jit_data->image = image; 3315 jit_data->header = header; 3316 jit_data->rw_header = rw_header; 3317 } 3318 /* 3319 * ctx.prog_offset is used when CFI preambles put code *before* 3320 * the function. See emit_cfi(). For FineIBT specifically this code 3321 * can also be executed and bpf_prog_kallsyms_add() will 3322 * generate an additional symbol to cover this, hence also 3323 * decrement proglen. 3324 */ 3325 prog->bpf_func = (void *)image + cfi_get_offset(); 3326 prog->jited = 1; 3327 prog->jited_len = proglen - cfi_get_offset(); 3328 } else { 3329 prog = orig_prog; 3330 } 3331 3332 if (!image || !prog->is_func || extra_pass) { 3333 if (image) 3334 bpf_prog_fill_jited_linfo(prog, addrs + 1); 3335 out_addrs: 3336 kvfree(addrs); 3337 kfree(jit_data); 3338 prog->aux->jit_data = NULL; 3339 } 3340 out: 3341 if (tmp_blinded) 3342 bpf_jit_prog_release_other(prog, prog == orig_prog ? 3343 tmp : orig_prog); 3344 return prog; 3345 } 3346 3347 bool bpf_jit_supports_kfunc_call(void) 3348 { 3349 return true; 3350 } 3351 3352 void *bpf_arch_text_copy(void *dst, void *src, size_t len) 3353 { 3354 if (text_poke_copy(dst, src, len) == NULL) 3355 return ERR_PTR(-EINVAL); 3356 return dst; 3357 } 3358 3359 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ 3360 bool bpf_jit_supports_subprog_tailcalls(void) 3361 { 3362 return true; 3363 } 3364 3365 void bpf_jit_free(struct bpf_prog *prog) 3366 { 3367 if (prog->jited) { 3368 struct x64_jit_data *jit_data = prog->aux->jit_data; 3369 struct bpf_binary_header *hdr; 3370 3371 /* 3372 * If we fail the final pass of JIT (from jit_subprogs), 3373 * the program may not be finalized yet. Call finalize here 3374 * before freeing it. 3375 */ 3376 if (jit_data) { 3377 bpf_jit_binary_pack_finalize(prog, jit_data->header, 3378 jit_data->rw_header); 3379 kvfree(jit_data->addrs); 3380 kfree(jit_data); 3381 } 3382 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset(); 3383 hdr = bpf_jit_binary_pack_hdr(prog); 3384 bpf_jit_binary_pack_free(hdr, NULL); 3385 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); 3386 } 3387 3388 bpf_prog_unlock_free(prog); 3389 } 3390 3391 bool bpf_jit_supports_exceptions(void) 3392 { 3393 /* We unwind through both kernel frames (starting from within bpf_throw 3394 * call) and BPF frames. Therefore we require ORC unwinder to be enabled 3395 * to walk kernel frames and reach BPF frames in the stack trace. 3396 */ 3397 return IS_ENABLED(CONFIG_UNWINDER_ORC); 3398 } 3399 3400 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie) 3401 { 3402 #if defined(CONFIG_UNWINDER_ORC) 3403 struct unwind_state state; 3404 unsigned long addr; 3405 3406 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state); 3407 unwind_next_frame(&state)) { 3408 addr = unwind_get_return_address(&state); 3409 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp)) 3410 break; 3411 } 3412 return; 3413 #endif 3414 WARN(1, "verification of programs using bpf_throw should have failed\n"); 3415 } 3416 3417 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3418 struct bpf_prog *new, struct bpf_prog *old) 3419 { 3420 u8 *old_addr, *new_addr, *old_bypass_addr; 3421 int ret; 3422 3423 old_bypass_addr = old ? NULL : poke->bypass_addr; 3424 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; 3425 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; 3426 3427 /* 3428 * On program loading or teardown, the program's kallsym entry 3429 * might not be in place, so we use __bpf_arch_text_poke to skip 3430 * the kallsyms check. 3431 */ 3432 if (new) { 3433 ret = __bpf_arch_text_poke(poke->tailcall_target, 3434 BPF_MOD_JUMP, 3435 old_addr, new_addr); 3436 BUG_ON(ret < 0); 3437 if (!old) { 3438 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 3439 BPF_MOD_JUMP, 3440 poke->bypass_addr, 3441 NULL); 3442 BUG_ON(ret < 0); 3443 } 3444 } else { 3445 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 3446 BPF_MOD_JUMP, 3447 old_bypass_addr, 3448 poke->bypass_addr); 3449 BUG_ON(ret < 0); 3450 /* let other CPUs finish the execution of program 3451 * so that it will not possible to expose them 3452 * to invalid nop, stack unwind, nop state 3453 */ 3454 if (!ret) 3455 synchronize_rcu(); 3456 ret = __bpf_arch_text_poke(poke->tailcall_target, 3457 BPF_MOD_JUMP, 3458 old_addr, NULL); 3459 BUG_ON(ret < 0); 3460 } 3461 } 3462 3463 bool bpf_jit_supports_arena(void) 3464 { 3465 return true; 3466 } 3467 3468 bool bpf_jit_supports_ptr_xchg(void) 3469 { 3470 return true; 3471 } 3472