xref: /linux/arch/x86/mm/tlb.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/mmu_context.h>
15 
16 #include <asm/tlbflush.h>
17 #include <asm/mmu_context.h>
18 #include <asm/nospec-branch.h>
19 #include <asm/cache.h>
20 #include <asm/cacheflush.h>
21 #include <asm/apic.h>
22 #include <asm/perf_event.h>
23 
24 #include "mm_internal.h"
25 
26 #ifdef CONFIG_PARAVIRT
27 # define STATIC_NOPV
28 #else
29 # define STATIC_NOPV			static
30 # define __flush_tlb_local		native_flush_tlb_local
31 # define __flush_tlb_global		native_flush_tlb_global
32 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
33 # define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
34 #endif
35 
36 /*
37  *	TLB flushing, formerly SMP-only
38  *		c/o Linus Torvalds.
39  *
40  *	These mean you can really definitely utterly forget about
41  *	writing to user space from interrupts. (Its not allowed anyway).
42  *
43  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
44  *
45  *	More scalable flush, from Andi Kleen
46  *
47  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
48  */
49 
50 /*
51  * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
52  * stored in cpu_tlb_state.last_user_mm_spec.
53  */
54 #define LAST_USER_MM_IBPB	0x1UL
55 #define LAST_USER_MM_L1D_FLUSH	0x2UL
56 #define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
57 
58 /* Bits to set when tlbstate and flush is (re)initialized */
59 #define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
60 
61 /*
62  * The x86 feature is called PCID (Process Context IDentifier). It is similar
63  * to what is traditionally called ASID on the RISC processors.
64  *
65  * We don't use the traditional ASID implementation, where each process/mm gets
66  * its own ASID and flush/restart when we run out of ASID space.
67  *
68  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
69  * that came by on this CPU, allowing cheaper switch_mm between processes on
70  * this CPU.
71  *
72  * We end up with different spaces for different things. To avoid confusion we
73  * use different names for each of them:
74  *
75  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
76  *         the canonical identifier for an mm
77  *
78  * kPCID - [1, TLB_NR_DYN_ASIDS]
79  *         the value we write into the PCID part of CR3; corresponds to the
80  *         ASID+1, because PCID 0 is special.
81  *
82  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
83  *         for KPTI each mm has two address spaces and thus needs two
84  *         PCID values, but we can still do with a single ASID denomination
85  *         for each mm. Corresponds to kPCID + 2048.
86  *
87  */
88 
89 /*
90  * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
91  * user/kernel switches
92  */
93 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
94 # define PTI_CONSUMED_PCID_BITS	1
95 #else
96 # define PTI_CONSUMED_PCID_BITS	0
97 #endif
98 
99 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
100 
101 /*
102  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
103  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
104  * use by non-PCID-aware users.
105  */
106 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
107 
108 /*
109  * Given @asid, compute kPCID
110  */
111 static inline u16 kern_pcid(u16 asid)
112 {
113 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
114 
115 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
116 	/*
117 	 * Make sure that the dynamic ASID space does not conflict with the
118 	 * bit we are using to switch between user and kernel ASIDs.
119 	 */
120 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
121 
122 	/*
123 	 * The ASID being passed in here should have respected the
124 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
125 	 */
126 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
127 #endif
128 	/*
129 	 * The dynamically-assigned ASIDs that get passed in are small
130 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
131 	 * so do not bother to clear it.
132 	 *
133 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
134 	 * PCID bits.  This serves two purposes.  It prevents a nasty
135 	 * situation in which PCID-unaware code saves CR3, loads some other
136 	 * value (with PCID == 0), and then restores CR3, thus corrupting
137 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
138 	 * that any bugs involving loading a PCID-enabled CR3 with
139 	 * CR4.PCIDE off will trigger deterministically.
140 	 */
141 	return asid + 1;
142 }
143 
144 /*
145  * Given @asid, compute uPCID
146  */
147 static inline u16 user_pcid(u16 asid)
148 {
149 	u16 ret = kern_pcid(asid);
150 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
151 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
152 #endif
153 	return ret;
154 }
155 
156 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
157 {
158 	unsigned long cr3 = __sme_pa(pgd) | lam;
159 
160 	if (static_cpu_has(X86_FEATURE_PCID)) {
161 		cr3 |= kern_pcid(asid);
162 	} else {
163 		VM_WARN_ON_ONCE(asid != 0);
164 	}
165 
166 	return cr3;
167 }
168 
169 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
170 					      unsigned long lam)
171 {
172 	/*
173 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
174 	 * might be called during early boot. This should work even after
175 	 * boot because all CPU's the have same capabilities:
176 	 */
177 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
178 	return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
179 }
180 
181 /*
182  * We get here when we do something requiring a TLB invalidation
183  * but could not go invalidate all of the contexts.  We do the
184  * necessary invalidation by clearing out the 'ctx_id' which
185  * forces a TLB flush when the context is loaded.
186  */
187 static void clear_asid_other(void)
188 {
189 	u16 asid;
190 
191 	/*
192 	 * This is only expected to be set if we have disabled
193 	 * kernel _PAGE_GLOBAL pages.
194 	 */
195 	if (!static_cpu_has(X86_FEATURE_PTI)) {
196 		WARN_ON_ONCE(1);
197 		return;
198 	}
199 
200 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
201 		/* Do not need to flush the current asid */
202 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
203 			continue;
204 		/*
205 		 * Make sure the next time we go to switch to
206 		 * this asid, we do a flush:
207 		 */
208 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
209 	}
210 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
211 }
212 
213 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
214 
215 
216 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
217 			    u16 *new_asid, bool *need_flush)
218 {
219 	u16 asid;
220 
221 	if (!static_cpu_has(X86_FEATURE_PCID)) {
222 		*new_asid = 0;
223 		*need_flush = true;
224 		return;
225 	}
226 
227 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
228 		clear_asid_other();
229 
230 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
231 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
232 		    next->context.ctx_id)
233 			continue;
234 
235 		*new_asid = asid;
236 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
237 			       next_tlb_gen);
238 		return;
239 	}
240 
241 	/*
242 	 * We don't currently own an ASID slot on this CPU.
243 	 * Allocate a slot.
244 	 */
245 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
246 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
247 		*new_asid = 0;
248 		this_cpu_write(cpu_tlbstate.next_asid, 1);
249 	}
250 	*need_flush = true;
251 }
252 
253 /*
254  * Given an ASID, flush the corresponding user ASID.  We can delay this
255  * until the next time we switch to it.
256  *
257  * See SWITCH_TO_USER_CR3.
258  */
259 static inline void invalidate_user_asid(u16 asid)
260 {
261 	/* There is no user ASID if address space separation is off */
262 	if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
263 		return;
264 
265 	/*
266 	 * We only have a single ASID if PCID is off and the CR3
267 	 * write will have flushed it.
268 	 */
269 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
270 		return;
271 
272 	if (!static_cpu_has(X86_FEATURE_PTI))
273 		return;
274 
275 	__set_bit(kern_pcid(asid),
276 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
277 }
278 
279 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
280 			    bool need_flush)
281 {
282 	unsigned long new_mm_cr3;
283 
284 	if (need_flush) {
285 		invalidate_user_asid(new_asid);
286 		new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
287 	} else {
288 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
289 	}
290 
291 	/*
292 	 * Caution: many callers of this function expect
293 	 * that load_cr3() is serializing and orders TLB
294 	 * fills with respect to the mm_cpumask writes.
295 	 */
296 	write_cr3(new_mm_cr3);
297 }
298 
299 void leave_mm(void)
300 {
301 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
302 
303 	/*
304 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
305 	 * If so, our callers still expect us to flush the TLB, but there
306 	 * aren't any user TLB entries in init_mm to worry about.
307 	 *
308 	 * This needs to happen before any other sanity checks due to
309 	 * intel_idle's shenanigans.
310 	 */
311 	if (loaded_mm == &init_mm)
312 		return;
313 
314 	/* Warn if we're not lazy. */
315 	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
316 
317 	switch_mm(NULL, &init_mm, NULL);
318 }
319 EXPORT_SYMBOL_GPL(leave_mm);
320 
321 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
322 	       struct task_struct *tsk)
323 {
324 	unsigned long flags;
325 
326 	local_irq_save(flags);
327 	switch_mm_irqs_off(NULL, next, tsk);
328 	local_irq_restore(flags);
329 }
330 
331 /*
332  * Invoked from return to user/guest by a task that opted-in to L1D
333  * flushing but ended up running on an SMT enabled core due to wrong
334  * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
335  * contract which this task requested.
336  */
337 static void l1d_flush_force_sigbus(struct callback_head *ch)
338 {
339 	force_sig(SIGBUS);
340 }
341 
342 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
343 				struct task_struct *next)
344 {
345 	/* Flush L1D if the outgoing task requests it */
346 	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
347 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
348 
349 	/* Check whether the incoming task opted in for L1D flush */
350 	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
351 		return;
352 
353 	/*
354 	 * Validate that it is not running on an SMT sibling as this would
355 	 * make the exercise pointless because the siblings share L1D. If
356 	 * it runs on a SMT sibling, notify it with SIGBUS on return to
357 	 * user/guest
358 	 */
359 	if (this_cpu_read(cpu_info.smt_active)) {
360 		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
361 		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
362 		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
363 	}
364 }
365 
366 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
367 {
368 	unsigned long next_tif = read_task_thread_flags(next);
369 	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
370 
371 	/*
372 	 * Ensure that the bit shift above works as expected and the two flags
373 	 * end up in bit 0 and 1.
374 	 */
375 	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
376 
377 	return (unsigned long)next->mm | spec_bits;
378 }
379 
380 static void cond_mitigation(struct task_struct *next)
381 {
382 	unsigned long prev_mm, next_mm;
383 
384 	if (!next || !next->mm)
385 		return;
386 
387 	next_mm = mm_mangle_tif_spec_bits(next);
388 	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
389 
390 	/*
391 	 * Avoid user/user BTB poisoning by flushing the branch predictor
392 	 * when switching between processes. This stops one process from
393 	 * doing Spectre-v2 attacks on another.
394 	 *
395 	 * Both, the conditional and the always IBPB mode use the mm
396 	 * pointer to avoid the IBPB when switching between tasks of the
397 	 * same process. Using the mm pointer instead of mm->context.ctx_id
398 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
399 	 * less impossible to control by an attacker. Aside of that it
400 	 * would only affect the first schedule so the theoretically
401 	 * exposed data is not really interesting.
402 	 */
403 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
404 		/*
405 		 * This is a bit more complex than the always mode because
406 		 * it has to handle two cases:
407 		 *
408 		 * 1) Switch from a user space task (potential attacker)
409 		 *    which has TIF_SPEC_IB set to a user space task
410 		 *    (potential victim) which has TIF_SPEC_IB not set.
411 		 *
412 		 * 2) Switch from a user space task (potential attacker)
413 		 *    which has TIF_SPEC_IB not set to a user space task
414 		 *    (potential victim) which has TIF_SPEC_IB set.
415 		 *
416 		 * This could be done by unconditionally issuing IBPB when
417 		 * a task which has TIF_SPEC_IB set is either scheduled in
418 		 * or out. Though that results in two flushes when:
419 		 *
420 		 * - the same user space task is scheduled out and later
421 		 *   scheduled in again and only a kernel thread ran in
422 		 *   between.
423 		 *
424 		 * - a user space task belonging to the same process is
425 		 *   scheduled in after a kernel thread ran in between
426 		 *
427 		 * - a user space task belonging to the same process is
428 		 *   scheduled in immediately.
429 		 *
430 		 * Optimize this with reasonably small overhead for the
431 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
432 		 * pointer of the incoming task which is stored in
433 		 * cpu_tlbstate.last_user_mm_spec for comparison.
434 		 *
435 		 * Issue IBPB only if the mm's are different and one or
436 		 * both have the IBPB bit set.
437 		 */
438 		if (next_mm != prev_mm &&
439 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
440 			indirect_branch_prediction_barrier();
441 	}
442 
443 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
444 		/*
445 		 * Only flush when switching to a user space task with a
446 		 * different context than the user space task which ran
447 		 * last on this CPU.
448 		 */
449 		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
450 					(unsigned long)next->mm)
451 			indirect_branch_prediction_barrier();
452 	}
453 
454 	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
455 		/*
456 		 * Flush L1D when the outgoing task requested it and/or
457 		 * check whether the incoming task requested L1D flushing
458 		 * and ended up on an SMT sibling.
459 		 */
460 		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
461 			l1d_flush_evaluate(prev_mm, next_mm, next);
462 	}
463 
464 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
465 }
466 
467 #ifdef CONFIG_PERF_EVENTS
468 static inline void cr4_update_pce_mm(struct mm_struct *mm)
469 {
470 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
471 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
472 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
473 		/*
474 		 * Clear the existing dirty counters to
475 		 * prevent the leak for an RDPMC task.
476 		 */
477 		perf_clear_dirty_counters();
478 		cr4_set_bits_irqsoff(X86_CR4_PCE);
479 	} else
480 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
481 }
482 
483 void cr4_update_pce(void *ignored)
484 {
485 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
486 }
487 
488 #else
489 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
490 #endif
491 
492 /*
493  * This optimizes when not actually switching mm's.  Some architectures use the
494  * 'unused' argument for this optimization, but x86 must use
495  * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
496  * 'current->active_mm' up to date.
497  */
498 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
499 			struct task_struct *tsk)
500 {
501 	struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
502 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
503 	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
504 	unsigned cpu = smp_processor_id();
505 	unsigned long new_lam;
506 	u64 next_tlb_gen;
507 	bool need_flush;
508 	u16 new_asid;
509 
510 	/* We don't want flush_tlb_func() to run concurrently with us. */
511 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
512 		WARN_ON_ONCE(!irqs_disabled());
513 
514 	/*
515 	 * Verify that CR3 is what we think it is.  This will catch
516 	 * hypothetical buggy code that directly switches to swapper_pg_dir
517 	 * without going through leave_mm() / switch_mm_irqs_off() or that
518 	 * does something like write_cr3(read_cr3_pa()).
519 	 *
520 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
521 	 * isn't free.
522 	 */
523 #ifdef CONFIG_DEBUG_VM
524 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
525 						   tlbstate_lam_cr3_mask()))) {
526 		/*
527 		 * If we were to BUG here, we'd be very likely to kill
528 		 * the system so hard that we don't see the call trace.
529 		 * Try to recover instead by ignoring the error and doing
530 		 * a global flush to minimize the chance of corruption.
531 		 *
532 		 * (This is far from being a fully correct recovery.
533 		 *  Architecturally, the CPU could prefetch something
534 		 *  back into an incorrect ASID slot and leave it there
535 		 *  to cause trouble down the road.  It's better than
536 		 *  nothing, though.)
537 		 */
538 		__flush_tlb_all();
539 	}
540 #endif
541 	if (was_lazy)
542 		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
543 
544 	/*
545 	 * The membarrier system call requires a full memory barrier and
546 	 * core serialization before returning to user-space, after
547 	 * storing to rq->curr, when changing mm.  This is because
548 	 * membarrier() sends IPIs to all CPUs that are in the target mm
549 	 * to make them issue memory barriers.  However, if another CPU
550 	 * switches to/from the target mm concurrently with
551 	 * membarrier(), it can cause that CPU not to receive an IPI
552 	 * when it really should issue a memory barrier.  Writing to CR3
553 	 * provides that full memory barrier and core serializing
554 	 * instruction.
555 	 */
556 	if (prev == next) {
557 		/* Not actually switching mm's */
558 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
559 			   next->context.ctx_id);
560 
561 		/*
562 		 * If this races with another thread that enables lam, 'new_lam'
563 		 * might not match tlbstate_lam_cr3_mask().
564 		 */
565 
566 		/*
567 		 * Even in lazy TLB mode, the CPU should stay set in the
568 		 * mm_cpumask. The TLB shootdown code can figure out from
569 		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
570 		 */
571 		if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ON_ONCE(prev != &init_mm &&
572 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
573 			cpumask_set_cpu(cpu, mm_cpumask(next));
574 
575 		/*
576 		 * If the CPU is not in lazy TLB mode, we are just switching
577 		 * from one thread in a process to another thread in the same
578 		 * process. No TLB flush required.
579 		 */
580 		if (!was_lazy)
581 			return;
582 
583 		/*
584 		 * Read the tlb_gen to check whether a flush is needed.
585 		 * If the TLB is up to date, just use it.
586 		 * The barrier synchronizes with the tlb_gen increment in
587 		 * the TLB shootdown code.
588 		 */
589 		smp_mb();
590 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
591 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
592 				next_tlb_gen)
593 			return;
594 
595 		/*
596 		 * TLB contents went out of date while we were in lazy
597 		 * mode. Fall through to the TLB switching code below.
598 		 */
599 		new_asid = prev_asid;
600 		need_flush = true;
601 	} else {
602 		/*
603 		 * Apply process to process speculation vulnerability
604 		 * mitigations if applicable.
605 		 */
606 		cond_mitigation(tsk);
607 
608 		/*
609 		 * Stop remote flushes for the previous mm.
610 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
611 		 * but the bitmap manipulation can cause cache line contention.
612 		 */
613 		if (prev != &init_mm) {
614 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
615 						mm_cpumask(prev)));
616 			cpumask_clear_cpu(cpu, mm_cpumask(prev));
617 		}
618 
619 		/* Start receiving IPIs and then read tlb_gen (and LAM below) */
620 		if (next != &init_mm)
621 			cpumask_set_cpu(cpu, mm_cpumask(next));
622 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
623 
624 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
625 
626 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
627 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
628 		barrier();
629 	}
630 
631 	new_lam = mm_lam_cr3_mask(next);
632 	if (need_flush) {
633 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
634 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
635 		load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
636 
637 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
638 	} else {
639 		/* The new ASID is already up to date. */
640 		load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
641 
642 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
643 	}
644 
645 	/* Make sure we write CR3 before loaded_mm. */
646 	barrier();
647 
648 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
649 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
650 	cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
651 
652 	if (next != prev) {
653 		cr4_update_pce_mm(next);
654 		switch_ldt(prev, next);
655 	}
656 }
657 
658 /*
659  * Please ignore the name of this function.  It should be called
660  * switch_to_kernel_thread().
661  *
662  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
663  * kernel thread or other context without an mm.  Acceptable implementations
664  * include doing nothing whatsoever, switching to init_mm, or various clever
665  * lazy tricks to try to minimize TLB flushes.
666  *
667  * The scheduler reserves the right to call enter_lazy_tlb() several times
668  * in a row.  It will notify us that we're going back to a real mm by
669  * calling switch_mm_irqs_off().
670  */
671 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
672 {
673 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
674 		return;
675 
676 	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
677 }
678 
679 /*
680  * Call this when reinitializing a CPU.  It fixes the following potential
681  * problems:
682  *
683  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
684  *   because the CPU was taken down and came back up with CR3's PCID
685  *   bits clear.  CPU hotplug can do this.
686  *
687  * - The TLB contains junk in slots corresponding to inactive ASIDs.
688  *
689  * - The CPU went so far out to lunch that it may have missed a TLB
690  *   flush.
691  */
692 void initialize_tlbstate_and_flush(void)
693 {
694 	int i;
695 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
696 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
697 	unsigned long lam = mm_lam_cr3_mask(mm);
698 	unsigned long cr3 = __read_cr3();
699 
700 	/* Assert that CR3 already references the right mm. */
701 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
702 
703 	/* LAM expected to be disabled */
704 	WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
705 	WARN_ON(lam);
706 
707 	/*
708 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
709 	 * doesn't work like other CR4 bits because it can only be set from
710 	 * long mode.)
711 	 */
712 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
713 		!(cr4_read_shadow() & X86_CR4_PCIDE));
714 
715 	/* Disable LAM, force ASID 0 and force a TLB flush. */
716 	write_cr3(build_cr3(mm->pgd, 0, 0));
717 
718 	/* Reinitialize tlbstate. */
719 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
720 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
721 	this_cpu_write(cpu_tlbstate.next_asid, 1);
722 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
723 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
724 	cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
725 
726 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
727 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
728 }
729 
730 /*
731  * flush_tlb_func()'s memory ordering requirement is that any
732  * TLB fills that happen after we flush the TLB are ordered after we
733  * read active_mm's tlb_gen.  We don't need any explicit barriers
734  * because all x86 flush operations are serializing and the
735  * atomic64_read operation won't be reordered by the compiler.
736  */
737 static void flush_tlb_func(void *info)
738 {
739 	/*
740 	 * We have three different tlb_gen values in here.  They are:
741 	 *
742 	 * - mm_tlb_gen:     the latest generation.
743 	 * - local_tlb_gen:  the generation that this CPU has already caught
744 	 *                   up to.
745 	 * - f->new_tlb_gen: the generation that the requester of the flush
746 	 *                   wants us to catch up to.
747 	 */
748 	const struct flush_tlb_info *f = info;
749 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
750 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
751 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
752 	bool local = smp_processor_id() == f->initiating_cpu;
753 	unsigned long nr_invalidate = 0;
754 	u64 mm_tlb_gen;
755 
756 	/* This code cannot presently handle being reentered. */
757 	VM_WARN_ON(!irqs_disabled());
758 
759 	if (!local) {
760 		inc_irq_stat(irq_tlb_count);
761 		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
762 
763 		/* Can only happen on remote CPUs */
764 		if (f->mm && f->mm != loaded_mm)
765 			return;
766 	}
767 
768 	if (unlikely(loaded_mm == &init_mm))
769 		return;
770 
771 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
772 		   loaded_mm->context.ctx_id);
773 
774 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
775 		/*
776 		 * We're in lazy mode.  We need to at least flush our
777 		 * paging-structure cache to avoid speculatively reading
778 		 * garbage into our TLB.  Since switching to init_mm is barely
779 		 * slower than a minimal flush, just switch to init_mm.
780 		 *
781 		 * This should be rare, with native_flush_tlb_multi() skipping
782 		 * IPIs to lazy TLB mode CPUs.
783 		 */
784 		switch_mm_irqs_off(NULL, &init_mm, NULL);
785 		return;
786 	}
787 
788 	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
789 		     f->new_tlb_gen <= local_tlb_gen)) {
790 		/*
791 		 * The TLB is already up to date in respect to f->new_tlb_gen.
792 		 * While the core might be still behind mm_tlb_gen, checking
793 		 * mm_tlb_gen unnecessarily would have negative caching effects
794 		 * so avoid it.
795 		 */
796 		return;
797 	}
798 
799 	/*
800 	 * Defer mm_tlb_gen reading as long as possible to avoid cache
801 	 * contention.
802 	 */
803 	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
804 
805 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
806 		/*
807 		 * There's nothing to do: we're already up to date.  This can
808 		 * happen if two concurrent flushes happen -- the first flush to
809 		 * be handled can catch us all the way up, leaving no work for
810 		 * the second flush.
811 		 */
812 		goto done;
813 	}
814 
815 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
816 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
817 
818 	/*
819 	 * If we get to this point, we know that our TLB is out of date.
820 	 * This does not strictly imply that we need to flush (it's
821 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
822 	 * going to need to flush in the very near future, so we might
823 	 * as well get it over with.
824 	 *
825 	 * The only question is whether to do a full or partial flush.
826 	 *
827 	 * We do a partial flush if requested and two extra conditions
828 	 * are met:
829 	 *
830 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
831 	 *    we've always done all needed flushes to catch up to
832 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
833 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
834 	 *    us up to date for tlb_gen 3 is the partial flush we're
835 	 *    processing.
836 	 *
837 	 *    As an example of why this check is needed, suppose that there
838 	 *    are two concurrent flushes.  The first is a full flush that
839 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
840 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
841 	 *    processed on this CPU in reverse order, we'll see
842 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
843 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
844 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
845 	 *    1 without the full flush that's needed for tlb_gen 2.
846 	 *
847 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
848 	 *    Partial TLB flushes are not all that much cheaper than full TLB
849 	 *    flushes, so it seems unlikely that it would be a performance win
850 	 *    to do a partial flush if that won't bring our TLB fully up to
851 	 *    date.  By doing a full flush instead, we can increase
852 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
853 	 *    avoid another flush in the very near future.
854 	 */
855 	if (f->end != TLB_FLUSH_ALL &&
856 	    f->new_tlb_gen == local_tlb_gen + 1 &&
857 	    f->new_tlb_gen == mm_tlb_gen) {
858 		/* Partial flush */
859 		unsigned long addr = f->start;
860 
861 		/* Partial flush cannot have invalid generations */
862 		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
863 
864 		/* Partial flush must have valid mm */
865 		VM_WARN_ON(f->mm == NULL);
866 
867 		nr_invalidate = (f->end - f->start) >> f->stride_shift;
868 
869 		while (addr < f->end) {
870 			flush_tlb_one_user(addr);
871 			addr += 1UL << f->stride_shift;
872 		}
873 		if (local)
874 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
875 	} else {
876 		/* Full flush. */
877 		nr_invalidate = TLB_FLUSH_ALL;
878 
879 		flush_tlb_local();
880 		if (local)
881 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
882 	}
883 
884 	/* Both paths above update our state to mm_tlb_gen. */
885 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
886 
887 	/* Tracing is done in a unified manner to reduce the code size */
888 done:
889 	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
890 				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
891 						  TLB_LOCAL_MM_SHOOTDOWN,
892 			nr_invalidate);
893 }
894 
895 static bool tlb_is_not_lazy(int cpu, void *data)
896 {
897 	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
898 }
899 
900 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
901 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
902 
903 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
904 					 const struct flush_tlb_info *info)
905 {
906 	/*
907 	 * Do accounting and tracing. Note that there are (and have always been)
908 	 * cases in which a remote TLB flush will be traced, but eventually
909 	 * would not happen.
910 	 */
911 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
912 	if (info->end == TLB_FLUSH_ALL)
913 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
914 	else
915 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
916 				(info->end - info->start) >> PAGE_SHIFT);
917 
918 	/*
919 	 * If no page tables were freed, we can skip sending IPIs to
920 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
921 	 * at the next context switch.
922 	 *
923 	 * However, if page tables are getting freed, we need to send the
924 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
925 	 * up on the new contents of what used to be page tables, while
926 	 * doing a speculative memory access.
927 	 */
928 	if (info->freed_tables)
929 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
930 	else
931 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
932 				(void *)info, 1, cpumask);
933 }
934 
935 void flush_tlb_multi(const struct cpumask *cpumask,
936 		      const struct flush_tlb_info *info)
937 {
938 	__flush_tlb_multi(cpumask, info);
939 }
940 
941 /*
942  * See Documentation/arch/x86/tlb.rst for details.  We choose 33
943  * because it is large enough to cover the vast majority (at
944  * least 95%) of allocations, and is small enough that we are
945  * confident it will not cause too much overhead.  Each single
946  * flush is about 100 ns, so this caps the maximum overhead at
947  * _about_ 3,000 ns.
948  *
949  * This is in units of pages.
950  */
951 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
952 
953 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
954 
955 #ifdef CONFIG_DEBUG_VM
956 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
957 #endif
958 
959 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
960 			unsigned long start, unsigned long end,
961 			unsigned int stride_shift, bool freed_tables,
962 			u64 new_tlb_gen)
963 {
964 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
965 
966 #ifdef CONFIG_DEBUG_VM
967 	/*
968 	 * Ensure that the following code is non-reentrant and flush_tlb_info
969 	 * is not overwritten. This means no TLB flushing is initiated by
970 	 * interrupt handlers and machine-check exception handlers.
971 	 */
972 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
973 #endif
974 
975 	info->start		= start;
976 	info->end		= end;
977 	info->mm		= mm;
978 	info->stride_shift	= stride_shift;
979 	info->freed_tables	= freed_tables;
980 	info->new_tlb_gen	= new_tlb_gen;
981 	info->initiating_cpu	= smp_processor_id();
982 
983 	return info;
984 }
985 
986 static void put_flush_tlb_info(void)
987 {
988 #ifdef CONFIG_DEBUG_VM
989 	/* Complete reentrancy prevention checks */
990 	barrier();
991 	this_cpu_dec(flush_tlb_info_idx);
992 #endif
993 }
994 
995 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
996 				unsigned long end, unsigned int stride_shift,
997 				bool freed_tables)
998 {
999 	struct flush_tlb_info *info;
1000 	u64 new_tlb_gen;
1001 	int cpu;
1002 
1003 	cpu = get_cpu();
1004 
1005 	/* Should we flush just the requested range? */
1006 	if ((end == TLB_FLUSH_ALL) ||
1007 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1008 		start = 0;
1009 		end = TLB_FLUSH_ALL;
1010 	}
1011 
1012 	/* This is also a barrier that synchronizes with switch_mm(). */
1013 	new_tlb_gen = inc_mm_tlb_gen(mm);
1014 
1015 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1016 				  new_tlb_gen);
1017 
1018 	/*
1019 	 * flush_tlb_multi() is not optimized for the common case in which only
1020 	 * a local TLB flush is needed. Optimize this use-case by calling
1021 	 * flush_tlb_func_local() directly in this case.
1022 	 */
1023 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1024 		flush_tlb_multi(mm_cpumask(mm), info);
1025 	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1026 		lockdep_assert_irqs_enabled();
1027 		local_irq_disable();
1028 		flush_tlb_func(info);
1029 		local_irq_enable();
1030 	}
1031 
1032 	put_flush_tlb_info();
1033 	put_cpu();
1034 	mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1035 }
1036 
1037 
1038 static void do_flush_tlb_all(void *info)
1039 {
1040 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1041 	__flush_tlb_all();
1042 }
1043 
1044 void flush_tlb_all(void)
1045 {
1046 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1047 	on_each_cpu(do_flush_tlb_all, NULL, 1);
1048 }
1049 
1050 static void do_kernel_range_flush(void *info)
1051 {
1052 	struct flush_tlb_info *f = info;
1053 	unsigned long addr;
1054 
1055 	/* flush range by one by one 'invlpg' */
1056 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1057 		flush_tlb_one_kernel(addr);
1058 }
1059 
1060 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1061 {
1062 	/* Balance as user space task's flush, a bit conservative */
1063 	if (end == TLB_FLUSH_ALL ||
1064 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1065 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1066 	} else {
1067 		struct flush_tlb_info *info;
1068 
1069 		preempt_disable();
1070 		info = get_flush_tlb_info(NULL, start, end, 0, false,
1071 					  TLB_GENERATION_INVALID);
1072 
1073 		on_each_cpu(do_kernel_range_flush, info, 1);
1074 
1075 		put_flush_tlb_info();
1076 		preempt_enable();
1077 	}
1078 }
1079 
1080 /*
1081  * This can be used from process context to figure out what the value of
1082  * CR3 is without needing to do a (slow) __read_cr3().
1083  *
1084  * It's intended to be used for code like KVM that sneakily changes CR3
1085  * and needs to restore it.  It needs to be used very carefully.
1086  */
1087 unsigned long __get_current_cr3_fast(void)
1088 {
1089 	unsigned long cr3 =
1090 		build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1091 			  this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1092 			  tlbstate_lam_cr3_mask());
1093 
1094 	/* For now, be very restrictive about when this can be called. */
1095 	VM_WARN_ON(in_nmi() || preemptible());
1096 
1097 	VM_BUG_ON(cr3 != __read_cr3());
1098 	return cr3;
1099 }
1100 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1101 
1102 /*
1103  * Flush one page in the kernel mapping
1104  */
1105 void flush_tlb_one_kernel(unsigned long addr)
1106 {
1107 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1108 
1109 	/*
1110 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1111 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1112 	 * use PCID if we also use global PTEs for the kernel mapping, and
1113 	 * INVLPG flushes global translations across all address spaces.
1114 	 *
1115 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1116 	 * __flush_tlb_one_user() will flush the given address for the current
1117 	 * kernel address space and for its usermode counterpart, but it does
1118 	 * not flush it for other address spaces.
1119 	 */
1120 	flush_tlb_one_user(addr);
1121 
1122 	if (!static_cpu_has(X86_FEATURE_PTI))
1123 		return;
1124 
1125 	/*
1126 	 * See above.  We need to propagate the flush to all other address
1127 	 * spaces.  In principle, we only need to propagate it to kernelmode
1128 	 * address spaces, but the extra bookkeeping we would need is not
1129 	 * worth it.
1130 	 */
1131 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1132 }
1133 
1134 /*
1135  * Flush one page in the user mapping
1136  */
1137 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1138 {
1139 	u32 loaded_mm_asid;
1140 	bool cpu_pcide;
1141 
1142 	/* Flush 'addr' from the kernel PCID: */
1143 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1144 
1145 	/* If PTI is off there is no user PCID and nothing to flush. */
1146 	if (!static_cpu_has(X86_FEATURE_PTI))
1147 		return;
1148 
1149 	loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1150 	cpu_pcide      = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1151 
1152 	/*
1153 	 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0.  Check
1154 	 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1155 	 * #GP's even if called before CR4.PCIDE has been initialized.
1156 	 */
1157 	if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1158 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1159 	else
1160 		invalidate_user_asid(loaded_mm_asid);
1161 }
1162 
1163 void flush_tlb_one_user(unsigned long addr)
1164 {
1165 	__flush_tlb_one_user(addr);
1166 }
1167 
1168 /*
1169  * Flush everything
1170  */
1171 STATIC_NOPV void native_flush_tlb_global(void)
1172 {
1173 	unsigned long flags;
1174 
1175 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1176 		/*
1177 		 * Using INVPCID is considerably faster than a pair of writes
1178 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1179 		 *
1180 		 * Note, this works with CR4.PCIDE=0 or 1.
1181 		 */
1182 		invpcid_flush_all();
1183 		return;
1184 	}
1185 
1186 	/*
1187 	 * Read-modify-write to CR4 - protect it from preemption and
1188 	 * from interrupts. (Use the raw variant because this code can
1189 	 * be called from deep inside debugging code.)
1190 	 */
1191 	raw_local_irq_save(flags);
1192 
1193 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1194 
1195 	raw_local_irq_restore(flags);
1196 }
1197 
1198 /*
1199  * Flush the entire current user mapping
1200  */
1201 STATIC_NOPV void native_flush_tlb_local(void)
1202 {
1203 	/*
1204 	 * Preemption or interrupts must be disabled to protect the access
1205 	 * to the per CPU variable and to prevent being preempted between
1206 	 * read_cr3() and write_cr3().
1207 	 */
1208 	WARN_ON_ONCE(preemptible());
1209 
1210 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1211 
1212 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1213 	native_write_cr3(__native_read_cr3());
1214 }
1215 
1216 void flush_tlb_local(void)
1217 {
1218 	__flush_tlb_local();
1219 }
1220 
1221 /*
1222  * Flush everything
1223  */
1224 void __flush_tlb_all(void)
1225 {
1226 	/*
1227 	 * This is to catch users with enabled preemption and the PGE feature
1228 	 * and don't trigger the warning in __native_flush_tlb().
1229 	 */
1230 	VM_WARN_ON_ONCE(preemptible());
1231 
1232 	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1233 		__flush_tlb_global();
1234 	} else {
1235 		/*
1236 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1237 		 */
1238 		flush_tlb_local();
1239 	}
1240 }
1241 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1242 
1243 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1244 {
1245 	struct flush_tlb_info *info;
1246 
1247 	int cpu = get_cpu();
1248 
1249 	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1250 				  TLB_GENERATION_INVALID);
1251 	/*
1252 	 * flush_tlb_multi() is not optimized for the common case in which only
1253 	 * a local TLB flush is needed. Optimize this use-case by calling
1254 	 * flush_tlb_func_local() directly in this case.
1255 	 */
1256 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1257 		flush_tlb_multi(&batch->cpumask, info);
1258 	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1259 		lockdep_assert_irqs_enabled();
1260 		local_irq_disable();
1261 		flush_tlb_func(info);
1262 		local_irq_enable();
1263 	}
1264 
1265 	cpumask_clear(&batch->cpumask);
1266 
1267 	put_flush_tlb_info();
1268 	put_cpu();
1269 }
1270 
1271 /*
1272  * Blindly accessing user memory from NMI context can be dangerous
1273  * if we're in the middle of switching the current user task or
1274  * switching the loaded mm.  It can also be dangerous if we
1275  * interrupted some kernel code that was temporarily using a
1276  * different mm.
1277  */
1278 bool nmi_uaccess_okay(void)
1279 {
1280 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1281 	struct mm_struct *current_mm = current->mm;
1282 
1283 	VM_WARN_ON_ONCE(!loaded_mm);
1284 
1285 	/*
1286 	 * The condition we want to check is
1287 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1288 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1289 	 * is supposed to be reasonably fast.
1290 	 *
1291 	 * Instead, we check the almost equivalent but somewhat conservative
1292 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1293 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1294 	 */
1295 	if (loaded_mm != current_mm)
1296 		return false;
1297 
1298 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1299 
1300 	return true;
1301 }
1302 
1303 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1304 			     size_t count, loff_t *ppos)
1305 {
1306 	char buf[32];
1307 	unsigned int len;
1308 
1309 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1310 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1311 }
1312 
1313 static ssize_t tlbflush_write_file(struct file *file,
1314 		 const char __user *user_buf, size_t count, loff_t *ppos)
1315 {
1316 	char buf[32];
1317 	ssize_t len;
1318 	int ceiling;
1319 
1320 	len = min(count, sizeof(buf) - 1);
1321 	if (copy_from_user(buf, user_buf, len))
1322 		return -EFAULT;
1323 
1324 	buf[len] = '\0';
1325 	if (kstrtoint(buf, 0, &ceiling))
1326 		return -EINVAL;
1327 
1328 	if (ceiling < 0)
1329 		return -EINVAL;
1330 
1331 	tlb_single_page_flush_ceiling = ceiling;
1332 	return count;
1333 }
1334 
1335 static const struct file_operations fops_tlbflush = {
1336 	.read = tlbflush_read_file,
1337 	.write = tlbflush_write_file,
1338 	.llseek = default_llseek,
1339 };
1340 
1341 static int __init create_tlb_single_page_flush_ceiling(void)
1342 {
1343 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1344 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1345 	return 0;
1346 }
1347 late_initcall(create_tlb_single_page_flush_ceiling);
1348