1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 #include <linux/sched/smt.h> 12 #include <linux/task_work.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/mmu_context.h> 15 16 #include <asm/tlbflush.h> 17 #include <asm/mmu_context.h> 18 #include <asm/nospec-branch.h> 19 #include <asm/cache.h> 20 #include <asm/cacheflush.h> 21 #include <asm/apic.h> 22 #include <asm/perf_event.h> 23 24 #include "mm_internal.h" 25 26 #ifdef CONFIG_PARAVIRT 27 # define STATIC_NOPV 28 #else 29 # define STATIC_NOPV static 30 # define __flush_tlb_local native_flush_tlb_local 31 # define __flush_tlb_global native_flush_tlb_global 32 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 33 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) 34 #endif 35 36 /* 37 * TLB flushing, formerly SMP-only 38 * c/o Linus Torvalds. 39 * 40 * These mean you can really definitely utterly forget about 41 * writing to user space from interrupts. (Its not allowed anyway). 42 * 43 * Optimizations Manfred Spraul <manfred@colorfullife.com> 44 * 45 * More scalable flush, from Andi Kleen 46 * 47 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 48 */ 49 50 /* 51 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is 52 * stored in cpu_tlb_state.last_user_mm_spec. 53 */ 54 #define LAST_USER_MM_IBPB 0x1UL 55 #define LAST_USER_MM_L1D_FLUSH 0x2UL 56 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH) 57 58 /* Bits to set when tlbstate and flush is (re)initialized */ 59 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB 60 61 /* 62 * The x86 feature is called PCID (Process Context IDentifier). It is similar 63 * to what is traditionally called ASID on the RISC processors. 64 * 65 * We don't use the traditional ASID implementation, where each process/mm gets 66 * its own ASID and flush/restart when we run out of ASID space. 67 * 68 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 69 * that came by on this CPU, allowing cheaper switch_mm between processes on 70 * this CPU. 71 * 72 * We end up with different spaces for different things. To avoid confusion we 73 * use different names for each of them: 74 * 75 * ASID - [0, TLB_NR_DYN_ASIDS-1] 76 * the canonical identifier for an mm 77 * 78 * kPCID - [1, TLB_NR_DYN_ASIDS] 79 * the value we write into the PCID part of CR3; corresponds to the 80 * ASID+1, because PCID 0 is special. 81 * 82 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 83 * for KPTI each mm has two address spaces and thus needs two 84 * PCID values, but we can still do with a single ASID denomination 85 * for each mm. Corresponds to kPCID + 2048. 86 * 87 */ 88 89 /* 90 * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for 91 * user/kernel switches 92 */ 93 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 94 # define PTI_CONSUMED_PCID_BITS 1 95 #else 96 # define PTI_CONSUMED_PCID_BITS 0 97 #endif 98 99 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 100 101 /* 102 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 103 * for them being zero-based. Another -1 is because PCID 0 is reserved for 104 * use by non-PCID-aware users. 105 */ 106 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 107 108 /* 109 * Given @asid, compute kPCID 110 */ 111 static inline u16 kern_pcid(u16 asid) 112 { 113 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 114 115 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 116 /* 117 * Make sure that the dynamic ASID space does not conflict with the 118 * bit we are using to switch between user and kernel ASIDs. 119 */ 120 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 121 122 /* 123 * The ASID being passed in here should have respected the 124 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 125 */ 126 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 127 #endif 128 /* 129 * The dynamically-assigned ASIDs that get passed in are small 130 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 131 * so do not bother to clear it. 132 * 133 * If PCID is on, ASID-aware code paths put the ASID+1 into the 134 * PCID bits. This serves two purposes. It prevents a nasty 135 * situation in which PCID-unaware code saves CR3, loads some other 136 * value (with PCID == 0), and then restores CR3, thus corrupting 137 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 138 * that any bugs involving loading a PCID-enabled CR3 with 139 * CR4.PCIDE off will trigger deterministically. 140 */ 141 return asid + 1; 142 } 143 144 /* 145 * Given @asid, compute uPCID 146 */ 147 static inline u16 user_pcid(u16 asid) 148 { 149 u16 ret = kern_pcid(asid); 150 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 151 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 152 #endif 153 return ret; 154 } 155 156 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam) 157 { 158 unsigned long cr3 = __sme_pa(pgd) | lam; 159 160 if (static_cpu_has(X86_FEATURE_PCID)) { 161 cr3 |= kern_pcid(asid); 162 } else { 163 VM_WARN_ON_ONCE(asid != 0); 164 } 165 166 return cr3; 167 } 168 169 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid, 170 unsigned long lam) 171 { 172 /* 173 * Use boot_cpu_has() instead of this_cpu_has() as this function 174 * might be called during early boot. This should work even after 175 * boot because all CPU's the have same capabilities: 176 */ 177 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 178 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH; 179 } 180 181 /* 182 * We get here when we do something requiring a TLB invalidation 183 * but could not go invalidate all of the contexts. We do the 184 * necessary invalidation by clearing out the 'ctx_id' which 185 * forces a TLB flush when the context is loaded. 186 */ 187 static void clear_asid_other(void) 188 { 189 u16 asid; 190 191 /* 192 * This is only expected to be set if we have disabled 193 * kernel _PAGE_GLOBAL pages. 194 */ 195 if (!static_cpu_has(X86_FEATURE_PTI)) { 196 WARN_ON_ONCE(1); 197 return; 198 } 199 200 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 201 /* Do not need to flush the current asid */ 202 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 203 continue; 204 /* 205 * Make sure the next time we go to switch to 206 * this asid, we do a flush: 207 */ 208 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 209 } 210 this_cpu_write(cpu_tlbstate.invalidate_other, false); 211 } 212 213 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 214 215 216 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 217 u16 *new_asid, bool *need_flush) 218 { 219 u16 asid; 220 221 if (!static_cpu_has(X86_FEATURE_PCID)) { 222 *new_asid = 0; 223 *need_flush = true; 224 return; 225 } 226 227 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 228 clear_asid_other(); 229 230 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 231 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 232 next->context.ctx_id) 233 continue; 234 235 *new_asid = asid; 236 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 237 next_tlb_gen); 238 return; 239 } 240 241 /* 242 * We don't currently own an ASID slot on this CPU. 243 * Allocate a slot. 244 */ 245 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 246 if (*new_asid >= TLB_NR_DYN_ASIDS) { 247 *new_asid = 0; 248 this_cpu_write(cpu_tlbstate.next_asid, 1); 249 } 250 *need_flush = true; 251 } 252 253 /* 254 * Given an ASID, flush the corresponding user ASID. We can delay this 255 * until the next time we switch to it. 256 * 257 * See SWITCH_TO_USER_CR3. 258 */ 259 static inline void invalidate_user_asid(u16 asid) 260 { 261 /* There is no user ASID if address space separation is off */ 262 if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) 263 return; 264 265 /* 266 * We only have a single ASID if PCID is off and the CR3 267 * write will have flushed it. 268 */ 269 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 270 return; 271 272 if (!static_cpu_has(X86_FEATURE_PTI)) 273 return; 274 275 __set_bit(kern_pcid(asid), 276 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 277 } 278 279 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam, 280 bool need_flush) 281 { 282 unsigned long new_mm_cr3; 283 284 if (need_flush) { 285 invalidate_user_asid(new_asid); 286 new_mm_cr3 = build_cr3(pgdir, new_asid, lam); 287 } else { 288 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam); 289 } 290 291 /* 292 * Caution: many callers of this function expect 293 * that load_cr3() is serializing and orders TLB 294 * fills with respect to the mm_cpumask writes. 295 */ 296 write_cr3(new_mm_cr3); 297 } 298 299 void leave_mm(void) 300 { 301 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 302 303 /* 304 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 305 * If so, our callers still expect us to flush the TLB, but there 306 * aren't any user TLB entries in init_mm to worry about. 307 * 308 * This needs to happen before any other sanity checks due to 309 * intel_idle's shenanigans. 310 */ 311 if (loaded_mm == &init_mm) 312 return; 313 314 /* Warn if we're not lazy. */ 315 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); 316 317 switch_mm(NULL, &init_mm, NULL); 318 } 319 EXPORT_SYMBOL_GPL(leave_mm); 320 321 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 322 struct task_struct *tsk) 323 { 324 unsigned long flags; 325 326 local_irq_save(flags); 327 switch_mm_irqs_off(NULL, next, tsk); 328 local_irq_restore(flags); 329 } 330 331 /* 332 * Invoked from return to user/guest by a task that opted-in to L1D 333 * flushing but ended up running on an SMT enabled core due to wrong 334 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush 335 * contract which this task requested. 336 */ 337 static void l1d_flush_force_sigbus(struct callback_head *ch) 338 { 339 force_sig(SIGBUS); 340 } 341 342 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm, 343 struct task_struct *next) 344 { 345 /* Flush L1D if the outgoing task requests it */ 346 if (prev_mm & LAST_USER_MM_L1D_FLUSH) 347 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 348 349 /* Check whether the incoming task opted in for L1D flush */ 350 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH))) 351 return; 352 353 /* 354 * Validate that it is not running on an SMT sibling as this would 355 * make the exercise pointless because the siblings share L1D. If 356 * it runs on a SMT sibling, notify it with SIGBUS on return to 357 * user/guest 358 */ 359 if (this_cpu_read(cpu_info.smt_active)) { 360 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH); 361 next->l1d_flush_kill.func = l1d_flush_force_sigbus; 362 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME); 363 } 364 } 365 366 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next) 367 { 368 unsigned long next_tif = read_task_thread_flags(next); 369 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK; 370 371 /* 372 * Ensure that the bit shift above works as expected and the two flags 373 * end up in bit 0 and 1. 374 */ 375 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1); 376 377 return (unsigned long)next->mm | spec_bits; 378 } 379 380 static void cond_mitigation(struct task_struct *next) 381 { 382 unsigned long prev_mm, next_mm; 383 384 if (!next || !next->mm) 385 return; 386 387 next_mm = mm_mangle_tif_spec_bits(next); 388 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec); 389 390 /* 391 * Avoid user/user BTB poisoning by flushing the branch predictor 392 * when switching between processes. This stops one process from 393 * doing Spectre-v2 attacks on another. 394 * 395 * Both, the conditional and the always IBPB mode use the mm 396 * pointer to avoid the IBPB when switching between tasks of the 397 * same process. Using the mm pointer instead of mm->context.ctx_id 398 * opens a hypothetical hole vs. mm_struct reuse, which is more or 399 * less impossible to control by an attacker. Aside of that it 400 * would only affect the first schedule so the theoretically 401 * exposed data is not really interesting. 402 */ 403 if (static_branch_likely(&switch_mm_cond_ibpb)) { 404 /* 405 * This is a bit more complex than the always mode because 406 * it has to handle two cases: 407 * 408 * 1) Switch from a user space task (potential attacker) 409 * which has TIF_SPEC_IB set to a user space task 410 * (potential victim) which has TIF_SPEC_IB not set. 411 * 412 * 2) Switch from a user space task (potential attacker) 413 * which has TIF_SPEC_IB not set to a user space task 414 * (potential victim) which has TIF_SPEC_IB set. 415 * 416 * This could be done by unconditionally issuing IBPB when 417 * a task which has TIF_SPEC_IB set is either scheduled in 418 * or out. Though that results in two flushes when: 419 * 420 * - the same user space task is scheduled out and later 421 * scheduled in again and only a kernel thread ran in 422 * between. 423 * 424 * - a user space task belonging to the same process is 425 * scheduled in after a kernel thread ran in between 426 * 427 * - a user space task belonging to the same process is 428 * scheduled in immediately. 429 * 430 * Optimize this with reasonably small overhead for the 431 * above cases. Mangle the TIF_SPEC_IB bit into the mm 432 * pointer of the incoming task which is stored in 433 * cpu_tlbstate.last_user_mm_spec for comparison. 434 * 435 * Issue IBPB only if the mm's are different and one or 436 * both have the IBPB bit set. 437 */ 438 if (next_mm != prev_mm && 439 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 440 indirect_branch_prediction_barrier(); 441 } 442 443 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 444 /* 445 * Only flush when switching to a user space task with a 446 * different context than the user space task which ran 447 * last on this CPU. 448 */ 449 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != 450 (unsigned long)next->mm) 451 indirect_branch_prediction_barrier(); 452 } 453 454 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) { 455 /* 456 * Flush L1D when the outgoing task requested it and/or 457 * check whether the incoming task requested L1D flushing 458 * and ended up on an SMT sibling. 459 */ 460 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH)) 461 l1d_flush_evaluate(prev_mm, next_mm, next); 462 } 463 464 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm); 465 } 466 467 #ifdef CONFIG_PERF_EVENTS 468 static inline void cr4_update_pce_mm(struct mm_struct *mm) 469 { 470 if (static_branch_unlikely(&rdpmc_always_available_key) || 471 (!static_branch_unlikely(&rdpmc_never_available_key) && 472 atomic_read(&mm->context.perf_rdpmc_allowed))) { 473 /* 474 * Clear the existing dirty counters to 475 * prevent the leak for an RDPMC task. 476 */ 477 perf_clear_dirty_counters(); 478 cr4_set_bits_irqsoff(X86_CR4_PCE); 479 } else 480 cr4_clear_bits_irqsoff(X86_CR4_PCE); 481 } 482 483 void cr4_update_pce(void *ignored) 484 { 485 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 486 } 487 488 #else 489 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 490 #endif 491 492 /* 493 * This optimizes when not actually switching mm's. Some architectures use the 494 * 'unused' argument for this optimization, but x86 must use 495 * 'cpu_tlbstate.loaded_mm' instead because it does not always keep 496 * 'current->active_mm' up to date. 497 */ 498 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next, 499 struct task_struct *tsk) 500 { 501 struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm); 502 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 503 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); 504 unsigned cpu = smp_processor_id(); 505 unsigned long new_lam; 506 u64 next_tlb_gen; 507 bool need_flush; 508 u16 new_asid; 509 510 /* We don't want flush_tlb_func() to run concurrently with us. */ 511 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 512 WARN_ON_ONCE(!irqs_disabled()); 513 514 /* 515 * Verify that CR3 is what we think it is. This will catch 516 * hypothetical buggy code that directly switches to swapper_pg_dir 517 * without going through leave_mm() / switch_mm_irqs_off() or that 518 * does something like write_cr3(read_cr3_pa()). 519 * 520 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 521 * isn't free. 522 */ 523 #ifdef CONFIG_DEBUG_VM 524 if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid, 525 tlbstate_lam_cr3_mask()))) { 526 /* 527 * If we were to BUG here, we'd be very likely to kill 528 * the system so hard that we don't see the call trace. 529 * Try to recover instead by ignoring the error and doing 530 * a global flush to minimize the chance of corruption. 531 * 532 * (This is far from being a fully correct recovery. 533 * Architecturally, the CPU could prefetch something 534 * back into an incorrect ASID slot and leave it there 535 * to cause trouble down the road. It's better than 536 * nothing, though.) 537 */ 538 __flush_tlb_all(); 539 } 540 #endif 541 if (was_lazy) 542 this_cpu_write(cpu_tlbstate_shared.is_lazy, false); 543 544 /* 545 * The membarrier system call requires a full memory barrier and 546 * core serialization before returning to user-space, after 547 * storing to rq->curr, when changing mm. This is because 548 * membarrier() sends IPIs to all CPUs that are in the target mm 549 * to make them issue memory barriers. However, if another CPU 550 * switches to/from the target mm concurrently with 551 * membarrier(), it can cause that CPU not to receive an IPI 552 * when it really should issue a memory barrier. Writing to CR3 553 * provides that full memory barrier and core serializing 554 * instruction. 555 */ 556 if (prev == next) { 557 /* Not actually switching mm's */ 558 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 559 next->context.ctx_id); 560 561 /* 562 * If this races with another thread that enables lam, 'new_lam' 563 * might not match tlbstate_lam_cr3_mask(). 564 */ 565 566 /* 567 * Even in lazy TLB mode, the CPU should stay set in the 568 * mm_cpumask. The TLB shootdown code can figure out from 569 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. 570 */ 571 if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ON_ONCE(prev != &init_mm && 572 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 573 cpumask_set_cpu(cpu, mm_cpumask(next)); 574 575 /* 576 * If the CPU is not in lazy TLB mode, we are just switching 577 * from one thread in a process to another thread in the same 578 * process. No TLB flush required. 579 */ 580 if (!was_lazy) 581 return; 582 583 /* 584 * Read the tlb_gen to check whether a flush is needed. 585 * If the TLB is up to date, just use it. 586 * The barrier synchronizes with the tlb_gen increment in 587 * the TLB shootdown code. 588 */ 589 smp_mb(); 590 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 591 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 592 next_tlb_gen) 593 return; 594 595 /* 596 * TLB contents went out of date while we were in lazy 597 * mode. Fall through to the TLB switching code below. 598 */ 599 new_asid = prev_asid; 600 need_flush = true; 601 } else { 602 /* 603 * Apply process to process speculation vulnerability 604 * mitigations if applicable. 605 */ 606 cond_mitigation(tsk); 607 608 /* 609 * Stop remote flushes for the previous mm. 610 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 611 * but the bitmap manipulation can cause cache line contention. 612 */ 613 if (prev != &init_mm) { 614 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 615 mm_cpumask(prev))); 616 cpumask_clear_cpu(cpu, mm_cpumask(prev)); 617 } 618 619 /* Start receiving IPIs and then read tlb_gen (and LAM below) */ 620 if (next != &init_mm) 621 cpumask_set_cpu(cpu, mm_cpumask(next)); 622 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 623 624 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 625 626 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 627 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 628 barrier(); 629 } 630 631 new_lam = mm_lam_cr3_mask(next); 632 if (need_flush) { 633 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 634 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 635 load_new_mm_cr3(next->pgd, new_asid, new_lam, true); 636 637 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 638 } else { 639 /* The new ASID is already up to date. */ 640 load_new_mm_cr3(next->pgd, new_asid, new_lam, false); 641 642 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 643 } 644 645 /* Make sure we write CR3 before loaded_mm. */ 646 barrier(); 647 648 this_cpu_write(cpu_tlbstate.loaded_mm, next); 649 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 650 cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next)); 651 652 if (next != prev) { 653 cr4_update_pce_mm(next); 654 switch_ldt(prev, next); 655 } 656 } 657 658 /* 659 * Please ignore the name of this function. It should be called 660 * switch_to_kernel_thread(). 661 * 662 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 663 * kernel thread or other context without an mm. Acceptable implementations 664 * include doing nothing whatsoever, switching to init_mm, or various clever 665 * lazy tricks to try to minimize TLB flushes. 666 * 667 * The scheduler reserves the right to call enter_lazy_tlb() several times 668 * in a row. It will notify us that we're going back to a real mm by 669 * calling switch_mm_irqs_off(). 670 */ 671 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 672 { 673 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 674 return; 675 676 this_cpu_write(cpu_tlbstate_shared.is_lazy, true); 677 } 678 679 /* 680 * Call this when reinitializing a CPU. It fixes the following potential 681 * problems: 682 * 683 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 684 * because the CPU was taken down and came back up with CR3's PCID 685 * bits clear. CPU hotplug can do this. 686 * 687 * - The TLB contains junk in slots corresponding to inactive ASIDs. 688 * 689 * - The CPU went so far out to lunch that it may have missed a TLB 690 * flush. 691 */ 692 void initialize_tlbstate_and_flush(void) 693 { 694 int i; 695 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 696 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 697 unsigned long lam = mm_lam_cr3_mask(mm); 698 unsigned long cr3 = __read_cr3(); 699 700 /* Assert that CR3 already references the right mm. */ 701 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 702 703 /* LAM expected to be disabled */ 704 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57)); 705 WARN_ON(lam); 706 707 /* 708 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 709 * doesn't work like other CR4 bits because it can only be set from 710 * long mode.) 711 */ 712 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 713 !(cr4_read_shadow() & X86_CR4_PCIDE)); 714 715 /* Disable LAM, force ASID 0 and force a TLB flush. */ 716 write_cr3(build_cr3(mm->pgd, 0, 0)); 717 718 /* Reinitialize tlbstate. */ 719 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT); 720 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 721 this_cpu_write(cpu_tlbstate.next_asid, 1); 722 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 723 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 724 cpu_tlbstate_update_lam(lam, mm_untag_mask(mm)); 725 726 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 727 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 728 } 729 730 /* 731 * flush_tlb_func()'s memory ordering requirement is that any 732 * TLB fills that happen after we flush the TLB are ordered after we 733 * read active_mm's tlb_gen. We don't need any explicit barriers 734 * because all x86 flush operations are serializing and the 735 * atomic64_read operation won't be reordered by the compiler. 736 */ 737 static void flush_tlb_func(void *info) 738 { 739 /* 740 * We have three different tlb_gen values in here. They are: 741 * 742 * - mm_tlb_gen: the latest generation. 743 * - local_tlb_gen: the generation that this CPU has already caught 744 * up to. 745 * - f->new_tlb_gen: the generation that the requester of the flush 746 * wants us to catch up to. 747 */ 748 const struct flush_tlb_info *f = info; 749 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 750 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 751 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 752 bool local = smp_processor_id() == f->initiating_cpu; 753 unsigned long nr_invalidate = 0; 754 u64 mm_tlb_gen; 755 756 /* This code cannot presently handle being reentered. */ 757 VM_WARN_ON(!irqs_disabled()); 758 759 if (!local) { 760 inc_irq_stat(irq_tlb_count); 761 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 762 763 /* Can only happen on remote CPUs */ 764 if (f->mm && f->mm != loaded_mm) 765 return; 766 } 767 768 if (unlikely(loaded_mm == &init_mm)) 769 return; 770 771 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 772 loaded_mm->context.ctx_id); 773 774 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { 775 /* 776 * We're in lazy mode. We need to at least flush our 777 * paging-structure cache to avoid speculatively reading 778 * garbage into our TLB. Since switching to init_mm is barely 779 * slower than a minimal flush, just switch to init_mm. 780 * 781 * This should be rare, with native_flush_tlb_multi() skipping 782 * IPIs to lazy TLB mode CPUs. 783 */ 784 switch_mm_irqs_off(NULL, &init_mm, NULL); 785 return; 786 } 787 788 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID && 789 f->new_tlb_gen <= local_tlb_gen)) { 790 /* 791 * The TLB is already up to date in respect to f->new_tlb_gen. 792 * While the core might be still behind mm_tlb_gen, checking 793 * mm_tlb_gen unnecessarily would have negative caching effects 794 * so avoid it. 795 */ 796 return; 797 } 798 799 /* 800 * Defer mm_tlb_gen reading as long as possible to avoid cache 801 * contention. 802 */ 803 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 804 805 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 806 /* 807 * There's nothing to do: we're already up to date. This can 808 * happen if two concurrent flushes happen -- the first flush to 809 * be handled can catch us all the way up, leaving no work for 810 * the second flush. 811 */ 812 goto done; 813 } 814 815 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 816 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 817 818 /* 819 * If we get to this point, we know that our TLB is out of date. 820 * This does not strictly imply that we need to flush (it's 821 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 822 * going to need to flush in the very near future, so we might 823 * as well get it over with. 824 * 825 * The only question is whether to do a full or partial flush. 826 * 827 * We do a partial flush if requested and two extra conditions 828 * are met: 829 * 830 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 831 * we've always done all needed flushes to catch up to 832 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 833 * f->new_tlb_gen == 3, then we know that the flush needed to bring 834 * us up to date for tlb_gen 3 is the partial flush we're 835 * processing. 836 * 837 * As an example of why this check is needed, suppose that there 838 * are two concurrent flushes. The first is a full flush that 839 * changes context.tlb_gen from 1 to 2. The second is a partial 840 * flush that changes context.tlb_gen from 2 to 3. If they get 841 * processed on this CPU in reverse order, we'll see 842 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 843 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 844 * 3, we'd be break the invariant: we'd update local_tlb_gen above 845 * 1 without the full flush that's needed for tlb_gen 2. 846 * 847 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. 848 * Partial TLB flushes are not all that much cheaper than full TLB 849 * flushes, so it seems unlikely that it would be a performance win 850 * to do a partial flush if that won't bring our TLB fully up to 851 * date. By doing a full flush instead, we can increase 852 * local_tlb_gen all the way to mm_tlb_gen and we can probably 853 * avoid another flush in the very near future. 854 */ 855 if (f->end != TLB_FLUSH_ALL && 856 f->new_tlb_gen == local_tlb_gen + 1 && 857 f->new_tlb_gen == mm_tlb_gen) { 858 /* Partial flush */ 859 unsigned long addr = f->start; 860 861 /* Partial flush cannot have invalid generations */ 862 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID); 863 864 /* Partial flush must have valid mm */ 865 VM_WARN_ON(f->mm == NULL); 866 867 nr_invalidate = (f->end - f->start) >> f->stride_shift; 868 869 while (addr < f->end) { 870 flush_tlb_one_user(addr); 871 addr += 1UL << f->stride_shift; 872 } 873 if (local) 874 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 875 } else { 876 /* Full flush. */ 877 nr_invalidate = TLB_FLUSH_ALL; 878 879 flush_tlb_local(); 880 if (local) 881 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 882 } 883 884 /* Both paths above update our state to mm_tlb_gen. */ 885 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 886 887 /* Tracing is done in a unified manner to reduce the code size */ 888 done: 889 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : 890 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : 891 TLB_LOCAL_MM_SHOOTDOWN, 892 nr_invalidate); 893 } 894 895 static bool tlb_is_not_lazy(int cpu, void *data) 896 { 897 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu); 898 } 899 900 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); 901 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); 902 903 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, 904 const struct flush_tlb_info *info) 905 { 906 /* 907 * Do accounting and tracing. Note that there are (and have always been) 908 * cases in which a remote TLB flush will be traced, but eventually 909 * would not happen. 910 */ 911 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 912 if (info->end == TLB_FLUSH_ALL) 913 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 914 else 915 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 916 (info->end - info->start) >> PAGE_SHIFT); 917 918 /* 919 * If no page tables were freed, we can skip sending IPIs to 920 * CPUs in lazy TLB mode. They will flush the CPU themselves 921 * at the next context switch. 922 * 923 * However, if page tables are getting freed, we need to send the 924 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 925 * up on the new contents of what used to be page tables, while 926 * doing a speculative memory access. 927 */ 928 if (info->freed_tables) 929 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); 930 else 931 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func, 932 (void *)info, 1, cpumask); 933 } 934 935 void flush_tlb_multi(const struct cpumask *cpumask, 936 const struct flush_tlb_info *info) 937 { 938 __flush_tlb_multi(cpumask, info); 939 } 940 941 /* 942 * See Documentation/arch/x86/tlb.rst for details. We choose 33 943 * because it is large enough to cover the vast majority (at 944 * least 95%) of allocations, and is small enough that we are 945 * confident it will not cause too much overhead. Each single 946 * flush is about 100 ns, so this caps the maximum overhead at 947 * _about_ 3,000 ns. 948 * 949 * This is in units of pages. 950 */ 951 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 952 953 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 954 955 #ifdef CONFIG_DEBUG_VM 956 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 957 #endif 958 959 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 960 unsigned long start, unsigned long end, 961 unsigned int stride_shift, bool freed_tables, 962 u64 new_tlb_gen) 963 { 964 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 965 966 #ifdef CONFIG_DEBUG_VM 967 /* 968 * Ensure that the following code is non-reentrant and flush_tlb_info 969 * is not overwritten. This means no TLB flushing is initiated by 970 * interrupt handlers and machine-check exception handlers. 971 */ 972 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 973 #endif 974 975 info->start = start; 976 info->end = end; 977 info->mm = mm; 978 info->stride_shift = stride_shift; 979 info->freed_tables = freed_tables; 980 info->new_tlb_gen = new_tlb_gen; 981 info->initiating_cpu = smp_processor_id(); 982 983 return info; 984 } 985 986 static void put_flush_tlb_info(void) 987 { 988 #ifdef CONFIG_DEBUG_VM 989 /* Complete reentrancy prevention checks */ 990 barrier(); 991 this_cpu_dec(flush_tlb_info_idx); 992 #endif 993 } 994 995 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 996 unsigned long end, unsigned int stride_shift, 997 bool freed_tables) 998 { 999 struct flush_tlb_info *info; 1000 u64 new_tlb_gen; 1001 int cpu; 1002 1003 cpu = get_cpu(); 1004 1005 /* Should we flush just the requested range? */ 1006 if ((end == TLB_FLUSH_ALL) || 1007 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 1008 start = 0; 1009 end = TLB_FLUSH_ALL; 1010 } 1011 1012 /* This is also a barrier that synchronizes with switch_mm(). */ 1013 new_tlb_gen = inc_mm_tlb_gen(mm); 1014 1015 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 1016 new_tlb_gen); 1017 1018 /* 1019 * flush_tlb_multi() is not optimized for the common case in which only 1020 * a local TLB flush is needed. Optimize this use-case by calling 1021 * flush_tlb_func_local() directly in this case. 1022 */ 1023 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { 1024 flush_tlb_multi(mm_cpumask(mm), info); 1025 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 1026 lockdep_assert_irqs_enabled(); 1027 local_irq_disable(); 1028 flush_tlb_func(info); 1029 local_irq_enable(); 1030 } 1031 1032 put_flush_tlb_info(); 1033 put_cpu(); 1034 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end); 1035 } 1036 1037 1038 static void do_flush_tlb_all(void *info) 1039 { 1040 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 1041 __flush_tlb_all(); 1042 } 1043 1044 void flush_tlb_all(void) 1045 { 1046 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 1047 on_each_cpu(do_flush_tlb_all, NULL, 1); 1048 } 1049 1050 static void do_kernel_range_flush(void *info) 1051 { 1052 struct flush_tlb_info *f = info; 1053 unsigned long addr; 1054 1055 /* flush range by one by one 'invlpg' */ 1056 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 1057 flush_tlb_one_kernel(addr); 1058 } 1059 1060 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 1061 { 1062 /* Balance as user space task's flush, a bit conservative */ 1063 if (end == TLB_FLUSH_ALL || 1064 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 1065 on_each_cpu(do_flush_tlb_all, NULL, 1); 1066 } else { 1067 struct flush_tlb_info *info; 1068 1069 preempt_disable(); 1070 info = get_flush_tlb_info(NULL, start, end, 0, false, 1071 TLB_GENERATION_INVALID); 1072 1073 on_each_cpu(do_kernel_range_flush, info, 1); 1074 1075 put_flush_tlb_info(); 1076 preempt_enable(); 1077 } 1078 } 1079 1080 /* 1081 * This can be used from process context to figure out what the value of 1082 * CR3 is without needing to do a (slow) __read_cr3(). 1083 * 1084 * It's intended to be used for code like KVM that sneakily changes CR3 1085 * and needs to restore it. It needs to be used very carefully. 1086 */ 1087 unsigned long __get_current_cr3_fast(void) 1088 { 1089 unsigned long cr3 = 1090 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 1091 this_cpu_read(cpu_tlbstate.loaded_mm_asid), 1092 tlbstate_lam_cr3_mask()); 1093 1094 /* For now, be very restrictive about when this can be called. */ 1095 VM_WARN_ON(in_nmi() || preemptible()); 1096 1097 VM_BUG_ON(cr3 != __read_cr3()); 1098 return cr3; 1099 } 1100 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1101 1102 /* 1103 * Flush one page in the kernel mapping 1104 */ 1105 void flush_tlb_one_kernel(unsigned long addr) 1106 { 1107 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1108 1109 /* 1110 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1111 * paravirt equivalent. Even with PCID, this is sufficient: we only 1112 * use PCID if we also use global PTEs for the kernel mapping, and 1113 * INVLPG flushes global translations across all address spaces. 1114 * 1115 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1116 * __flush_tlb_one_user() will flush the given address for the current 1117 * kernel address space and for its usermode counterpart, but it does 1118 * not flush it for other address spaces. 1119 */ 1120 flush_tlb_one_user(addr); 1121 1122 if (!static_cpu_has(X86_FEATURE_PTI)) 1123 return; 1124 1125 /* 1126 * See above. We need to propagate the flush to all other address 1127 * spaces. In principle, we only need to propagate it to kernelmode 1128 * address spaces, but the extra bookkeeping we would need is not 1129 * worth it. 1130 */ 1131 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1132 } 1133 1134 /* 1135 * Flush one page in the user mapping 1136 */ 1137 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1138 { 1139 u32 loaded_mm_asid; 1140 bool cpu_pcide; 1141 1142 /* Flush 'addr' from the kernel PCID: */ 1143 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 1144 1145 /* If PTI is off there is no user PCID and nothing to flush. */ 1146 if (!static_cpu_has(X86_FEATURE_PTI)) 1147 return; 1148 1149 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1150 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE; 1151 1152 /* 1153 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check 1154 * 'cpu_pcide' to ensure that *this* CPU will not trigger those 1155 * #GP's even if called before CR4.PCIDE has been initialized. 1156 */ 1157 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide) 1158 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1159 else 1160 invalidate_user_asid(loaded_mm_asid); 1161 } 1162 1163 void flush_tlb_one_user(unsigned long addr) 1164 { 1165 __flush_tlb_one_user(addr); 1166 } 1167 1168 /* 1169 * Flush everything 1170 */ 1171 STATIC_NOPV void native_flush_tlb_global(void) 1172 { 1173 unsigned long flags; 1174 1175 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1176 /* 1177 * Using INVPCID is considerably faster than a pair of writes 1178 * to CR4 sandwiched inside an IRQ flag save/restore. 1179 * 1180 * Note, this works with CR4.PCIDE=0 or 1. 1181 */ 1182 invpcid_flush_all(); 1183 return; 1184 } 1185 1186 /* 1187 * Read-modify-write to CR4 - protect it from preemption and 1188 * from interrupts. (Use the raw variant because this code can 1189 * be called from deep inside debugging code.) 1190 */ 1191 raw_local_irq_save(flags); 1192 1193 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); 1194 1195 raw_local_irq_restore(flags); 1196 } 1197 1198 /* 1199 * Flush the entire current user mapping 1200 */ 1201 STATIC_NOPV void native_flush_tlb_local(void) 1202 { 1203 /* 1204 * Preemption or interrupts must be disabled to protect the access 1205 * to the per CPU variable and to prevent being preempted between 1206 * read_cr3() and write_cr3(). 1207 */ 1208 WARN_ON_ONCE(preemptible()); 1209 1210 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1211 1212 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1213 native_write_cr3(__native_read_cr3()); 1214 } 1215 1216 void flush_tlb_local(void) 1217 { 1218 __flush_tlb_local(); 1219 } 1220 1221 /* 1222 * Flush everything 1223 */ 1224 void __flush_tlb_all(void) 1225 { 1226 /* 1227 * This is to catch users with enabled preemption and the PGE feature 1228 * and don't trigger the warning in __native_flush_tlb(). 1229 */ 1230 VM_WARN_ON_ONCE(preemptible()); 1231 1232 if (cpu_feature_enabled(X86_FEATURE_PGE)) { 1233 __flush_tlb_global(); 1234 } else { 1235 /* 1236 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1237 */ 1238 flush_tlb_local(); 1239 } 1240 } 1241 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1242 1243 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1244 { 1245 struct flush_tlb_info *info; 1246 1247 int cpu = get_cpu(); 1248 1249 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 1250 TLB_GENERATION_INVALID); 1251 /* 1252 * flush_tlb_multi() is not optimized for the common case in which only 1253 * a local TLB flush is needed. Optimize this use-case by calling 1254 * flush_tlb_func_local() directly in this case. 1255 */ 1256 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { 1257 flush_tlb_multi(&batch->cpumask, info); 1258 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1259 lockdep_assert_irqs_enabled(); 1260 local_irq_disable(); 1261 flush_tlb_func(info); 1262 local_irq_enable(); 1263 } 1264 1265 cpumask_clear(&batch->cpumask); 1266 1267 put_flush_tlb_info(); 1268 put_cpu(); 1269 } 1270 1271 /* 1272 * Blindly accessing user memory from NMI context can be dangerous 1273 * if we're in the middle of switching the current user task or 1274 * switching the loaded mm. It can also be dangerous if we 1275 * interrupted some kernel code that was temporarily using a 1276 * different mm. 1277 */ 1278 bool nmi_uaccess_okay(void) 1279 { 1280 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1281 struct mm_struct *current_mm = current->mm; 1282 1283 VM_WARN_ON_ONCE(!loaded_mm); 1284 1285 /* 1286 * The condition we want to check is 1287 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1288 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1289 * is supposed to be reasonably fast. 1290 * 1291 * Instead, we check the almost equivalent but somewhat conservative 1292 * condition below, and we rely on the fact that switch_mm_irqs_off() 1293 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1294 */ 1295 if (loaded_mm != current_mm) 1296 return false; 1297 1298 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 1299 1300 return true; 1301 } 1302 1303 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1304 size_t count, loff_t *ppos) 1305 { 1306 char buf[32]; 1307 unsigned int len; 1308 1309 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1310 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1311 } 1312 1313 static ssize_t tlbflush_write_file(struct file *file, 1314 const char __user *user_buf, size_t count, loff_t *ppos) 1315 { 1316 char buf[32]; 1317 ssize_t len; 1318 int ceiling; 1319 1320 len = min(count, sizeof(buf) - 1); 1321 if (copy_from_user(buf, user_buf, len)) 1322 return -EFAULT; 1323 1324 buf[len] = '\0'; 1325 if (kstrtoint(buf, 0, &ceiling)) 1326 return -EINVAL; 1327 1328 if (ceiling < 0) 1329 return -EINVAL; 1330 1331 tlb_single_page_flush_ceiling = ceiling; 1332 return count; 1333 } 1334 1335 static const struct file_operations fops_tlbflush = { 1336 .read = tlbflush_read_file, 1337 .write = tlbflush_write_file, 1338 .llseek = default_llseek, 1339 }; 1340 1341 static int __init create_tlb_single_page_flush_ceiling(void) 1342 { 1343 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1344 arch_debugfs_dir, NULL, &fops_tlbflush); 1345 return 0; 1346 } 1347 late_initcall(create_tlb_single_page_flush_ceiling); 1348