xref: /linux/arch/x86/mm/tlb.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8 #include <linux/cpu.h>
9 
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16 
17 /*
18  *	Smarter SMP flushing macros.
19  *		c/o Linus Torvalds.
20  *
21  *	These mean you can really definitely utterly forget about
22  *	writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *	More scalable flush, from Andi Kleen
27  *
28  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30 
31 struct flush_tlb_info {
32 	struct mm_struct *flush_mm;
33 	unsigned long flush_start;
34 	unsigned long flush_end;
35 };
36 
37 /*
38  * We cannot call mmdrop() because we are in interrupt context,
39  * instead update mm->cpu_vm_mask.
40  */
41 void leave_mm(int cpu)
42 {
43 	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
44 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
45 		BUG();
46 	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
47 		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
48 		load_cr3(swapper_pg_dir);
49 		/*
50 		 * This gets called in the idle path where RCU
51 		 * functions differently.  Tracing normally
52 		 * uses RCU, so we have to call the tracepoint
53 		 * specially here.
54 		 */
55 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
56 	}
57 }
58 EXPORT_SYMBOL_GPL(leave_mm);
59 
60 /*
61  * The flush IPI assumes that a thread switch happens in this order:
62  * [cpu0: the cpu that switches]
63  * 1) switch_mm() either 1a) or 1b)
64  * 1a) thread switch to a different mm
65  * 1a1) set cpu_tlbstate to TLBSTATE_OK
66  *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
67  *	if cpu0 was in lazy tlb mode.
68  * 1a2) update cpu active_mm
69  *	Now cpu0 accepts tlb flushes for the new mm.
70  * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
71  *	Now the other cpus will send tlb flush ipis.
72  * 1a4) change cr3.
73  * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
74  *	Stop ipi delivery for the old mm. This is not synchronized with
75  *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
76  *	mm, and in the worst case we perform a superfluous tlb flush.
77  * 1b) thread switch without mm change
78  *	cpu active_mm is correct, cpu0 already handles flush ipis.
79  * 1b1) set cpu_tlbstate to TLBSTATE_OK
80  * 1b2) test_and_set the cpu bit in cpu_vm_mask.
81  *	Atomically set the bit [other cpus will start sending flush ipis],
82  *	and test the bit.
83  * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
84  * 2) switch %%esp, ie current
85  *
86  * The interrupt must handle 2 special cases:
87  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
88  * - the cpu performs speculative tlb reads, i.e. even if the cpu only
89  *   runs in kernel space, the cpu could load tlb entries for user space
90  *   pages.
91  *
92  * The good news is that cpu_tlbstate is local to each cpu, no
93  * write/read ordering problems.
94  */
95 
96 /*
97  * TLB flush funcation:
98  * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
99  * 2) Leave the mm if we are in the lazy tlb mode.
100  */
101 static void flush_tlb_func(void *info)
102 {
103 	struct flush_tlb_info *f = info;
104 
105 	inc_irq_stat(irq_tlb_count);
106 
107 	if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
108 		return;
109 	if (!f->flush_end)
110 		f->flush_end = f->flush_start + PAGE_SIZE;
111 
112 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
113 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
114 		if (f->flush_end == TLB_FLUSH_ALL) {
115 			local_flush_tlb();
116 			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
117 		} else {
118 			unsigned long addr;
119 			unsigned long nr_pages =
120 				f->flush_end - f->flush_start / PAGE_SIZE;
121 			addr = f->flush_start;
122 			while (addr < f->flush_end) {
123 				__flush_tlb_single(addr);
124 				addr += PAGE_SIZE;
125 			}
126 			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
127 		}
128 	} else
129 		leave_mm(smp_processor_id());
130 
131 }
132 
133 void native_flush_tlb_others(const struct cpumask *cpumask,
134 				 struct mm_struct *mm, unsigned long start,
135 				 unsigned long end)
136 {
137 	struct flush_tlb_info info;
138 	info.flush_mm = mm;
139 	info.flush_start = start;
140 	info.flush_end = end;
141 
142 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
143 	if (is_uv_system()) {
144 		unsigned int cpu;
145 
146 		cpu = smp_processor_id();
147 		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
148 		if (cpumask)
149 			smp_call_function_many(cpumask, flush_tlb_func,
150 								&info, 1);
151 		return;
152 	}
153 	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
154 }
155 
156 void flush_tlb_current_task(void)
157 {
158 	struct mm_struct *mm = current->mm;
159 
160 	preempt_disable();
161 
162 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
163 	local_flush_tlb();
164 	trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
165 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
166 		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
167 	preempt_enable();
168 }
169 
170 /*
171  * See Documentation/x86/tlb.txt for details.  We choose 33
172  * because it is large enough to cover the vast majority (at
173  * least 95%) of allocations, and is small enough that we are
174  * confident it will not cause too much overhead.  Each single
175  * flush is about 100 ns, so this caps the maximum overhead at
176  * _about_ 3,000 ns.
177  *
178  * This is in units of pages.
179  */
180 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
181 
182 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
183 				unsigned long end, unsigned long vmflag)
184 {
185 	unsigned long addr;
186 	/* do a global flush by default */
187 	unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
188 
189 	preempt_disable();
190 	if (current->active_mm != mm)
191 		goto out;
192 
193 	if (!current->mm) {
194 		leave_mm(smp_processor_id());
195 		goto out;
196 	}
197 
198 	if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
199 		base_pages_to_flush = (end - start) >> PAGE_SHIFT;
200 
201 	if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
202 		base_pages_to_flush = TLB_FLUSH_ALL;
203 		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
204 		local_flush_tlb();
205 	} else {
206 		/* flush range by one by one 'invlpg' */
207 		for (addr = start; addr < end;	addr += PAGE_SIZE) {
208 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
209 			__flush_tlb_single(addr);
210 		}
211 	}
212 	trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
213 out:
214 	if (base_pages_to_flush == TLB_FLUSH_ALL) {
215 		start = 0UL;
216 		end = TLB_FLUSH_ALL;
217 	}
218 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
219 		flush_tlb_others(mm_cpumask(mm), mm, start, end);
220 	preempt_enable();
221 }
222 
223 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
224 {
225 	struct mm_struct *mm = vma->vm_mm;
226 
227 	preempt_disable();
228 
229 	if (current->active_mm == mm) {
230 		if (current->mm)
231 			__flush_tlb_one(start);
232 		else
233 			leave_mm(smp_processor_id());
234 	}
235 
236 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
237 		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
238 
239 	preempt_enable();
240 }
241 
242 static void do_flush_tlb_all(void *info)
243 {
244 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
245 	__flush_tlb_all();
246 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
247 		leave_mm(smp_processor_id());
248 }
249 
250 void flush_tlb_all(void)
251 {
252 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
253 	on_each_cpu(do_flush_tlb_all, NULL, 1);
254 }
255 
256 static void do_kernel_range_flush(void *info)
257 {
258 	struct flush_tlb_info *f = info;
259 	unsigned long addr;
260 
261 	/* flush range by one by one 'invlpg' */
262 	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
263 		__flush_tlb_single(addr);
264 }
265 
266 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
267 {
268 
269 	/* Balance as user space task's flush, a bit conservative */
270 	if (end == TLB_FLUSH_ALL ||
271 	    (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
272 		on_each_cpu(do_flush_tlb_all, NULL, 1);
273 	} else {
274 		struct flush_tlb_info info;
275 		info.flush_start = start;
276 		info.flush_end = end;
277 		on_each_cpu(do_kernel_range_flush, &info, 1);
278 	}
279 }
280 
281 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
282 			     size_t count, loff_t *ppos)
283 {
284 	char buf[32];
285 	unsigned int len;
286 
287 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
288 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
289 }
290 
291 static ssize_t tlbflush_write_file(struct file *file,
292 		 const char __user *user_buf, size_t count, loff_t *ppos)
293 {
294 	char buf[32];
295 	ssize_t len;
296 	int ceiling;
297 
298 	len = min(count, sizeof(buf) - 1);
299 	if (copy_from_user(buf, user_buf, len))
300 		return -EFAULT;
301 
302 	buf[len] = '\0';
303 	if (kstrtoint(buf, 0, &ceiling))
304 		return -EINVAL;
305 
306 	if (ceiling < 0)
307 		return -EINVAL;
308 
309 	tlb_single_page_flush_ceiling = ceiling;
310 	return count;
311 }
312 
313 static const struct file_operations fops_tlbflush = {
314 	.read = tlbflush_read_file,
315 	.write = tlbflush_write_file,
316 	.llseek = default_llseek,
317 };
318 
319 static int __init create_tlb_single_page_flush_ceiling(void)
320 {
321 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
322 			    arch_debugfs_dir, NULL, &fops_tlbflush);
323 	return 0;
324 }
325 late_initcall(create_tlb_single_page_flush_ceiling);
326