1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 12 #include <asm/tlbflush.h> 13 #include <asm/mmu_context.h> 14 #include <asm/nospec-branch.h> 15 #include <asm/cache.h> 16 #include <asm/apic.h> 17 #include <asm/perf_event.h> 18 19 #include "mm_internal.h" 20 21 #ifdef CONFIG_PARAVIRT 22 # define STATIC_NOPV 23 #else 24 # define STATIC_NOPV static 25 # define __flush_tlb_local native_flush_tlb_local 26 # define __flush_tlb_global native_flush_tlb_global 27 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 28 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) 29 #endif 30 31 /* 32 * TLB flushing, formerly SMP-only 33 * c/o Linus Torvalds. 34 * 35 * These mean you can really definitely utterly forget about 36 * writing to user space from interrupts. (Its not allowed anyway). 37 * 38 * Optimizations Manfred Spraul <manfred@colorfullife.com> 39 * 40 * More scalable flush, from Andi Kleen 41 * 42 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 43 */ 44 45 /* 46 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is 47 * stored in cpu_tlb_state.last_user_mm_ibpb. 48 */ 49 #define LAST_USER_MM_IBPB 0x1UL 50 51 /* 52 * The x86 feature is called PCID (Process Context IDentifier). It is similar 53 * to what is traditionally called ASID on the RISC processors. 54 * 55 * We don't use the traditional ASID implementation, where each process/mm gets 56 * its own ASID and flush/restart when we run out of ASID space. 57 * 58 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 59 * that came by on this CPU, allowing cheaper switch_mm between processes on 60 * this CPU. 61 * 62 * We end up with different spaces for different things. To avoid confusion we 63 * use different names for each of them: 64 * 65 * ASID - [0, TLB_NR_DYN_ASIDS-1] 66 * the canonical identifier for an mm 67 * 68 * kPCID - [1, TLB_NR_DYN_ASIDS] 69 * the value we write into the PCID part of CR3; corresponds to the 70 * ASID+1, because PCID 0 is special. 71 * 72 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 73 * for KPTI each mm has two address spaces and thus needs two 74 * PCID values, but we can still do with a single ASID denomination 75 * for each mm. Corresponds to kPCID + 2048. 76 * 77 */ 78 79 /* There are 12 bits of space for ASIDS in CR3 */ 80 #define CR3_HW_ASID_BITS 12 81 82 /* 83 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 84 * user/kernel switches 85 */ 86 #ifdef CONFIG_PAGE_TABLE_ISOLATION 87 # define PTI_CONSUMED_PCID_BITS 1 88 #else 89 # define PTI_CONSUMED_PCID_BITS 0 90 #endif 91 92 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 93 94 /* 95 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 96 * for them being zero-based. Another -1 is because PCID 0 is reserved for 97 * use by non-PCID-aware users. 98 */ 99 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 100 101 /* 102 * Given @asid, compute kPCID 103 */ 104 static inline u16 kern_pcid(u16 asid) 105 { 106 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 107 108 #ifdef CONFIG_PAGE_TABLE_ISOLATION 109 /* 110 * Make sure that the dynamic ASID space does not conflict with the 111 * bit we are using to switch between user and kernel ASIDs. 112 */ 113 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 114 115 /* 116 * The ASID being passed in here should have respected the 117 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 118 */ 119 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 120 #endif 121 /* 122 * The dynamically-assigned ASIDs that get passed in are small 123 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 124 * so do not bother to clear it. 125 * 126 * If PCID is on, ASID-aware code paths put the ASID+1 into the 127 * PCID bits. This serves two purposes. It prevents a nasty 128 * situation in which PCID-unaware code saves CR3, loads some other 129 * value (with PCID == 0), and then restores CR3, thus corrupting 130 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 131 * that any bugs involving loading a PCID-enabled CR3 with 132 * CR4.PCIDE off will trigger deterministically. 133 */ 134 return asid + 1; 135 } 136 137 /* 138 * Given @asid, compute uPCID 139 */ 140 static inline u16 user_pcid(u16 asid) 141 { 142 u16 ret = kern_pcid(asid); 143 #ifdef CONFIG_PAGE_TABLE_ISOLATION 144 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 145 #endif 146 return ret; 147 } 148 149 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 150 { 151 if (static_cpu_has(X86_FEATURE_PCID)) { 152 return __sme_pa(pgd) | kern_pcid(asid); 153 } else { 154 VM_WARN_ON_ONCE(asid != 0); 155 return __sme_pa(pgd); 156 } 157 } 158 159 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 160 { 161 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 162 /* 163 * Use boot_cpu_has() instead of this_cpu_has() as this function 164 * might be called during early boot. This should work even after 165 * boot because all CPU's the have same capabilities: 166 */ 167 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 168 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 169 } 170 171 /* 172 * We get here when we do something requiring a TLB invalidation 173 * but could not go invalidate all of the contexts. We do the 174 * necessary invalidation by clearing out the 'ctx_id' which 175 * forces a TLB flush when the context is loaded. 176 */ 177 static void clear_asid_other(void) 178 { 179 u16 asid; 180 181 /* 182 * This is only expected to be set if we have disabled 183 * kernel _PAGE_GLOBAL pages. 184 */ 185 if (!static_cpu_has(X86_FEATURE_PTI)) { 186 WARN_ON_ONCE(1); 187 return; 188 } 189 190 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 191 /* Do not need to flush the current asid */ 192 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 193 continue; 194 /* 195 * Make sure the next time we go to switch to 196 * this asid, we do a flush: 197 */ 198 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 199 } 200 this_cpu_write(cpu_tlbstate.invalidate_other, false); 201 } 202 203 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 204 205 206 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 207 u16 *new_asid, bool *need_flush) 208 { 209 u16 asid; 210 211 if (!static_cpu_has(X86_FEATURE_PCID)) { 212 *new_asid = 0; 213 *need_flush = true; 214 return; 215 } 216 217 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 218 clear_asid_other(); 219 220 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 221 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 222 next->context.ctx_id) 223 continue; 224 225 *new_asid = asid; 226 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 227 next_tlb_gen); 228 return; 229 } 230 231 /* 232 * We don't currently own an ASID slot on this CPU. 233 * Allocate a slot. 234 */ 235 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 236 if (*new_asid >= TLB_NR_DYN_ASIDS) { 237 *new_asid = 0; 238 this_cpu_write(cpu_tlbstate.next_asid, 1); 239 } 240 *need_flush = true; 241 } 242 243 /* 244 * Given an ASID, flush the corresponding user ASID. We can delay this 245 * until the next time we switch to it. 246 * 247 * See SWITCH_TO_USER_CR3. 248 */ 249 static inline void invalidate_user_asid(u16 asid) 250 { 251 /* There is no user ASID if address space separation is off */ 252 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 253 return; 254 255 /* 256 * We only have a single ASID if PCID is off and the CR3 257 * write will have flushed it. 258 */ 259 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 260 return; 261 262 if (!static_cpu_has(X86_FEATURE_PTI)) 263 return; 264 265 __set_bit(kern_pcid(asid), 266 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 267 } 268 269 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 270 { 271 unsigned long new_mm_cr3; 272 273 if (need_flush) { 274 invalidate_user_asid(new_asid); 275 new_mm_cr3 = build_cr3(pgdir, new_asid); 276 } else { 277 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 278 } 279 280 /* 281 * Caution: many callers of this function expect 282 * that load_cr3() is serializing and orders TLB 283 * fills with respect to the mm_cpumask writes. 284 */ 285 write_cr3(new_mm_cr3); 286 } 287 288 void leave_mm(int cpu) 289 { 290 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 291 292 /* 293 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 294 * If so, our callers still expect us to flush the TLB, but there 295 * aren't any user TLB entries in init_mm to worry about. 296 * 297 * This needs to happen before any other sanity checks due to 298 * intel_idle's shenanigans. 299 */ 300 if (loaded_mm == &init_mm) 301 return; 302 303 /* Warn if we're not lazy. */ 304 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); 305 306 switch_mm(NULL, &init_mm, NULL); 307 } 308 EXPORT_SYMBOL_GPL(leave_mm); 309 310 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 311 struct task_struct *tsk) 312 { 313 unsigned long flags; 314 315 local_irq_save(flags); 316 switch_mm_irqs_off(prev, next, tsk); 317 local_irq_restore(flags); 318 } 319 320 static unsigned long mm_mangle_tif_spec_ib(struct task_struct *next) 321 { 322 unsigned long next_tif = task_thread_info(next)->flags; 323 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB; 324 325 return (unsigned long)next->mm | ibpb; 326 } 327 328 static void cond_ibpb(struct task_struct *next) 329 { 330 if (!next || !next->mm) 331 return; 332 333 /* 334 * Both, the conditional and the always IBPB mode use the mm 335 * pointer to avoid the IBPB when switching between tasks of the 336 * same process. Using the mm pointer instead of mm->context.ctx_id 337 * opens a hypothetical hole vs. mm_struct reuse, which is more or 338 * less impossible to control by an attacker. Aside of that it 339 * would only affect the first schedule so the theoretically 340 * exposed data is not really interesting. 341 */ 342 if (static_branch_likely(&switch_mm_cond_ibpb)) { 343 unsigned long prev_mm, next_mm; 344 345 /* 346 * This is a bit more complex than the always mode because 347 * it has to handle two cases: 348 * 349 * 1) Switch from a user space task (potential attacker) 350 * which has TIF_SPEC_IB set to a user space task 351 * (potential victim) which has TIF_SPEC_IB not set. 352 * 353 * 2) Switch from a user space task (potential attacker) 354 * which has TIF_SPEC_IB not set to a user space task 355 * (potential victim) which has TIF_SPEC_IB set. 356 * 357 * This could be done by unconditionally issuing IBPB when 358 * a task which has TIF_SPEC_IB set is either scheduled in 359 * or out. Though that results in two flushes when: 360 * 361 * - the same user space task is scheduled out and later 362 * scheduled in again and only a kernel thread ran in 363 * between. 364 * 365 * - a user space task belonging to the same process is 366 * scheduled in after a kernel thread ran in between 367 * 368 * - a user space task belonging to the same process is 369 * scheduled in immediately. 370 * 371 * Optimize this with reasonably small overhead for the 372 * above cases. Mangle the TIF_SPEC_IB bit into the mm 373 * pointer of the incoming task which is stored in 374 * cpu_tlbstate.last_user_mm_ibpb for comparison. 375 */ 376 next_mm = mm_mangle_tif_spec_ib(next); 377 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb); 378 379 /* 380 * Issue IBPB only if the mm's are different and one or 381 * both have the IBPB bit set. 382 */ 383 if (next_mm != prev_mm && 384 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 385 indirect_branch_prediction_barrier(); 386 387 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm); 388 } 389 390 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 391 /* 392 * Only flush when switching to a user space task with a 393 * different context than the user space task which ran 394 * last on this CPU. 395 */ 396 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) { 397 indirect_branch_prediction_barrier(); 398 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm); 399 } 400 } 401 } 402 403 #ifdef CONFIG_PERF_EVENTS 404 static inline void cr4_update_pce_mm(struct mm_struct *mm) 405 { 406 if (static_branch_unlikely(&rdpmc_always_available_key) || 407 (!static_branch_unlikely(&rdpmc_never_available_key) && 408 atomic_read(&mm->context.perf_rdpmc_allowed))) { 409 /* 410 * Clear the existing dirty counters to 411 * prevent the leak for an RDPMC task. 412 */ 413 perf_clear_dirty_counters(); 414 cr4_set_bits_irqsoff(X86_CR4_PCE); 415 } else 416 cr4_clear_bits_irqsoff(X86_CR4_PCE); 417 } 418 419 void cr4_update_pce(void *ignored) 420 { 421 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 422 } 423 424 #else 425 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 426 #endif 427 428 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 429 struct task_struct *tsk) 430 { 431 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 432 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 433 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); 434 unsigned cpu = smp_processor_id(); 435 u64 next_tlb_gen; 436 bool need_flush; 437 u16 new_asid; 438 439 /* 440 * NB: The scheduler will call us with prev == next when switching 441 * from lazy TLB mode to normal mode if active_mm isn't changing. 442 * When this happens, we don't assume that CR3 (and hence 443 * cpu_tlbstate.loaded_mm) matches next. 444 * 445 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 446 */ 447 448 /* We don't want flush_tlb_func() to run concurrently with us. */ 449 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 450 WARN_ON_ONCE(!irqs_disabled()); 451 452 /* 453 * Verify that CR3 is what we think it is. This will catch 454 * hypothetical buggy code that directly switches to swapper_pg_dir 455 * without going through leave_mm() / switch_mm_irqs_off() or that 456 * does something like write_cr3(read_cr3_pa()). 457 * 458 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 459 * isn't free. 460 */ 461 #ifdef CONFIG_DEBUG_VM 462 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 463 /* 464 * If we were to BUG here, we'd be very likely to kill 465 * the system so hard that we don't see the call trace. 466 * Try to recover instead by ignoring the error and doing 467 * a global flush to minimize the chance of corruption. 468 * 469 * (This is far from being a fully correct recovery. 470 * Architecturally, the CPU could prefetch something 471 * back into an incorrect ASID slot and leave it there 472 * to cause trouble down the road. It's better than 473 * nothing, though.) 474 */ 475 __flush_tlb_all(); 476 } 477 #endif 478 if (was_lazy) 479 this_cpu_write(cpu_tlbstate_shared.is_lazy, false); 480 481 /* 482 * The membarrier system call requires a full memory barrier and 483 * core serialization before returning to user-space, after 484 * storing to rq->curr, when changing mm. This is because 485 * membarrier() sends IPIs to all CPUs that are in the target mm 486 * to make them issue memory barriers. However, if another CPU 487 * switches to/from the target mm concurrently with 488 * membarrier(), it can cause that CPU not to receive an IPI 489 * when it really should issue a memory barrier. Writing to CR3 490 * provides that full memory barrier and core serializing 491 * instruction. 492 */ 493 if (real_prev == next) { 494 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 495 next->context.ctx_id); 496 497 /* 498 * Even in lazy TLB mode, the CPU should stay set in the 499 * mm_cpumask. The TLB shootdown code can figure out from 500 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. 501 */ 502 if (WARN_ON_ONCE(real_prev != &init_mm && 503 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 504 cpumask_set_cpu(cpu, mm_cpumask(next)); 505 506 /* 507 * If the CPU is not in lazy TLB mode, we are just switching 508 * from one thread in a process to another thread in the same 509 * process. No TLB flush required. 510 */ 511 if (!was_lazy) 512 return; 513 514 /* 515 * Read the tlb_gen to check whether a flush is needed. 516 * If the TLB is up to date, just use it. 517 * The barrier synchronizes with the tlb_gen increment in 518 * the TLB shootdown code. 519 */ 520 smp_mb(); 521 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 522 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 523 next_tlb_gen) 524 return; 525 526 /* 527 * TLB contents went out of date while we were in lazy 528 * mode. Fall through to the TLB switching code below. 529 */ 530 new_asid = prev_asid; 531 need_flush = true; 532 } else { 533 /* 534 * Avoid user/user BTB poisoning by flushing the branch 535 * predictor when switching between processes. This stops 536 * one process from doing Spectre-v2 attacks on another. 537 */ 538 cond_ibpb(tsk); 539 540 /* 541 * Stop remote flushes for the previous mm. 542 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 543 * but the bitmap manipulation can cause cache line contention. 544 */ 545 if (real_prev != &init_mm) { 546 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 547 mm_cpumask(real_prev))); 548 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 549 } 550 551 /* 552 * Start remote flushes and then read tlb_gen. 553 */ 554 if (next != &init_mm) 555 cpumask_set_cpu(cpu, mm_cpumask(next)); 556 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 557 558 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 559 560 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 561 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 562 barrier(); 563 } 564 565 if (need_flush) { 566 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 567 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 568 load_new_mm_cr3(next->pgd, new_asid, true); 569 570 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 571 } else { 572 /* The new ASID is already up to date. */ 573 load_new_mm_cr3(next->pgd, new_asid, false); 574 575 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 576 } 577 578 /* Make sure we write CR3 before loaded_mm. */ 579 barrier(); 580 581 this_cpu_write(cpu_tlbstate.loaded_mm, next); 582 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 583 584 if (next != real_prev) { 585 cr4_update_pce_mm(next); 586 switch_ldt(real_prev, next); 587 } 588 } 589 590 /* 591 * Please ignore the name of this function. It should be called 592 * switch_to_kernel_thread(). 593 * 594 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 595 * kernel thread or other context without an mm. Acceptable implementations 596 * include doing nothing whatsoever, switching to init_mm, or various clever 597 * lazy tricks to try to minimize TLB flushes. 598 * 599 * The scheduler reserves the right to call enter_lazy_tlb() several times 600 * in a row. It will notify us that we're going back to a real mm by 601 * calling switch_mm_irqs_off(). 602 */ 603 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 604 { 605 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 606 return; 607 608 this_cpu_write(cpu_tlbstate_shared.is_lazy, true); 609 } 610 611 /* 612 * Call this when reinitializing a CPU. It fixes the following potential 613 * problems: 614 * 615 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 616 * because the CPU was taken down and came back up with CR3's PCID 617 * bits clear. CPU hotplug can do this. 618 * 619 * - The TLB contains junk in slots corresponding to inactive ASIDs. 620 * 621 * - The CPU went so far out to lunch that it may have missed a TLB 622 * flush. 623 */ 624 void initialize_tlbstate_and_flush(void) 625 { 626 int i; 627 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 628 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 629 unsigned long cr3 = __read_cr3(); 630 631 /* Assert that CR3 already references the right mm. */ 632 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 633 634 /* 635 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 636 * doesn't work like other CR4 bits because it can only be set from 637 * long mode.) 638 */ 639 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 640 !(cr4_read_shadow() & X86_CR4_PCIDE)); 641 642 /* Force ASID 0 and force a TLB flush. */ 643 write_cr3(build_cr3(mm->pgd, 0)); 644 645 /* Reinitialize tlbstate. */ 646 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB); 647 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 648 this_cpu_write(cpu_tlbstate.next_asid, 1); 649 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 650 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 651 652 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 653 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 654 } 655 656 /* 657 * flush_tlb_func()'s memory ordering requirement is that any 658 * TLB fills that happen after we flush the TLB are ordered after we 659 * read active_mm's tlb_gen. We don't need any explicit barriers 660 * because all x86 flush operations are serializing and the 661 * atomic64_read operation won't be reordered by the compiler. 662 */ 663 static void flush_tlb_func(void *info) 664 { 665 /* 666 * We have three different tlb_gen values in here. They are: 667 * 668 * - mm_tlb_gen: the latest generation. 669 * - local_tlb_gen: the generation that this CPU has already caught 670 * up to. 671 * - f->new_tlb_gen: the generation that the requester of the flush 672 * wants us to catch up to. 673 */ 674 const struct flush_tlb_info *f = info; 675 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 676 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 677 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 678 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 679 bool local = smp_processor_id() == f->initiating_cpu; 680 unsigned long nr_invalidate = 0; 681 682 /* This code cannot presently handle being reentered. */ 683 VM_WARN_ON(!irqs_disabled()); 684 685 if (!local) { 686 inc_irq_stat(irq_tlb_count); 687 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 688 689 /* Can only happen on remote CPUs */ 690 if (f->mm && f->mm != loaded_mm) 691 return; 692 } 693 694 if (unlikely(loaded_mm == &init_mm)) 695 return; 696 697 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 698 loaded_mm->context.ctx_id); 699 700 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { 701 /* 702 * We're in lazy mode. We need to at least flush our 703 * paging-structure cache to avoid speculatively reading 704 * garbage into our TLB. Since switching to init_mm is barely 705 * slower than a minimal flush, just switch to init_mm. 706 * 707 * This should be rare, with native_flush_tlb_multi() skipping 708 * IPIs to lazy TLB mode CPUs. 709 */ 710 switch_mm_irqs_off(NULL, &init_mm, NULL); 711 return; 712 } 713 714 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 715 /* 716 * There's nothing to do: we're already up to date. This can 717 * happen if two concurrent flushes happen -- the first flush to 718 * be handled can catch us all the way up, leaving no work for 719 * the second flush. 720 */ 721 goto done; 722 } 723 724 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 725 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 726 727 /* 728 * If we get to this point, we know that our TLB is out of date. 729 * This does not strictly imply that we need to flush (it's 730 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 731 * going to need to flush in the very near future, so we might 732 * as well get it over with. 733 * 734 * The only question is whether to do a full or partial flush. 735 * 736 * We do a partial flush if requested and two extra conditions 737 * are met: 738 * 739 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 740 * we've always done all needed flushes to catch up to 741 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 742 * f->new_tlb_gen == 3, then we know that the flush needed to bring 743 * us up to date for tlb_gen 3 is the partial flush we're 744 * processing. 745 * 746 * As an example of why this check is needed, suppose that there 747 * are two concurrent flushes. The first is a full flush that 748 * changes context.tlb_gen from 1 to 2. The second is a partial 749 * flush that changes context.tlb_gen from 2 to 3. If they get 750 * processed on this CPU in reverse order, we'll see 751 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 752 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 753 * 3, we'd be break the invariant: we'd update local_tlb_gen above 754 * 1 without the full flush that's needed for tlb_gen 2. 755 * 756 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. 757 * Partial TLB flushes are not all that much cheaper than full TLB 758 * flushes, so it seems unlikely that it would be a performance win 759 * to do a partial flush if that won't bring our TLB fully up to 760 * date. By doing a full flush instead, we can increase 761 * local_tlb_gen all the way to mm_tlb_gen and we can probably 762 * avoid another flush in the very near future. 763 */ 764 if (f->end != TLB_FLUSH_ALL && 765 f->new_tlb_gen == local_tlb_gen + 1 && 766 f->new_tlb_gen == mm_tlb_gen) { 767 /* Partial flush */ 768 unsigned long addr = f->start; 769 770 nr_invalidate = (f->end - f->start) >> f->stride_shift; 771 772 while (addr < f->end) { 773 flush_tlb_one_user(addr); 774 addr += 1UL << f->stride_shift; 775 } 776 if (local) 777 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 778 } else { 779 /* Full flush. */ 780 nr_invalidate = TLB_FLUSH_ALL; 781 782 flush_tlb_local(); 783 if (local) 784 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 785 } 786 787 /* Both paths above update our state to mm_tlb_gen. */ 788 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 789 790 /* Tracing is done in a unified manner to reduce the code size */ 791 done: 792 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : 793 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : 794 TLB_LOCAL_MM_SHOOTDOWN, 795 nr_invalidate); 796 } 797 798 static bool tlb_is_not_lazy(int cpu) 799 { 800 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu); 801 } 802 803 static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask); 804 805 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); 806 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); 807 808 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, 809 const struct flush_tlb_info *info) 810 { 811 /* 812 * Do accounting and tracing. Note that there are (and have always been) 813 * cases in which a remote TLB flush will be traced, but eventually 814 * would not happen. 815 */ 816 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 817 if (info->end == TLB_FLUSH_ALL) 818 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 819 else 820 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 821 (info->end - info->start) >> PAGE_SHIFT); 822 823 /* 824 * If no page tables were freed, we can skip sending IPIs to 825 * CPUs in lazy TLB mode. They will flush the CPU themselves 826 * at the next context switch. 827 * 828 * However, if page tables are getting freed, we need to send the 829 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 830 * up on the new contents of what used to be page tables, while 831 * doing a speculative memory access. 832 */ 833 if (info->freed_tables) { 834 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); 835 } else { 836 /* 837 * Although we could have used on_each_cpu_cond_mask(), 838 * open-coding it has performance advantages, as it eliminates 839 * the need for indirect calls or retpolines. In addition, it 840 * allows to use a designated cpumask for evaluating the 841 * condition, instead of allocating one. 842 * 843 * This code works under the assumption that there are no nested 844 * TLB flushes, an assumption that is already made in 845 * flush_tlb_mm_range(). 846 * 847 * cond_cpumask is logically a stack-local variable, but it is 848 * more efficient to have it off the stack and not to allocate 849 * it on demand. Preemption is disabled and this code is 850 * non-reentrant. 851 */ 852 struct cpumask *cond_cpumask = this_cpu_ptr(&flush_tlb_mask); 853 int cpu; 854 855 cpumask_clear(cond_cpumask); 856 857 for_each_cpu(cpu, cpumask) { 858 if (tlb_is_not_lazy(cpu)) 859 __cpumask_set_cpu(cpu, cond_cpumask); 860 } 861 on_each_cpu_mask(cond_cpumask, flush_tlb_func, (void *)info, true); 862 } 863 } 864 865 void flush_tlb_multi(const struct cpumask *cpumask, 866 const struct flush_tlb_info *info) 867 { 868 __flush_tlb_multi(cpumask, info); 869 } 870 871 /* 872 * See Documentation/x86/tlb.rst for details. We choose 33 873 * because it is large enough to cover the vast majority (at 874 * least 95%) of allocations, and is small enough that we are 875 * confident it will not cause too much overhead. Each single 876 * flush is about 100 ns, so this caps the maximum overhead at 877 * _about_ 3,000 ns. 878 * 879 * This is in units of pages. 880 */ 881 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 882 883 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 884 885 #ifdef CONFIG_DEBUG_VM 886 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 887 #endif 888 889 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 890 unsigned long start, unsigned long end, 891 unsigned int stride_shift, bool freed_tables, 892 u64 new_tlb_gen) 893 { 894 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 895 896 #ifdef CONFIG_DEBUG_VM 897 /* 898 * Ensure that the following code is non-reentrant and flush_tlb_info 899 * is not overwritten. This means no TLB flushing is initiated by 900 * interrupt handlers and machine-check exception handlers. 901 */ 902 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 903 #endif 904 905 info->start = start; 906 info->end = end; 907 info->mm = mm; 908 info->stride_shift = stride_shift; 909 info->freed_tables = freed_tables; 910 info->new_tlb_gen = new_tlb_gen; 911 info->initiating_cpu = smp_processor_id(); 912 913 return info; 914 } 915 916 static void put_flush_tlb_info(void) 917 { 918 #ifdef CONFIG_DEBUG_VM 919 /* Complete reentrancy prevention checks */ 920 barrier(); 921 this_cpu_dec(flush_tlb_info_idx); 922 #endif 923 } 924 925 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 926 unsigned long end, unsigned int stride_shift, 927 bool freed_tables) 928 { 929 struct flush_tlb_info *info; 930 u64 new_tlb_gen; 931 int cpu; 932 933 cpu = get_cpu(); 934 935 /* Should we flush just the requested range? */ 936 if ((end == TLB_FLUSH_ALL) || 937 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 938 start = 0; 939 end = TLB_FLUSH_ALL; 940 } 941 942 /* This is also a barrier that synchronizes with switch_mm(). */ 943 new_tlb_gen = inc_mm_tlb_gen(mm); 944 945 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 946 new_tlb_gen); 947 948 /* 949 * flush_tlb_multi() is not optimized for the common case in which only 950 * a local TLB flush is needed. Optimize this use-case by calling 951 * flush_tlb_func_local() directly in this case. 952 */ 953 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { 954 flush_tlb_multi(mm_cpumask(mm), info); 955 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 956 lockdep_assert_irqs_enabled(); 957 local_irq_disable(); 958 flush_tlb_func(info); 959 local_irq_enable(); 960 } 961 962 put_flush_tlb_info(); 963 put_cpu(); 964 } 965 966 967 static void do_flush_tlb_all(void *info) 968 { 969 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 970 __flush_tlb_all(); 971 } 972 973 void flush_tlb_all(void) 974 { 975 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 976 on_each_cpu(do_flush_tlb_all, NULL, 1); 977 } 978 979 static void do_kernel_range_flush(void *info) 980 { 981 struct flush_tlb_info *f = info; 982 unsigned long addr; 983 984 /* flush range by one by one 'invlpg' */ 985 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 986 flush_tlb_one_kernel(addr); 987 } 988 989 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 990 { 991 /* Balance as user space task's flush, a bit conservative */ 992 if (end == TLB_FLUSH_ALL || 993 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 994 on_each_cpu(do_flush_tlb_all, NULL, 1); 995 } else { 996 struct flush_tlb_info *info; 997 998 preempt_disable(); 999 info = get_flush_tlb_info(NULL, start, end, 0, false, 0); 1000 1001 on_each_cpu(do_kernel_range_flush, info, 1); 1002 1003 put_flush_tlb_info(); 1004 preempt_enable(); 1005 } 1006 } 1007 1008 /* 1009 * This can be used from process context to figure out what the value of 1010 * CR3 is without needing to do a (slow) __read_cr3(). 1011 * 1012 * It's intended to be used for code like KVM that sneakily changes CR3 1013 * and needs to restore it. It needs to be used very carefully. 1014 */ 1015 unsigned long __get_current_cr3_fast(void) 1016 { 1017 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 1018 this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1019 1020 /* For now, be very restrictive about when this can be called. */ 1021 VM_WARN_ON(in_nmi() || preemptible()); 1022 1023 VM_BUG_ON(cr3 != __read_cr3()); 1024 return cr3; 1025 } 1026 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1027 1028 /* 1029 * Flush one page in the kernel mapping 1030 */ 1031 void flush_tlb_one_kernel(unsigned long addr) 1032 { 1033 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1034 1035 /* 1036 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1037 * paravirt equivalent. Even with PCID, this is sufficient: we only 1038 * use PCID if we also use global PTEs for the kernel mapping, and 1039 * INVLPG flushes global translations across all address spaces. 1040 * 1041 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1042 * __flush_tlb_one_user() will flush the given address for the current 1043 * kernel address space and for its usermode counterpart, but it does 1044 * not flush it for other address spaces. 1045 */ 1046 flush_tlb_one_user(addr); 1047 1048 if (!static_cpu_has(X86_FEATURE_PTI)) 1049 return; 1050 1051 /* 1052 * See above. We need to propagate the flush to all other address 1053 * spaces. In principle, we only need to propagate it to kernelmode 1054 * address spaces, but the extra bookkeeping we would need is not 1055 * worth it. 1056 */ 1057 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1058 } 1059 1060 /* 1061 * Flush one page in the user mapping 1062 */ 1063 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1064 { 1065 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1066 1067 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 1068 1069 if (!static_cpu_has(X86_FEATURE_PTI)) 1070 return; 1071 1072 /* 1073 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 1074 * Just use invalidate_user_asid() in case we are called early. 1075 */ 1076 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 1077 invalidate_user_asid(loaded_mm_asid); 1078 else 1079 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1080 } 1081 1082 void flush_tlb_one_user(unsigned long addr) 1083 { 1084 __flush_tlb_one_user(addr); 1085 } 1086 1087 /* 1088 * Flush everything 1089 */ 1090 STATIC_NOPV void native_flush_tlb_global(void) 1091 { 1092 unsigned long cr4, flags; 1093 1094 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1095 /* 1096 * Using INVPCID is considerably faster than a pair of writes 1097 * to CR4 sandwiched inside an IRQ flag save/restore. 1098 * 1099 * Note, this works with CR4.PCIDE=0 or 1. 1100 */ 1101 invpcid_flush_all(); 1102 return; 1103 } 1104 1105 /* 1106 * Read-modify-write to CR4 - protect it from preemption and 1107 * from interrupts. (Use the raw variant because this code can 1108 * be called from deep inside debugging code.) 1109 */ 1110 raw_local_irq_save(flags); 1111 1112 cr4 = this_cpu_read(cpu_tlbstate.cr4); 1113 /* toggle PGE */ 1114 native_write_cr4(cr4 ^ X86_CR4_PGE); 1115 /* write old PGE again and flush TLBs */ 1116 native_write_cr4(cr4); 1117 1118 raw_local_irq_restore(flags); 1119 } 1120 1121 /* 1122 * Flush the entire current user mapping 1123 */ 1124 STATIC_NOPV void native_flush_tlb_local(void) 1125 { 1126 /* 1127 * Preemption or interrupts must be disabled to protect the access 1128 * to the per CPU variable and to prevent being preempted between 1129 * read_cr3() and write_cr3(). 1130 */ 1131 WARN_ON_ONCE(preemptible()); 1132 1133 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1134 1135 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1136 native_write_cr3(__native_read_cr3()); 1137 } 1138 1139 void flush_tlb_local(void) 1140 { 1141 __flush_tlb_local(); 1142 } 1143 1144 /* 1145 * Flush everything 1146 */ 1147 void __flush_tlb_all(void) 1148 { 1149 /* 1150 * This is to catch users with enabled preemption and the PGE feature 1151 * and don't trigger the warning in __native_flush_tlb(). 1152 */ 1153 VM_WARN_ON_ONCE(preemptible()); 1154 1155 if (boot_cpu_has(X86_FEATURE_PGE)) { 1156 __flush_tlb_global(); 1157 } else { 1158 /* 1159 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1160 */ 1161 flush_tlb_local(); 1162 } 1163 } 1164 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1165 1166 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1167 { 1168 struct flush_tlb_info *info; 1169 1170 int cpu = get_cpu(); 1171 1172 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0); 1173 /* 1174 * flush_tlb_multi() is not optimized for the common case in which only 1175 * a local TLB flush is needed. Optimize this use-case by calling 1176 * flush_tlb_func_local() directly in this case. 1177 */ 1178 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { 1179 flush_tlb_multi(&batch->cpumask, info); 1180 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1181 lockdep_assert_irqs_enabled(); 1182 local_irq_disable(); 1183 flush_tlb_func(info); 1184 local_irq_enable(); 1185 } 1186 1187 cpumask_clear(&batch->cpumask); 1188 1189 put_flush_tlb_info(); 1190 put_cpu(); 1191 } 1192 1193 /* 1194 * Blindly accessing user memory from NMI context can be dangerous 1195 * if we're in the middle of switching the current user task or 1196 * switching the loaded mm. It can also be dangerous if we 1197 * interrupted some kernel code that was temporarily using a 1198 * different mm. 1199 */ 1200 bool nmi_uaccess_okay(void) 1201 { 1202 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1203 struct mm_struct *current_mm = current->mm; 1204 1205 VM_WARN_ON_ONCE(!loaded_mm); 1206 1207 /* 1208 * The condition we want to check is 1209 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1210 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1211 * is supposed to be reasonably fast. 1212 * 1213 * Instead, we check the almost equivalent but somewhat conservative 1214 * condition below, and we rely on the fact that switch_mm_irqs_off() 1215 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1216 */ 1217 if (loaded_mm != current_mm) 1218 return false; 1219 1220 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 1221 1222 return true; 1223 } 1224 1225 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1226 size_t count, loff_t *ppos) 1227 { 1228 char buf[32]; 1229 unsigned int len; 1230 1231 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1232 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1233 } 1234 1235 static ssize_t tlbflush_write_file(struct file *file, 1236 const char __user *user_buf, size_t count, loff_t *ppos) 1237 { 1238 char buf[32]; 1239 ssize_t len; 1240 int ceiling; 1241 1242 len = min(count, sizeof(buf) - 1); 1243 if (copy_from_user(buf, user_buf, len)) 1244 return -EFAULT; 1245 1246 buf[len] = '\0'; 1247 if (kstrtoint(buf, 0, &ceiling)) 1248 return -EINVAL; 1249 1250 if (ceiling < 0) 1251 return -EINVAL; 1252 1253 tlb_single_page_flush_ceiling = ceiling; 1254 return count; 1255 } 1256 1257 static const struct file_operations fops_tlbflush = { 1258 .read = tlbflush_read_file, 1259 .write = tlbflush_write_file, 1260 .llseek = default_llseek, 1261 }; 1262 1263 static int __init create_tlb_single_page_flush_ceiling(void) 1264 { 1265 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1266 arch_debugfs_dir, NULL, &fops_tlbflush); 1267 return 0; 1268 } 1269 late_initcall(create_tlb_single_page_flush_ceiling); 1270