1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 12 #include <asm/tlbflush.h> 13 #include <asm/mmu_context.h> 14 #include <asm/nospec-branch.h> 15 #include <asm/cache.h> 16 #include <asm/apic.h> 17 18 #include "mm_internal.h" 19 20 #ifdef CONFIG_PARAVIRT 21 # define STATIC_NOPV 22 #else 23 # define STATIC_NOPV static 24 # define __flush_tlb_local native_flush_tlb_local 25 # define __flush_tlb_global native_flush_tlb_global 26 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 27 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) 28 #endif 29 30 /* 31 * TLB flushing, formerly SMP-only 32 * c/o Linus Torvalds. 33 * 34 * These mean you can really definitely utterly forget about 35 * writing to user space from interrupts. (Its not allowed anyway). 36 * 37 * Optimizations Manfred Spraul <manfred@colorfullife.com> 38 * 39 * More scalable flush, from Andi Kleen 40 * 41 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 42 */ 43 44 /* 45 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is 46 * stored in cpu_tlb_state.last_user_mm_ibpb. 47 */ 48 #define LAST_USER_MM_IBPB 0x1UL 49 50 /* 51 * The x86 feature is called PCID (Process Context IDentifier). It is similar 52 * to what is traditionally called ASID on the RISC processors. 53 * 54 * We don't use the traditional ASID implementation, where each process/mm gets 55 * its own ASID and flush/restart when we run out of ASID space. 56 * 57 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 58 * that came by on this CPU, allowing cheaper switch_mm between processes on 59 * this CPU. 60 * 61 * We end up with different spaces for different things. To avoid confusion we 62 * use different names for each of them: 63 * 64 * ASID - [0, TLB_NR_DYN_ASIDS-1] 65 * the canonical identifier for an mm 66 * 67 * kPCID - [1, TLB_NR_DYN_ASIDS] 68 * the value we write into the PCID part of CR3; corresponds to the 69 * ASID+1, because PCID 0 is special. 70 * 71 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 72 * for KPTI each mm has two address spaces and thus needs two 73 * PCID values, but we can still do with a single ASID denomination 74 * for each mm. Corresponds to kPCID + 2048. 75 * 76 */ 77 78 /* There are 12 bits of space for ASIDS in CR3 */ 79 #define CR3_HW_ASID_BITS 12 80 81 /* 82 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 83 * user/kernel switches 84 */ 85 #ifdef CONFIG_PAGE_TABLE_ISOLATION 86 # define PTI_CONSUMED_PCID_BITS 1 87 #else 88 # define PTI_CONSUMED_PCID_BITS 0 89 #endif 90 91 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 92 93 /* 94 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 95 * for them being zero-based. Another -1 is because PCID 0 is reserved for 96 * use by non-PCID-aware users. 97 */ 98 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 99 100 /* 101 * Given @asid, compute kPCID 102 */ 103 static inline u16 kern_pcid(u16 asid) 104 { 105 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 106 107 #ifdef CONFIG_PAGE_TABLE_ISOLATION 108 /* 109 * Make sure that the dynamic ASID space does not conflict with the 110 * bit we are using to switch between user and kernel ASIDs. 111 */ 112 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 113 114 /* 115 * The ASID being passed in here should have respected the 116 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 117 */ 118 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 119 #endif 120 /* 121 * The dynamically-assigned ASIDs that get passed in are small 122 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 123 * so do not bother to clear it. 124 * 125 * If PCID is on, ASID-aware code paths put the ASID+1 into the 126 * PCID bits. This serves two purposes. It prevents a nasty 127 * situation in which PCID-unaware code saves CR3, loads some other 128 * value (with PCID == 0), and then restores CR3, thus corrupting 129 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 130 * that any bugs involving loading a PCID-enabled CR3 with 131 * CR4.PCIDE off will trigger deterministically. 132 */ 133 return asid + 1; 134 } 135 136 /* 137 * Given @asid, compute uPCID 138 */ 139 static inline u16 user_pcid(u16 asid) 140 { 141 u16 ret = kern_pcid(asid); 142 #ifdef CONFIG_PAGE_TABLE_ISOLATION 143 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 144 #endif 145 return ret; 146 } 147 148 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 149 { 150 if (static_cpu_has(X86_FEATURE_PCID)) { 151 return __sme_pa(pgd) | kern_pcid(asid); 152 } else { 153 VM_WARN_ON_ONCE(asid != 0); 154 return __sme_pa(pgd); 155 } 156 } 157 158 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 159 { 160 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 161 /* 162 * Use boot_cpu_has() instead of this_cpu_has() as this function 163 * might be called during early boot. This should work even after 164 * boot because all CPU's the have same capabilities: 165 */ 166 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 167 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 168 } 169 170 /* 171 * We get here when we do something requiring a TLB invalidation 172 * but could not go invalidate all of the contexts. We do the 173 * necessary invalidation by clearing out the 'ctx_id' which 174 * forces a TLB flush when the context is loaded. 175 */ 176 static void clear_asid_other(void) 177 { 178 u16 asid; 179 180 /* 181 * This is only expected to be set if we have disabled 182 * kernel _PAGE_GLOBAL pages. 183 */ 184 if (!static_cpu_has(X86_FEATURE_PTI)) { 185 WARN_ON_ONCE(1); 186 return; 187 } 188 189 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 190 /* Do not need to flush the current asid */ 191 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 192 continue; 193 /* 194 * Make sure the next time we go to switch to 195 * this asid, we do a flush: 196 */ 197 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 198 } 199 this_cpu_write(cpu_tlbstate.invalidate_other, false); 200 } 201 202 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 203 204 205 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 206 u16 *new_asid, bool *need_flush) 207 { 208 u16 asid; 209 210 if (!static_cpu_has(X86_FEATURE_PCID)) { 211 *new_asid = 0; 212 *need_flush = true; 213 return; 214 } 215 216 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 217 clear_asid_other(); 218 219 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 220 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 221 next->context.ctx_id) 222 continue; 223 224 *new_asid = asid; 225 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 226 next_tlb_gen); 227 return; 228 } 229 230 /* 231 * We don't currently own an ASID slot on this CPU. 232 * Allocate a slot. 233 */ 234 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 235 if (*new_asid >= TLB_NR_DYN_ASIDS) { 236 *new_asid = 0; 237 this_cpu_write(cpu_tlbstate.next_asid, 1); 238 } 239 *need_flush = true; 240 } 241 242 /* 243 * Given an ASID, flush the corresponding user ASID. We can delay this 244 * until the next time we switch to it. 245 * 246 * See SWITCH_TO_USER_CR3. 247 */ 248 static inline void invalidate_user_asid(u16 asid) 249 { 250 /* There is no user ASID if address space separation is off */ 251 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 252 return; 253 254 /* 255 * We only have a single ASID if PCID is off and the CR3 256 * write will have flushed it. 257 */ 258 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 259 return; 260 261 if (!static_cpu_has(X86_FEATURE_PTI)) 262 return; 263 264 __set_bit(kern_pcid(asid), 265 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 266 } 267 268 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 269 { 270 unsigned long new_mm_cr3; 271 272 if (need_flush) { 273 invalidate_user_asid(new_asid); 274 new_mm_cr3 = build_cr3(pgdir, new_asid); 275 } else { 276 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 277 } 278 279 /* 280 * Caution: many callers of this function expect 281 * that load_cr3() is serializing and orders TLB 282 * fills with respect to the mm_cpumask writes. 283 */ 284 write_cr3(new_mm_cr3); 285 } 286 287 void leave_mm(int cpu) 288 { 289 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 290 291 /* 292 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 293 * If so, our callers still expect us to flush the TLB, but there 294 * aren't any user TLB entries in init_mm to worry about. 295 * 296 * This needs to happen before any other sanity checks due to 297 * intel_idle's shenanigans. 298 */ 299 if (loaded_mm == &init_mm) 300 return; 301 302 /* Warn if we're not lazy. */ 303 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); 304 305 switch_mm(NULL, &init_mm, NULL); 306 } 307 EXPORT_SYMBOL_GPL(leave_mm); 308 309 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 310 struct task_struct *tsk) 311 { 312 unsigned long flags; 313 314 local_irq_save(flags); 315 switch_mm_irqs_off(prev, next, tsk); 316 local_irq_restore(flags); 317 } 318 319 static unsigned long mm_mangle_tif_spec_ib(struct task_struct *next) 320 { 321 unsigned long next_tif = task_thread_info(next)->flags; 322 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB; 323 324 return (unsigned long)next->mm | ibpb; 325 } 326 327 static void cond_ibpb(struct task_struct *next) 328 { 329 if (!next || !next->mm) 330 return; 331 332 /* 333 * Both, the conditional and the always IBPB mode use the mm 334 * pointer to avoid the IBPB when switching between tasks of the 335 * same process. Using the mm pointer instead of mm->context.ctx_id 336 * opens a hypothetical hole vs. mm_struct reuse, which is more or 337 * less impossible to control by an attacker. Aside of that it 338 * would only affect the first schedule so the theoretically 339 * exposed data is not really interesting. 340 */ 341 if (static_branch_likely(&switch_mm_cond_ibpb)) { 342 unsigned long prev_mm, next_mm; 343 344 /* 345 * This is a bit more complex than the always mode because 346 * it has to handle two cases: 347 * 348 * 1) Switch from a user space task (potential attacker) 349 * which has TIF_SPEC_IB set to a user space task 350 * (potential victim) which has TIF_SPEC_IB not set. 351 * 352 * 2) Switch from a user space task (potential attacker) 353 * which has TIF_SPEC_IB not set to a user space task 354 * (potential victim) which has TIF_SPEC_IB set. 355 * 356 * This could be done by unconditionally issuing IBPB when 357 * a task which has TIF_SPEC_IB set is either scheduled in 358 * or out. Though that results in two flushes when: 359 * 360 * - the same user space task is scheduled out and later 361 * scheduled in again and only a kernel thread ran in 362 * between. 363 * 364 * - a user space task belonging to the same process is 365 * scheduled in after a kernel thread ran in between 366 * 367 * - a user space task belonging to the same process is 368 * scheduled in immediately. 369 * 370 * Optimize this with reasonably small overhead for the 371 * above cases. Mangle the TIF_SPEC_IB bit into the mm 372 * pointer of the incoming task which is stored in 373 * cpu_tlbstate.last_user_mm_ibpb for comparison. 374 */ 375 next_mm = mm_mangle_tif_spec_ib(next); 376 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb); 377 378 /* 379 * Issue IBPB only if the mm's are different and one or 380 * both have the IBPB bit set. 381 */ 382 if (next_mm != prev_mm && 383 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 384 indirect_branch_prediction_barrier(); 385 386 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm); 387 } 388 389 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 390 /* 391 * Only flush when switching to a user space task with a 392 * different context than the user space task which ran 393 * last on this CPU. 394 */ 395 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) { 396 indirect_branch_prediction_barrier(); 397 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm); 398 } 399 } 400 } 401 402 #ifdef CONFIG_PERF_EVENTS 403 static inline void cr4_update_pce_mm(struct mm_struct *mm) 404 { 405 if (static_branch_unlikely(&rdpmc_always_available_key) || 406 (!static_branch_unlikely(&rdpmc_never_available_key) && 407 atomic_read(&mm->context.perf_rdpmc_allowed))) 408 cr4_set_bits_irqsoff(X86_CR4_PCE); 409 else 410 cr4_clear_bits_irqsoff(X86_CR4_PCE); 411 } 412 413 void cr4_update_pce(void *ignored) 414 { 415 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 416 } 417 418 #else 419 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 420 #endif 421 422 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 423 struct task_struct *tsk) 424 { 425 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 426 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 427 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); 428 unsigned cpu = smp_processor_id(); 429 u64 next_tlb_gen; 430 bool need_flush; 431 u16 new_asid; 432 433 /* 434 * NB: The scheduler will call us with prev == next when switching 435 * from lazy TLB mode to normal mode if active_mm isn't changing. 436 * When this happens, we don't assume that CR3 (and hence 437 * cpu_tlbstate.loaded_mm) matches next. 438 * 439 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 440 */ 441 442 /* We don't want flush_tlb_func() to run concurrently with us. */ 443 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 444 WARN_ON_ONCE(!irqs_disabled()); 445 446 /* 447 * Verify that CR3 is what we think it is. This will catch 448 * hypothetical buggy code that directly switches to swapper_pg_dir 449 * without going through leave_mm() / switch_mm_irqs_off() or that 450 * does something like write_cr3(read_cr3_pa()). 451 * 452 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 453 * isn't free. 454 */ 455 #ifdef CONFIG_DEBUG_VM 456 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 457 /* 458 * If we were to BUG here, we'd be very likely to kill 459 * the system so hard that we don't see the call trace. 460 * Try to recover instead by ignoring the error and doing 461 * a global flush to minimize the chance of corruption. 462 * 463 * (This is far from being a fully correct recovery. 464 * Architecturally, the CPU could prefetch something 465 * back into an incorrect ASID slot and leave it there 466 * to cause trouble down the road. It's better than 467 * nothing, though.) 468 */ 469 __flush_tlb_all(); 470 } 471 #endif 472 if (was_lazy) 473 this_cpu_write(cpu_tlbstate_shared.is_lazy, false); 474 475 /* 476 * The membarrier system call requires a full memory barrier and 477 * core serialization before returning to user-space, after 478 * storing to rq->curr, when changing mm. This is because 479 * membarrier() sends IPIs to all CPUs that are in the target mm 480 * to make them issue memory barriers. However, if another CPU 481 * switches to/from the target mm concurrently with 482 * membarrier(), it can cause that CPU not to receive an IPI 483 * when it really should issue a memory barrier. Writing to CR3 484 * provides that full memory barrier and core serializing 485 * instruction. 486 */ 487 if (real_prev == next) { 488 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 489 next->context.ctx_id); 490 491 /* 492 * Even in lazy TLB mode, the CPU should stay set in the 493 * mm_cpumask. The TLB shootdown code can figure out from 494 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. 495 */ 496 if (WARN_ON_ONCE(real_prev != &init_mm && 497 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 498 cpumask_set_cpu(cpu, mm_cpumask(next)); 499 500 /* 501 * If the CPU is not in lazy TLB mode, we are just switching 502 * from one thread in a process to another thread in the same 503 * process. No TLB flush required. 504 */ 505 if (!was_lazy) 506 return; 507 508 /* 509 * Read the tlb_gen to check whether a flush is needed. 510 * If the TLB is up to date, just use it. 511 * The barrier synchronizes with the tlb_gen increment in 512 * the TLB shootdown code. 513 */ 514 smp_mb(); 515 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 516 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 517 next_tlb_gen) 518 return; 519 520 /* 521 * TLB contents went out of date while we were in lazy 522 * mode. Fall through to the TLB switching code below. 523 */ 524 new_asid = prev_asid; 525 need_flush = true; 526 } else { 527 /* 528 * Avoid user/user BTB poisoning by flushing the branch 529 * predictor when switching between processes. This stops 530 * one process from doing Spectre-v2 attacks on another. 531 */ 532 cond_ibpb(tsk); 533 534 /* 535 * Stop remote flushes for the previous mm. 536 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 537 * but the bitmap manipulation can cause cache line contention. 538 */ 539 if (real_prev != &init_mm) { 540 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 541 mm_cpumask(real_prev))); 542 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 543 } 544 545 /* 546 * Start remote flushes and then read tlb_gen. 547 */ 548 if (next != &init_mm) 549 cpumask_set_cpu(cpu, mm_cpumask(next)); 550 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 551 552 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 553 554 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 555 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 556 barrier(); 557 } 558 559 if (need_flush) { 560 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 561 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 562 load_new_mm_cr3(next->pgd, new_asid, true); 563 564 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 565 } else { 566 /* The new ASID is already up to date. */ 567 load_new_mm_cr3(next->pgd, new_asid, false); 568 569 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 570 } 571 572 /* Make sure we write CR3 before loaded_mm. */ 573 barrier(); 574 575 this_cpu_write(cpu_tlbstate.loaded_mm, next); 576 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 577 578 if (next != real_prev) { 579 cr4_update_pce_mm(next); 580 switch_ldt(real_prev, next); 581 } 582 } 583 584 /* 585 * Please ignore the name of this function. It should be called 586 * switch_to_kernel_thread(). 587 * 588 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 589 * kernel thread or other context without an mm. Acceptable implementations 590 * include doing nothing whatsoever, switching to init_mm, or various clever 591 * lazy tricks to try to minimize TLB flushes. 592 * 593 * The scheduler reserves the right to call enter_lazy_tlb() several times 594 * in a row. It will notify us that we're going back to a real mm by 595 * calling switch_mm_irqs_off(). 596 */ 597 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 598 { 599 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 600 return; 601 602 this_cpu_write(cpu_tlbstate_shared.is_lazy, true); 603 } 604 605 /* 606 * Call this when reinitializing a CPU. It fixes the following potential 607 * problems: 608 * 609 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 610 * because the CPU was taken down and came back up with CR3's PCID 611 * bits clear. CPU hotplug can do this. 612 * 613 * - The TLB contains junk in slots corresponding to inactive ASIDs. 614 * 615 * - The CPU went so far out to lunch that it may have missed a TLB 616 * flush. 617 */ 618 void initialize_tlbstate_and_flush(void) 619 { 620 int i; 621 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 622 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 623 unsigned long cr3 = __read_cr3(); 624 625 /* Assert that CR3 already references the right mm. */ 626 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 627 628 /* 629 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 630 * doesn't work like other CR4 bits because it can only be set from 631 * long mode.) 632 */ 633 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 634 !(cr4_read_shadow() & X86_CR4_PCIDE)); 635 636 /* Force ASID 0 and force a TLB flush. */ 637 write_cr3(build_cr3(mm->pgd, 0)); 638 639 /* Reinitialize tlbstate. */ 640 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB); 641 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 642 this_cpu_write(cpu_tlbstate.next_asid, 1); 643 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 644 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 645 646 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 647 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 648 } 649 650 /* 651 * flush_tlb_func()'s memory ordering requirement is that any 652 * TLB fills that happen after we flush the TLB are ordered after we 653 * read active_mm's tlb_gen. We don't need any explicit barriers 654 * because all x86 flush operations are serializing and the 655 * atomic64_read operation won't be reordered by the compiler. 656 */ 657 static void flush_tlb_func(void *info) 658 { 659 /* 660 * We have three different tlb_gen values in here. They are: 661 * 662 * - mm_tlb_gen: the latest generation. 663 * - local_tlb_gen: the generation that this CPU has already caught 664 * up to. 665 * - f->new_tlb_gen: the generation that the requester of the flush 666 * wants us to catch up to. 667 */ 668 const struct flush_tlb_info *f = info; 669 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 670 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 671 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 672 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 673 bool local = smp_processor_id() == f->initiating_cpu; 674 unsigned long nr_invalidate = 0; 675 676 /* This code cannot presently handle being reentered. */ 677 VM_WARN_ON(!irqs_disabled()); 678 679 if (!local) { 680 inc_irq_stat(irq_tlb_count); 681 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 682 683 /* Can only happen on remote CPUs */ 684 if (f->mm && f->mm != loaded_mm) 685 return; 686 } 687 688 if (unlikely(loaded_mm == &init_mm)) 689 return; 690 691 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 692 loaded_mm->context.ctx_id); 693 694 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { 695 /* 696 * We're in lazy mode. We need to at least flush our 697 * paging-structure cache to avoid speculatively reading 698 * garbage into our TLB. Since switching to init_mm is barely 699 * slower than a minimal flush, just switch to init_mm. 700 * 701 * This should be rare, with native_flush_tlb_multi() skipping 702 * IPIs to lazy TLB mode CPUs. 703 */ 704 switch_mm_irqs_off(NULL, &init_mm, NULL); 705 return; 706 } 707 708 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 709 /* 710 * There's nothing to do: we're already up to date. This can 711 * happen if two concurrent flushes happen -- the first flush to 712 * be handled can catch us all the way up, leaving no work for 713 * the second flush. 714 */ 715 goto done; 716 } 717 718 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 719 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 720 721 /* 722 * If we get to this point, we know that our TLB is out of date. 723 * This does not strictly imply that we need to flush (it's 724 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 725 * going to need to flush in the very near future, so we might 726 * as well get it over with. 727 * 728 * The only question is whether to do a full or partial flush. 729 * 730 * We do a partial flush if requested and two extra conditions 731 * are met: 732 * 733 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 734 * we've always done all needed flushes to catch up to 735 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 736 * f->new_tlb_gen == 3, then we know that the flush needed to bring 737 * us up to date for tlb_gen 3 is the partial flush we're 738 * processing. 739 * 740 * As an example of why this check is needed, suppose that there 741 * are two concurrent flushes. The first is a full flush that 742 * changes context.tlb_gen from 1 to 2. The second is a partial 743 * flush that changes context.tlb_gen from 2 to 3. If they get 744 * processed on this CPU in reverse order, we'll see 745 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 746 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 747 * 3, we'd be break the invariant: we'd update local_tlb_gen above 748 * 1 without the full flush that's needed for tlb_gen 2. 749 * 750 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. 751 * Partial TLB flushes are not all that much cheaper than full TLB 752 * flushes, so it seems unlikely that it would be a performance win 753 * to do a partial flush if that won't bring our TLB fully up to 754 * date. By doing a full flush instead, we can increase 755 * local_tlb_gen all the way to mm_tlb_gen and we can probably 756 * avoid another flush in the very near future. 757 */ 758 if (f->end != TLB_FLUSH_ALL && 759 f->new_tlb_gen == local_tlb_gen + 1 && 760 f->new_tlb_gen == mm_tlb_gen) { 761 /* Partial flush */ 762 unsigned long addr = f->start; 763 764 nr_invalidate = (f->end - f->start) >> f->stride_shift; 765 766 while (addr < f->end) { 767 flush_tlb_one_user(addr); 768 addr += 1UL << f->stride_shift; 769 } 770 if (local) 771 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 772 } else { 773 /* Full flush. */ 774 nr_invalidate = TLB_FLUSH_ALL; 775 776 flush_tlb_local(); 777 if (local) 778 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 779 } 780 781 /* Both paths above update our state to mm_tlb_gen. */ 782 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 783 784 /* Tracing is done in a unified manner to reduce the code size */ 785 done: 786 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : 787 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : 788 TLB_LOCAL_MM_SHOOTDOWN, 789 nr_invalidate); 790 } 791 792 static bool tlb_is_not_lazy(int cpu) 793 { 794 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu); 795 } 796 797 static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask); 798 799 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); 800 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); 801 802 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, 803 const struct flush_tlb_info *info) 804 { 805 /* 806 * Do accounting and tracing. Note that there are (and have always been) 807 * cases in which a remote TLB flush will be traced, but eventually 808 * would not happen. 809 */ 810 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 811 if (info->end == TLB_FLUSH_ALL) 812 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 813 else 814 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 815 (info->end - info->start) >> PAGE_SHIFT); 816 817 /* 818 * If no page tables were freed, we can skip sending IPIs to 819 * CPUs in lazy TLB mode. They will flush the CPU themselves 820 * at the next context switch. 821 * 822 * However, if page tables are getting freed, we need to send the 823 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 824 * up on the new contents of what used to be page tables, while 825 * doing a speculative memory access. 826 */ 827 if (info->freed_tables) { 828 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); 829 } else { 830 /* 831 * Although we could have used on_each_cpu_cond_mask(), 832 * open-coding it has performance advantages, as it eliminates 833 * the need for indirect calls or retpolines. In addition, it 834 * allows to use a designated cpumask for evaluating the 835 * condition, instead of allocating one. 836 * 837 * This code works under the assumption that there are no nested 838 * TLB flushes, an assumption that is already made in 839 * flush_tlb_mm_range(). 840 * 841 * cond_cpumask is logically a stack-local variable, but it is 842 * more efficient to have it off the stack and not to allocate 843 * it on demand. Preemption is disabled and this code is 844 * non-reentrant. 845 */ 846 struct cpumask *cond_cpumask = this_cpu_ptr(&flush_tlb_mask); 847 int cpu; 848 849 cpumask_clear(cond_cpumask); 850 851 for_each_cpu(cpu, cpumask) { 852 if (tlb_is_not_lazy(cpu)) 853 __cpumask_set_cpu(cpu, cond_cpumask); 854 } 855 on_each_cpu_mask(cond_cpumask, flush_tlb_func, (void *)info, true); 856 } 857 } 858 859 void flush_tlb_multi(const struct cpumask *cpumask, 860 const struct flush_tlb_info *info) 861 { 862 __flush_tlb_multi(cpumask, info); 863 } 864 865 /* 866 * See Documentation/x86/tlb.rst for details. We choose 33 867 * because it is large enough to cover the vast majority (at 868 * least 95%) of allocations, and is small enough that we are 869 * confident it will not cause too much overhead. Each single 870 * flush is about 100 ns, so this caps the maximum overhead at 871 * _about_ 3,000 ns. 872 * 873 * This is in units of pages. 874 */ 875 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 876 877 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 878 879 #ifdef CONFIG_DEBUG_VM 880 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 881 #endif 882 883 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 884 unsigned long start, unsigned long end, 885 unsigned int stride_shift, bool freed_tables, 886 u64 new_tlb_gen) 887 { 888 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 889 890 #ifdef CONFIG_DEBUG_VM 891 /* 892 * Ensure that the following code is non-reentrant and flush_tlb_info 893 * is not overwritten. This means no TLB flushing is initiated by 894 * interrupt handlers and machine-check exception handlers. 895 */ 896 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 897 #endif 898 899 info->start = start; 900 info->end = end; 901 info->mm = mm; 902 info->stride_shift = stride_shift; 903 info->freed_tables = freed_tables; 904 info->new_tlb_gen = new_tlb_gen; 905 info->initiating_cpu = smp_processor_id(); 906 907 return info; 908 } 909 910 static void put_flush_tlb_info(void) 911 { 912 #ifdef CONFIG_DEBUG_VM 913 /* Complete reentrancy prevention checks */ 914 barrier(); 915 this_cpu_dec(flush_tlb_info_idx); 916 #endif 917 } 918 919 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 920 unsigned long end, unsigned int stride_shift, 921 bool freed_tables) 922 { 923 struct flush_tlb_info *info; 924 u64 new_tlb_gen; 925 int cpu; 926 927 cpu = get_cpu(); 928 929 /* Should we flush just the requested range? */ 930 if ((end == TLB_FLUSH_ALL) || 931 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 932 start = 0; 933 end = TLB_FLUSH_ALL; 934 } 935 936 /* This is also a barrier that synchronizes with switch_mm(). */ 937 new_tlb_gen = inc_mm_tlb_gen(mm); 938 939 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 940 new_tlb_gen); 941 942 /* 943 * flush_tlb_multi() is not optimized for the common case in which only 944 * a local TLB flush is needed. Optimize this use-case by calling 945 * flush_tlb_func_local() directly in this case. 946 */ 947 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { 948 flush_tlb_multi(mm_cpumask(mm), info); 949 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 950 lockdep_assert_irqs_enabled(); 951 local_irq_disable(); 952 flush_tlb_func(info); 953 local_irq_enable(); 954 } 955 956 put_flush_tlb_info(); 957 put_cpu(); 958 } 959 960 961 static void do_flush_tlb_all(void *info) 962 { 963 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 964 __flush_tlb_all(); 965 } 966 967 void flush_tlb_all(void) 968 { 969 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 970 on_each_cpu(do_flush_tlb_all, NULL, 1); 971 } 972 973 static void do_kernel_range_flush(void *info) 974 { 975 struct flush_tlb_info *f = info; 976 unsigned long addr; 977 978 /* flush range by one by one 'invlpg' */ 979 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 980 flush_tlb_one_kernel(addr); 981 } 982 983 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 984 { 985 /* Balance as user space task's flush, a bit conservative */ 986 if (end == TLB_FLUSH_ALL || 987 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 988 on_each_cpu(do_flush_tlb_all, NULL, 1); 989 } else { 990 struct flush_tlb_info *info; 991 992 preempt_disable(); 993 info = get_flush_tlb_info(NULL, start, end, 0, false, 0); 994 995 on_each_cpu(do_kernel_range_flush, info, 1); 996 997 put_flush_tlb_info(); 998 preempt_enable(); 999 } 1000 } 1001 1002 /* 1003 * This can be used from process context to figure out what the value of 1004 * CR3 is without needing to do a (slow) __read_cr3(). 1005 * 1006 * It's intended to be used for code like KVM that sneakily changes CR3 1007 * and needs to restore it. It needs to be used very carefully. 1008 */ 1009 unsigned long __get_current_cr3_fast(void) 1010 { 1011 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 1012 this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1013 1014 /* For now, be very restrictive about when this can be called. */ 1015 VM_WARN_ON(in_nmi() || preemptible()); 1016 1017 VM_BUG_ON(cr3 != __read_cr3()); 1018 return cr3; 1019 } 1020 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1021 1022 /* 1023 * Flush one page in the kernel mapping 1024 */ 1025 void flush_tlb_one_kernel(unsigned long addr) 1026 { 1027 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1028 1029 /* 1030 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1031 * paravirt equivalent. Even with PCID, this is sufficient: we only 1032 * use PCID if we also use global PTEs for the kernel mapping, and 1033 * INVLPG flushes global translations across all address spaces. 1034 * 1035 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1036 * __flush_tlb_one_user() will flush the given address for the current 1037 * kernel address space and for its usermode counterpart, but it does 1038 * not flush it for other address spaces. 1039 */ 1040 flush_tlb_one_user(addr); 1041 1042 if (!static_cpu_has(X86_FEATURE_PTI)) 1043 return; 1044 1045 /* 1046 * See above. We need to propagate the flush to all other address 1047 * spaces. In principle, we only need to propagate it to kernelmode 1048 * address spaces, but the extra bookkeeping we would need is not 1049 * worth it. 1050 */ 1051 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1052 } 1053 1054 /* 1055 * Flush one page in the user mapping 1056 */ 1057 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1058 { 1059 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1060 1061 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 1062 1063 if (!static_cpu_has(X86_FEATURE_PTI)) 1064 return; 1065 1066 /* 1067 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 1068 * Just use invalidate_user_asid() in case we are called early. 1069 */ 1070 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 1071 invalidate_user_asid(loaded_mm_asid); 1072 else 1073 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1074 } 1075 1076 void flush_tlb_one_user(unsigned long addr) 1077 { 1078 __flush_tlb_one_user(addr); 1079 } 1080 1081 /* 1082 * Flush everything 1083 */ 1084 STATIC_NOPV void native_flush_tlb_global(void) 1085 { 1086 unsigned long cr4, flags; 1087 1088 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1089 /* 1090 * Using INVPCID is considerably faster than a pair of writes 1091 * to CR4 sandwiched inside an IRQ flag save/restore. 1092 * 1093 * Note, this works with CR4.PCIDE=0 or 1. 1094 */ 1095 invpcid_flush_all(); 1096 return; 1097 } 1098 1099 /* 1100 * Read-modify-write to CR4 - protect it from preemption and 1101 * from interrupts. (Use the raw variant because this code can 1102 * be called from deep inside debugging code.) 1103 */ 1104 raw_local_irq_save(flags); 1105 1106 cr4 = this_cpu_read(cpu_tlbstate.cr4); 1107 /* toggle PGE */ 1108 native_write_cr4(cr4 ^ X86_CR4_PGE); 1109 /* write old PGE again and flush TLBs */ 1110 native_write_cr4(cr4); 1111 1112 raw_local_irq_restore(flags); 1113 } 1114 1115 /* 1116 * Flush the entire current user mapping 1117 */ 1118 STATIC_NOPV void native_flush_tlb_local(void) 1119 { 1120 /* 1121 * Preemption or interrupts must be disabled to protect the access 1122 * to the per CPU variable and to prevent being preempted between 1123 * read_cr3() and write_cr3(). 1124 */ 1125 WARN_ON_ONCE(preemptible()); 1126 1127 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1128 1129 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1130 native_write_cr3(__native_read_cr3()); 1131 } 1132 1133 void flush_tlb_local(void) 1134 { 1135 __flush_tlb_local(); 1136 } 1137 1138 /* 1139 * Flush everything 1140 */ 1141 void __flush_tlb_all(void) 1142 { 1143 /* 1144 * This is to catch users with enabled preemption and the PGE feature 1145 * and don't trigger the warning in __native_flush_tlb(). 1146 */ 1147 VM_WARN_ON_ONCE(preemptible()); 1148 1149 if (boot_cpu_has(X86_FEATURE_PGE)) { 1150 __flush_tlb_global(); 1151 } else { 1152 /* 1153 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1154 */ 1155 flush_tlb_local(); 1156 } 1157 } 1158 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1159 1160 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1161 { 1162 struct flush_tlb_info *info; 1163 1164 int cpu = get_cpu(); 1165 1166 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0); 1167 /* 1168 * flush_tlb_multi() is not optimized for the common case in which only 1169 * a local TLB flush is needed. Optimize this use-case by calling 1170 * flush_tlb_func_local() directly in this case. 1171 */ 1172 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { 1173 flush_tlb_multi(&batch->cpumask, info); 1174 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1175 lockdep_assert_irqs_enabled(); 1176 local_irq_disable(); 1177 flush_tlb_func(info); 1178 local_irq_enable(); 1179 } 1180 1181 cpumask_clear(&batch->cpumask); 1182 1183 put_flush_tlb_info(); 1184 put_cpu(); 1185 } 1186 1187 /* 1188 * Blindly accessing user memory from NMI context can be dangerous 1189 * if we're in the middle of switching the current user task or 1190 * switching the loaded mm. It can also be dangerous if we 1191 * interrupted some kernel code that was temporarily using a 1192 * different mm. 1193 */ 1194 bool nmi_uaccess_okay(void) 1195 { 1196 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1197 struct mm_struct *current_mm = current->mm; 1198 1199 VM_WARN_ON_ONCE(!loaded_mm); 1200 1201 /* 1202 * The condition we want to check is 1203 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1204 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1205 * is supposed to be reasonably fast. 1206 * 1207 * Instead, we check the almost equivalent but somewhat conservative 1208 * condition below, and we rely on the fact that switch_mm_irqs_off() 1209 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1210 */ 1211 if (loaded_mm != current_mm) 1212 return false; 1213 1214 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 1215 1216 return true; 1217 } 1218 1219 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1220 size_t count, loff_t *ppos) 1221 { 1222 char buf[32]; 1223 unsigned int len; 1224 1225 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1226 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1227 } 1228 1229 static ssize_t tlbflush_write_file(struct file *file, 1230 const char __user *user_buf, size_t count, loff_t *ppos) 1231 { 1232 char buf[32]; 1233 ssize_t len; 1234 int ceiling; 1235 1236 len = min(count, sizeof(buf) - 1); 1237 if (copy_from_user(buf, user_buf, len)) 1238 return -EFAULT; 1239 1240 buf[len] = '\0'; 1241 if (kstrtoint(buf, 0, &ceiling)) 1242 return -EINVAL; 1243 1244 if (ceiling < 0) 1245 return -EINVAL; 1246 1247 tlb_single_page_flush_ceiling = ceiling; 1248 return count; 1249 } 1250 1251 static const struct file_operations fops_tlbflush = { 1252 .read = tlbflush_read_file, 1253 .write = tlbflush_write_file, 1254 .llseek = default_llseek, 1255 }; 1256 1257 static int __init create_tlb_single_page_flush_ceiling(void) 1258 { 1259 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1260 arch_debugfs_dir, NULL, &fops_tlbflush); 1261 return 0; 1262 } 1263 late_initcall(create_tlb_single_page_flush_ceiling); 1264