xref: /linux/arch/x86/mm/tlb.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/mmu_context.h>
15 #include <linux/kvm_types.h>
16 
17 #include <asm/tlbflush.h>
18 #include <asm/mmu_context.h>
19 #include <asm/nospec-branch.h>
20 #include <asm/cache.h>
21 #include <asm/cacheflush.h>
22 #include <asm/apic.h>
23 #include <asm/msr.h>
24 #include <asm/perf_event.h>
25 #include <asm/tlb.h>
26 
27 #include "mm_internal.h"
28 
29 #ifdef CONFIG_PARAVIRT
30 # define STATIC_NOPV
31 #else
32 # define STATIC_NOPV			static
33 # define __flush_tlb_local		native_flush_tlb_local
34 # define __flush_tlb_global		native_flush_tlb_global
35 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
36 # define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
37 #endif
38 
39 /*
40  *	TLB flushing, formerly SMP-only
41  *		c/o Linus Torvalds.
42  *
43  *	These mean you can really definitely utterly forget about
44  *	writing to user space from interrupts. (Its not allowed anyway).
45  *
46  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
47  *
48  *	More scalable flush, from Andi Kleen
49  *
50  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
51  */
52 
53 /*
54  * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
55  * stored in cpu_tlb_state.last_user_mm_spec.
56  */
57 #define LAST_USER_MM_IBPB	0x1UL
58 #define LAST_USER_MM_L1D_FLUSH	0x2UL
59 #define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
60 
61 /* Bits to set when tlbstate and flush is (re)initialized */
62 #define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
63 
64 /*
65  * The x86 feature is called PCID (Process Context IDentifier). It is similar
66  * to what is traditionally called ASID on the RISC processors.
67  *
68  * We don't use the traditional ASID implementation, where each process/mm gets
69  * its own ASID and flush/restart when we run out of ASID space.
70  *
71  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
72  * that came by on this CPU, allowing cheaper switch_mm between processes on
73  * this CPU.
74  *
75  * We end up with different spaces for different things. To avoid confusion we
76  * use different names for each of them:
77  *
78  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
79  *         the canonical identifier for an mm, dynamically allocated on each CPU
80  *         [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1]
81  *         the canonical, global identifier for an mm, identical across all CPUs
82  *
83  * kPCID - [1, MAX_ASID_AVAILABLE]
84  *         the value we write into the PCID part of CR3; corresponds to the
85  *         ASID+1, because PCID 0 is special.
86  *
87  * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE]
88  *         for KPTI each mm has two address spaces and thus needs two
89  *         PCID values, but we can still do with a single ASID denomination
90  *         for each mm. Corresponds to kPCID + 2048.
91  *
92  */
93 
94 /*
95  * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
96  * user/kernel switches
97  */
98 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
99 # define PTI_CONSUMED_PCID_BITS	1
100 #else
101 # define PTI_CONSUMED_PCID_BITS	0
102 #endif
103 
104 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
105 
106 /*
107  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
108  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
109  * use by non-PCID-aware users.
110  */
111 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
112 
113 /*
114  * Given @asid, compute kPCID
115  */
116 static inline u16 kern_pcid(u16 asid)
117 {
118 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
119 
120 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
121 	/*
122 	 * Make sure that the dynamic ASID space does not conflict with the
123 	 * bit we are using to switch between user and kernel ASIDs.
124 	 */
125 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
126 
127 	/*
128 	 * The ASID being passed in here should have respected the
129 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
130 	 */
131 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
132 #endif
133 	/*
134 	 * The dynamically-assigned ASIDs that get passed in are small
135 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
136 	 * so do not bother to clear it.
137 	 *
138 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
139 	 * PCID bits.  This serves two purposes.  It prevents a nasty
140 	 * situation in which PCID-unaware code saves CR3, loads some other
141 	 * value (with PCID == 0), and then restores CR3, thus corrupting
142 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
143 	 * that any bugs involving loading a PCID-enabled CR3 with
144 	 * CR4.PCIDE off will trigger deterministically.
145 	 */
146 	return asid + 1;
147 }
148 
149 /*
150  * Given @asid, compute uPCID
151  */
152 static inline u16 user_pcid(u16 asid)
153 {
154 	u16 ret = kern_pcid(asid);
155 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
156 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
157 #endif
158 	return ret;
159 }
160 
161 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
162 {
163 	unsigned long cr3 = __sme_pa(pgd) | lam;
164 
165 	if (static_cpu_has(X86_FEATURE_PCID)) {
166 		cr3 |= kern_pcid(asid);
167 	} else {
168 		VM_WARN_ON_ONCE(asid != 0);
169 	}
170 
171 	return cr3;
172 }
173 
174 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
175 					      unsigned long lam)
176 {
177 	/*
178 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
179 	 * might be called during early boot. This should work even after
180 	 * boot because all CPU's the have same capabilities:
181 	 */
182 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
183 	return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
184 }
185 
186 /*
187  * We get here when we do something requiring a TLB invalidation
188  * but could not go invalidate all of the contexts.  We do the
189  * necessary invalidation by clearing out the 'ctx_id' which
190  * forces a TLB flush when the context is loaded.
191  */
192 static void clear_asid_other(void)
193 {
194 	u16 asid;
195 
196 	/*
197 	 * This is only expected to be set if we have disabled
198 	 * kernel _PAGE_GLOBAL pages.
199 	 */
200 	if (!static_cpu_has(X86_FEATURE_PTI)) {
201 		WARN_ON_ONCE(1);
202 		return;
203 	}
204 
205 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
206 		/* Do not need to flush the current asid */
207 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
208 			continue;
209 		/*
210 		 * Make sure the next time we go to switch to
211 		 * this asid, we do a flush:
212 		 */
213 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
214 	}
215 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
216 }
217 
218 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
219 
220 struct new_asid {
221 	unsigned int asid	: 16;
222 	unsigned int need_flush : 1;
223 };
224 
225 static struct new_asid choose_new_asid(struct mm_struct *next, u64 next_tlb_gen)
226 {
227 	struct new_asid ns;
228 	u16 asid;
229 
230 	if (!static_cpu_has(X86_FEATURE_PCID)) {
231 		ns.asid = 0;
232 		ns.need_flush = 1;
233 		return ns;
234 	}
235 
236 	/*
237 	 * TLB consistency for global ASIDs is maintained with hardware assisted
238 	 * remote TLB flushing. Global ASIDs are always up to date.
239 	 */
240 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) {
241 		u16 global_asid = mm_global_asid(next);
242 
243 		if (global_asid) {
244 			ns.asid = global_asid;
245 			ns.need_flush = 0;
246 			return ns;
247 		}
248 	}
249 
250 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
251 		clear_asid_other();
252 
253 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
254 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
255 		    next->context.ctx_id)
256 			continue;
257 
258 		ns.asid = asid;
259 		ns.need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < next_tlb_gen);
260 		return ns;
261 	}
262 
263 	/*
264 	 * We don't currently own an ASID slot on this CPU.
265 	 * Allocate a slot.
266 	 */
267 	ns.asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
268 	if (ns.asid >= TLB_NR_DYN_ASIDS) {
269 		ns.asid = 0;
270 		this_cpu_write(cpu_tlbstate.next_asid, 1);
271 	}
272 	ns.need_flush = true;
273 
274 	return ns;
275 }
276 
277 /*
278  * Global ASIDs are allocated for multi-threaded processes that are
279  * active on multiple CPUs simultaneously, giving each of those
280  * processes the same PCID on every CPU, for use with hardware-assisted
281  * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR.
282  *
283  * These global ASIDs are held for the lifetime of the process.
284  */
285 static DEFINE_RAW_SPINLOCK(global_asid_lock);
286 static u16 last_global_asid = MAX_ASID_AVAILABLE;
287 static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE);
288 static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE);
289 static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1;
290 
291 /*
292  * When the search for a free ASID in the global ASID space reaches
293  * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously
294  * freed global ASIDs are safe to re-use.
295  *
296  * This way the global flush only needs to happen at ASID rollover
297  * time, and not at ASID allocation time.
298  */
299 static void reset_global_asid_space(void)
300 {
301 	lockdep_assert_held(&global_asid_lock);
302 
303 	invlpgb_flush_all_nonglobals();
304 
305 	/*
306 	 * The TLB flush above makes it safe to re-use the previously
307 	 * freed global ASIDs.
308 	 */
309 	bitmap_andnot(global_asid_used, global_asid_used,
310 			global_asid_freed, MAX_ASID_AVAILABLE);
311 	bitmap_clear(global_asid_freed, 0, MAX_ASID_AVAILABLE);
312 
313 	/* Restart the search from the start of global ASID space. */
314 	last_global_asid = TLB_NR_DYN_ASIDS;
315 }
316 
317 static u16 allocate_global_asid(void)
318 {
319 	u16 asid;
320 
321 	lockdep_assert_held(&global_asid_lock);
322 
323 	/* The previous allocation hit the edge of available address space */
324 	if (last_global_asid >= MAX_ASID_AVAILABLE - 1)
325 		reset_global_asid_space();
326 
327 	asid = find_next_zero_bit(global_asid_used, MAX_ASID_AVAILABLE, last_global_asid);
328 
329 	if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) {
330 		/* This should never happen. */
331 		VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n",
332 				global_asid_available);
333 		return 0;
334 	}
335 
336 	/* Claim this global ASID. */
337 	__set_bit(asid, global_asid_used);
338 	last_global_asid = asid;
339 	global_asid_available--;
340 	return asid;
341 }
342 
343 /*
344  * Check whether a process is currently active on more than @threshold CPUs.
345  * This is a cheap estimation on whether or not it may make sense to assign
346  * a global ASID to this process, and use broadcast TLB invalidation.
347  */
348 static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold)
349 {
350 	int count = 0;
351 	int cpu;
352 
353 	/* This quick check should eliminate most single threaded programs. */
354 	if (cpumask_weight(mm_cpumask(mm)) <= threshold)
355 		return false;
356 
357 	/* Slower check to make sure. */
358 	for_each_cpu(cpu, mm_cpumask(mm)) {
359 		/* Skip the CPUs that aren't really running this process. */
360 		if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm)
361 			continue;
362 
363 		if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
364 			continue;
365 
366 		if (++count > threshold)
367 			return true;
368 	}
369 	return false;
370 }
371 
372 /*
373  * Assign a global ASID to the current process, protecting against
374  * races between multiple threads in the process.
375  */
376 static void use_global_asid(struct mm_struct *mm)
377 {
378 	u16 asid;
379 
380 	guard(raw_spinlock_irqsave)(&global_asid_lock);
381 
382 	/* This process is already using broadcast TLB invalidation. */
383 	if (mm_global_asid(mm))
384 		return;
385 
386 	/*
387 	 * The last global ASID was consumed while waiting for the lock.
388 	 *
389 	 * If this fires, a more aggressive ASID reuse scheme might be
390 	 * needed.
391 	 */
392 	if (!global_asid_available) {
393 		VM_WARN_ONCE(1, "Ran out of global ASIDs\n");
394 		return;
395 	}
396 
397 	asid = allocate_global_asid();
398 	if (!asid)
399 		return;
400 
401 	mm_assign_global_asid(mm, asid);
402 }
403 
404 void mm_free_global_asid(struct mm_struct *mm)
405 {
406 	if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
407 		return;
408 
409 	if (!mm_global_asid(mm))
410 		return;
411 
412 	guard(raw_spinlock_irqsave)(&global_asid_lock);
413 
414 	/* The global ASID can be re-used only after flush at wrap-around. */
415 #ifdef CONFIG_BROADCAST_TLB_FLUSH
416 	__set_bit(mm->context.global_asid, global_asid_freed);
417 
418 	mm->context.global_asid = 0;
419 	global_asid_available++;
420 #endif
421 }
422 
423 /*
424  * Is the mm transitioning from a CPU-local ASID to a global ASID?
425  */
426 static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid)
427 {
428 	u16 global_asid = mm_global_asid(mm);
429 
430 	if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
431 		return false;
432 
433 	/* Process is transitioning to a global ASID */
434 	if (global_asid && asid != global_asid)
435 		return true;
436 
437 	return false;
438 }
439 
440 /*
441  * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86
442  * systems have over 8k CPUs. Because of this potential ASID shortage,
443  * global ASIDs are handed out to processes that have frequent TLB
444  * flushes and are active on 4 or more CPUs simultaneously.
445  */
446 static void consider_global_asid(struct mm_struct *mm)
447 {
448 	if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
449 		return;
450 
451 	/* Check every once in a while. */
452 	if ((current->pid & 0x1f) != (jiffies & 0x1f))
453 		return;
454 
455 	/*
456 	 * Assign a global ASID if the process is active on
457 	 * 4 or more CPUs simultaneously.
458 	 */
459 	if (mm_active_cpus_exceeds(mm, 3))
460 		use_global_asid(mm);
461 }
462 
463 static void finish_asid_transition(struct flush_tlb_info *info)
464 {
465 	struct mm_struct *mm = info->mm;
466 	int bc_asid = mm_global_asid(mm);
467 	int cpu;
468 
469 	if (!mm_in_asid_transition(mm))
470 		return;
471 
472 	for_each_cpu(cpu, mm_cpumask(mm)) {
473 		/*
474 		 * The remote CPU is context switching. Wait for that to
475 		 * finish, to catch the unlikely case of it switching to
476 		 * the target mm with an out of date ASID.
477 		 */
478 		while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING)
479 			cpu_relax();
480 
481 		if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm)
482 			continue;
483 
484 		/*
485 		 * If at least one CPU is not using the global ASID yet,
486 		 * send a TLB flush IPI. The IPI should cause stragglers
487 		 * to transition soon.
488 		 *
489 		 * This can race with the CPU switching to another task;
490 		 * that results in a (harmless) extra IPI.
491 		 */
492 		if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) {
493 			flush_tlb_multi(mm_cpumask(info->mm), info);
494 			return;
495 		}
496 	}
497 
498 	/* All the CPUs running this process are using the global ASID. */
499 	mm_clear_asid_transition(mm);
500 }
501 
502 static void broadcast_tlb_flush(struct flush_tlb_info *info)
503 {
504 	bool pmd = info->stride_shift == PMD_SHIFT;
505 	unsigned long asid = mm_global_asid(info->mm);
506 	unsigned long addr = info->start;
507 
508 	/*
509 	 * TLB flushes with INVLPGB are kicked off asynchronously.
510 	 * The inc_mm_tlb_gen() guarantees page table updates are done
511 	 * before these TLB flushes happen.
512 	 */
513 	if (info->end == TLB_FLUSH_ALL) {
514 		invlpgb_flush_single_pcid_nosync(kern_pcid(asid));
515 		/* Do any CPUs supporting INVLPGB need PTI? */
516 		if (cpu_feature_enabled(X86_FEATURE_PTI))
517 			invlpgb_flush_single_pcid_nosync(user_pcid(asid));
518 	} else do {
519 		unsigned long nr = 1;
520 
521 		if (info->stride_shift <= PMD_SHIFT) {
522 			nr = (info->end - addr) >> info->stride_shift;
523 			nr = clamp_val(nr, 1, invlpgb_count_max);
524 		}
525 
526 		invlpgb_flush_user_nr_nosync(kern_pcid(asid), addr, nr, pmd);
527 		if (cpu_feature_enabled(X86_FEATURE_PTI))
528 			invlpgb_flush_user_nr_nosync(user_pcid(asid), addr, nr, pmd);
529 
530 		addr += nr << info->stride_shift;
531 	} while (addr < info->end);
532 
533 	finish_asid_transition(info);
534 
535 	/* Wait for the INVLPGBs kicked off above to finish. */
536 	__tlbsync();
537 }
538 
539 /*
540  * Given an ASID, flush the corresponding user ASID.  We can delay this
541  * until the next time we switch to it.
542  *
543  * See SWITCH_TO_USER_CR3.
544  */
545 static inline void invalidate_user_asid(u16 asid)
546 {
547 	/* There is no user ASID if address space separation is off */
548 	if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
549 		return;
550 
551 	/*
552 	 * We only have a single ASID if PCID is off and the CR3
553 	 * write will have flushed it.
554 	 */
555 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
556 		return;
557 
558 	if (!static_cpu_has(X86_FEATURE_PTI))
559 		return;
560 
561 	__set_bit(kern_pcid(asid),
562 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
563 }
564 
565 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
566 			    bool need_flush)
567 {
568 	unsigned long new_mm_cr3;
569 
570 	if (need_flush) {
571 		invalidate_user_asid(new_asid);
572 		new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
573 	} else {
574 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
575 	}
576 
577 	/*
578 	 * Caution: many callers of this function expect
579 	 * that load_cr3() is serializing and orders TLB
580 	 * fills with respect to the mm_cpumask writes.
581 	 */
582 	write_cr3(new_mm_cr3);
583 }
584 
585 void leave_mm(void)
586 {
587 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
588 
589 	/*
590 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
591 	 * If so, our callers still expect us to flush the TLB, but there
592 	 * aren't any user TLB entries in init_mm to worry about.
593 	 *
594 	 * This needs to happen before any other sanity checks due to
595 	 * intel_idle's shenanigans.
596 	 */
597 	if (loaded_mm == &init_mm)
598 		return;
599 
600 	/* Warn if we're not lazy. */
601 	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
602 
603 	switch_mm(NULL, &init_mm, NULL);
604 }
605 EXPORT_SYMBOL_GPL(leave_mm);
606 
607 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
608 	       struct task_struct *tsk)
609 {
610 	unsigned long flags;
611 
612 	local_irq_save(flags);
613 	switch_mm_irqs_off(NULL, next, tsk);
614 	local_irq_restore(flags);
615 }
616 
617 /*
618  * Invoked from return to user/guest by a task that opted-in to L1D
619  * flushing but ended up running on an SMT enabled core due to wrong
620  * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
621  * contract which this task requested.
622  */
623 static void l1d_flush_force_sigbus(struct callback_head *ch)
624 {
625 	force_sig(SIGBUS);
626 }
627 
628 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
629 				struct task_struct *next)
630 {
631 	/* Flush L1D if the outgoing task requests it */
632 	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
633 		wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
634 
635 	/* Check whether the incoming task opted in for L1D flush */
636 	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
637 		return;
638 
639 	/*
640 	 * Validate that it is not running on an SMT sibling as this would
641 	 * make the exercise pointless because the siblings share L1D. If
642 	 * it runs on a SMT sibling, notify it with SIGBUS on return to
643 	 * user/guest
644 	 */
645 	if (this_cpu_read(cpu_info.smt_active)) {
646 		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
647 		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
648 		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
649 	}
650 }
651 
652 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
653 {
654 	unsigned long next_tif = read_task_thread_flags(next);
655 	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
656 
657 	/*
658 	 * Ensure that the bit shift above works as expected and the two flags
659 	 * end up in bit 0 and 1.
660 	 */
661 	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
662 
663 	return (unsigned long)next->mm | spec_bits;
664 }
665 
666 static void cond_mitigation(struct task_struct *next)
667 {
668 	unsigned long prev_mm, next_mm;
669 
670 	if (!next || !next->mm)
671 		return;
672 
673 	next_mm = mm_mangle_tif_spec_bits(next);
674 	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
675 
676 	/*
677 	 * Avoid user->user BTB/RSB poisoning by flushing them when switching
678 	 * between processes. This stops one process from doing Spectre-v2
679 	 * attacks on another.
680 	 *
681 	 * Both, the conditional and the always IBPB mode use the mm
682 	 * pointer to avoid the IBPB when switching between tasks of the
683 	 * same process. Using the mm pointer instead of mm->context.ctx_id
684 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
685 	 * less impossible to control by an attacker. Aside of that it
686 	 * would only affect the first schedule so the theoretically
687 	 * exposed data is not really interesting.
688 	 */
689 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
690 		/*
691 		 * This is a bit more complex than the always mode because
692 		 * it has to handle two cases:
693 		 *
694 		 * 1) Switch from a user space task (potential attacker)
695 		 *    which has TIF_SPEC_IB set to a user space task
696 		 *    (potential victim) which has TIF_SPEC_IB not set.
697 		 *
698 		 * 2) Switch from a user space task (potential attacker)
699 		 *    which has TIF_SPEC_IB not set to a user space task
700 		 *    (potential victim) which has TIF_SPEC_IB set.
701 		 *
702 		 * This could be done by unconditionally issuing IBPB when
703 		 * a task which has TIF_SPEC_IB set is either scheduled in
704 		 * or out. Though that results in two flushes when:
705 		 *
706 		 * - the same user space task is scheduled out and later
707 		 *   scheduled in again and only a kernel thread ran in
708 		 *   between.
709 		 *
710 		 * - a user space task belonging to the same process is
711 		 *   scheduled in after a kernel thread ran in between
712 		 *
713 		 * - a user space task belonging to the same process is
714 		 *   scheduled in immediately.
715 		 *
716 		 * Optimize this with reasonably small overhead for the
717 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
718 		 * pointer of the incoming task which is stored in
719 		 * cpu_tlbstate.last_user_mm_spec for comparison.
720 		 *
721 		 * Issue IBPB only if the mm's are different and one or
722 		 * both have the IBPB bit set.
723 		 */
724 		if (next_mm != prev_mm &&
725 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
726 			indirect_branch_prediction_barrier();
727 	}
728 
729 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
730 		/*
731 		 * Only flush when switching to a user space task with a
732 		 * different context than the user space task which ran
733 		 * last on this CPU.
734 		 */
735 		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm)
736 			indirect_branch_prediction_barrier();
737 	}
738 
739 	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
740 		/*
741 		 * Flush L1D when the outgoing task requested it and/or
742 		 * check whether the incoming task requested L1D flushing
743 		 * and ended up on an SMT sibling.
744 		 */
745 		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
746 			l1d_flush_evaluate(prev_mm, next_mm, next);
747 	}
748 
749 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
750 }
751 
752 #ifdef CONFIG_PERF_EVENTS
753 static inline void cr4_update_pce_mm(struct mm_struct *mm)
754 {
755 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
756 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
757 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
758 		/*
759 		 * Clear the existing dirty counters to
760 		 * prevent the leak for an RDPMC task.
761 		 */
762 		perf_clear_dirty_counters();
763 		cr4_set_bits_irqsoff(X86_CR4_PCE);
764 	} else
765 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
766 }
767 
768 void cr4_update_pce(void *ignored)
769 {
770 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
771 }
772 
773 #else
774 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
775 #endif
776 
777 /*
778  * This optimizes when not actually switching mm's.  Some architectures use the
779  * 'unused' argument for this optimization, but x86 must use
780  * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
781  * 'current->active_mm' up to date.
782  */
783 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
784 			struct task_struct *tsk)
785 {
786 	struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
787 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
788 	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
789 	unsigned cpu = smp_processor_id();
790 	unsigned long new_lam;
791 	struct new_asid ns;
792 	u64 next_tlb_gen;
793 
794 
795 	/* We don't want flush_tlb_func() to run concurrently with us. */
796 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
797 		WARN_ON_ONCE(!irqs_disabled());
798 
799 	/*
800 	 * Verify that CR3 is what we think it is.  This will catch
801 	 * hypothetical buggy code that directly switches to swapper_pg_dir
802 	 * without going through leave_mm() / switch_mm_irqs_off() or that
803 	 * does something like write_cr3(read_cr3_pa()).
804 	 *
805 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
806 	 * isn't free.
807 	 */
808 #ifdef CONFIG_DEBUG_VM
809 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
810 						   tlbstate_lam_cr3_mask()))) {
811 		/*
812 		 * If we were to BUG here, we'd be very likely to kill
813 		 * the system so hard that we don't see the call trace.
814 		 * Try to recover instead by ignoring the error and doing
815 		 * a global flush to minimize the chance of corruption.
816 		 *
817 		 * (This is far from being a fully correct recovery.
818 		 *  Architecturally, the CPU could prefetch something
819 		 *  back into an incorrect ASID slot and leave it there
820 		 *  to cause trouble down the road.  It's better than
821 		 *  nothing, though.)
822 		 */
823 		__flush_tlb_all();
824 	}
825 #endif
826 	if (was_lazy)
827 		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
828 
829 	/*
830 	 * The membarrier system call requires a full memory barrier and
831 	 * core serialization before returning to user-space, after
832 	 * storing to rq->curr, when changing mm.  This is because
833 	 * membarrier() sends IPIs to all CPUs that are in the target mm
834 	 * to make them issue memory barriers.  However, if another CPU
835 	 * switches to/from the target mm concurrently with
836 	 * membarrier(), it can cause that CPU not to receive an IPI
837 	 * when it really should issue a memory barrier.  Writing to CR3
838 	 * provides that full memory barrier and core serializing
839 	 * instruction.
840 	 */
841 	if (prev == next) {
842 		/* Not actually switching mm's */
843 		VM_WARN_ON(is_dyn_asid(prev_asid) &&
844 			   this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
845 			   next->context.ctx_id);
846 
847 		/*
848 		 * If this races with another thread that enables lam, 'new_lam'
849 		 * might not match tlbstate_lam_cr3_mask().
850 		 */
851 
852 		/*
853 		 * Even in lazy TLB mode, the CPU should stay set in the
854 		 * mm_cpumask. The TLB shootdown code can figure out from
855 		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
856 		 */
857 		if (IS_ENABLED(CONFIG_DEBUG_VM) &&
858 		    WARN_ON_ONCE(prev != &init_mm && !is_notrack_mm(prev) &&
859 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
860 			cpumask_set_cpu(cpu, mm_cpumask(next));
861 
862 		/* Check if the current mm is transitioning to a global ASID */
863 		if (mm_needs_global_asid(next, prev_asid)) {
864 			next_tlb_gen = atomic64_read(&next->context.tlb_gen);
865 			ns = choose_new_asid(next, next_tlb_gen);
866 			goto reload_tlb;
867 		}
868 
869 		/*
870 		 * Broadcast TLB invalidation keeps this ASID up to date
871 		 * all the time.
872 		 */
873 		if (is_global_asid(prev_asid))
874 			return;
875 
876 		/*
877 		 * If the CPU is not in lazy TLB mode, we are just switching
878 		 * from one thread in a process to another thread in the same
879 		 * process. No TLB flush required.
880 		 */
881 		if (!was_lazy)
882 			return;
883 
884 		/*
885 		 * Read the tlb_gen to check whether a flush is needed.
886 		 * If the TLB is up to date, just use it.
887 		 * The barrier synchronizes with the tlb_gen increment in
888 		 * the TLB shootdown code.
889 		 */
890 		smp_mb();
891 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
892 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
893 				next_tlb_gen)
894 			return;
895 
896 		/*
897 		 * TLB contents went out of date while we were in lazy
898 		 * mode. Fall through to the TLB switching code below.
899 		 */
900 		ns.asid = prev_asid;
901 		ns.need_flush = true;
902 	} else {
903 		/*
904 		 * Apply process to process speculation vulnerability
905 		 * mitigations if applicable.
906 		 */
907 		cond_mitigation(tsk);
908 
909 		/*
910 		 * Indicate that CR3 is about to change. nmi_uaccess_okay()
911 		 * and others are sensitive to the window where mm_cpumask(),
912 		 * CR3 and cpu_tlbstate.loaded_mm are not all in sync.
913 		 */
914 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
915 
916 		/*
917 		 * Make sure this CPU is set in mm_cpumask() such that we'll
918 		 * receive invalidation IPIs.
919 		 *
920 		 * Rely on the smp_mb() implied by cpumask_set_cpu()'s atomic
921 		 * operation, or explicitly provide one. Such that:
922 		 *
923 		 * switch_mm_irqs_off()				flush_tlb_mm_range()
924 		 *   smp_store_release(loaded_mm, SWITCHING);     atomic64_inc_return(tlb_gen)
925 		 *   smp_mb(); // here                            // smp_mb() implied
926 		 *   atomic64_read(tlb_gen);                      this_cpu_read(loaded_mm);
927 		 *
928 		 * we properly order against flush_tlb_mm_range(), where the
929 		 * loaded_mm load can happen in mative_flush_tlb_multi() ->
930 		 * should_flush_tlb().
931 		 *
932 		 * This way switch_mm() must see the new tlb_gen or
933 		 * flush_tlb_mm_range() must see the new loaded_mm, or both.
934 		 */
935 		if (next != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next)))
936 			cpumask_set_cpu(cpu, mm_cpumask(next));
937 		else
938 			smp_mb();
939 
940 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
941 
942 		ns = choose_new_asid(next, next_tlb_gen);
943 	}
944 
945 reload_tlb:
946 	new_lam = mm_lam_cr3_mask(next);
947 	if (ns.need_flush) {
948 		VM_WARN_ON_ONCE(is_global_asid(ns.asid));
949 		this_cpu_write(cpu_tlbstate.ctxs[ns.asid].ctx_id, next->context.ctx_id);
950 		this_cpu_write(cpu_tlbstate.ctxs[ns.asid].tlb_gen, next_tlb_gen);
951 		load_new_mm_cr3(next->pgd, ns.asid, new_lam, true);
952 
953 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
954 	} else {
955 		/* The new ASID is already up to date. */
956 		load_new_mm_cr3(next->pgd, ns.asid, new_lam, false);
957 
958 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
959 	}
960 
961 	/* Make sure we write CR3 before loaded_mm. */
962 	barrier();
963 
964 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
965 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, ns.asid);
966 	cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
967 
968 	if (next != prev) {
969 		cr4_update_pce_mm(next);
970 		switch_ldt(prev, next);
971 	}
972 }
973 
974 /*
975  * Please ignore the name of this function.  It should be called
976  * switch_to_kernel_thread().
977  *
978  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
979  * kernel thread or other context without an mm.  Acceptable implementations
980  * include doing nothing whatsoever, switching to init_mm, or various clever
981  * lazy tricks to try to minimize TLB flushes.
982  *
983  * The scheduler reserves the right to call enter_lazy_tlb() several times
984  * in a row.  It will notify us that we're going back to a real mm by
985  * calling switch_mm_irqs_off().
986  */
987 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
988 {
989 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
990 		return;
991 
992 	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
993 }
994 
995 /*
996  * Using a temporary mm allows to set temporary mappings that are not accessible
997  * by other CPUs. Such mappings are needed to perform sensitive memory writes
998  * that override the kernel memory protections (e.g., W^X), without exposing the
999  * temporary page-table mappings that are required for these write operations to
1000  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1001  * mapping is torn down.  Temporary mms can also be used for EFI runtime service
1002  * calls or similar functionality.
1003  *
1004  * It is illegal to schedule while using a temporary mm -- the context switch
1005  * code is unaware of the temporary mm and does not know how to context switch.
1006  * Use a real (non-temporary) mm in a kernel thread if you need to sleep.
1007  *
1008  * Note: For sensitive memory writes, the temporary mm needs to be used
1009  *       exclusively by a single core, and IRQs should be disabled while the
1010  *       temporary mm is loaded, thereby preventing interrupt handler bugs from
1011  *       overriding the kernel memory protection.
1012  */
1013 struct mm_struct *use_temporary_mm(struct mm_struct *temp_mm)
1014 {
1015 	struct mm_struct *prev_mm;
1016 
1017 	lockdep_assert_preemption_disabled();
1018 	guard(irqsave)();
1019 
1020 	/*
1021 	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1022 	 * with a stale address space WITHOUT being in lazy mode after
1023 	 * restoring the previous mm.
1024 	 */
1025 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1026 		leave_mm();
1027 
1028 	prev_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1029 	switch_mm_irqs_off(NULL, temp_mm, current);
1030 
1031 	/*
1032 	 * If breakpoints are enabled, disable them while the temporary mm is
1033 	 * used. Userspace might set up watchpoints on addresses that are used
1034 	 * in the temporary mm, which would lead to wrong signals being sent or
1035 	 * crashes.
1036 	 *
1037 	 * Note that breakpoints are not disabled selectively, which also causes
1038 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1039 	 * undesirable, but still seems reasonable as the code that runs in the
1040 	 * temporary mm should be short.
1041 	 */
1042 	if (hw_breakpoint_active())
1043 		hw_breakpoint_disable();
1044 
1045 	return prev_mm;
1046 }
1047 
1048 void unuse_temporary_mm(struct mm_struct *prev_mm)
1049 {
1050 	lockdep_assert_preemption_disabled();
1051 	guard(irqsave)();
1052 
1053 	/* Clear the cpumask, to indicate no TLB flushing is needed anywhere */
1054 	cpumask_clear_cpu(smp_processor_id(), mm_cpumask(this_cpu_read(cpu_tlbstate.loaded_mm)));
1055 
1056 	switch_mm_irqs_off(NULL, prev_mm, current);
1057 
1058 	/*
1059 	 * Restore the breakpoints if they were disabled before the temporary mm
1060 	 * was loaded.
1061 	 */
1062 	if (hw_breakpoint_active())
1063 		hw_breakpoint_restore();
1064 }
1065 
1066 /*
1067  * Call this when reinitializing a CPU.  It fixes the following potential
1068  * problems:
1069  *
1070  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
1071  *   because the CPU was taken down and came back up with CR3's PCID
1072  *   bits clear.  CPU hotplug can do this.
1073  *
1074  * - The TLB contains junk in slots corresponding to inactive ASIDs.
1075  *
1076  * - The CPU went so far out to lunch that it may have missed a TLB
1077  *   flush.
1078  */
1079 void initialize_tlbstate_and_flush(void)
1080 {
1081 	int i;
1082 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1083 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
1084 	unsigned long lam = mm_lam_cr3_mask(mm);
1085 	unsigned long cr3 = __read_cr3();
1086 
1087 	/* Assert that CR3 already references the right mm. */
1088 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
1089 
1090 	/* LAM expected to be disabled */
1091 	WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
1092 	WARN_ON(lam);
1093 
1094 	/*
1095 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
1096 	 * doesn't work like other CR4 bits because it can only be set from
1097 	 * long mode.)
1098 	 */
1099 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
1100 		!(cr4_read_shadow() & X86_CR4_PCIDE));
1101 
1102 	/* Disable LAM, force ASID 0 and force a TLB flush. */
1103 	write_cr3(build_cr3(mm->pgd, 0, 0));
1104 
1105 	/* Reinitialize tlbstate. */
1106 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
1107 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
1108 	this_cpu_write(cpu_tlbstate.next_asid, 1);
1109 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
1110 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
1111 	cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
1112 
1113 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
1114 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
1115 }
1116 
1117 /*
1118  * flush_tlb_func()'s memory ordering requirement is that any
1119  * TLB fills that happen after we flush the TLB are ordered after we
1120  * read active_mm's tlb_gen.  We don't need any explicit barriers
1121  * because all x86 flush operations are serializing and the
1122  * atomic64_read operation won't be reordered by the compiler.
1123  */
1124 static void flush_tlb_func(void *info)
1125 {
1126 	/*
1127 	 * We have three different tlb_gen values in here.  They are:
1128 	 *
1129 	 * - mm_tlb_gen:     the latest generation.
1130 	 * - local_tlb_gen:  the generation that this CPU has already caught
1131 	 *                   up to.
1132 	 * - f->new_tlb_gen: the generation that the requester of the flush
1133 	 *                   wants us to catch up to.
1134 	 */
1135 	const struct flush_tlb_info *f = info;
1136 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1137 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1138 	u64 local_tlb_gen;
1139 	bool local = smp_processor_id() == f->initiating_cpu;
1140 	unsigned long nr_invalidate = 0;
1141 	u64 mm_tlb_gen;
1142 
1143 	/* This code cannot presently handle being reentered. */
1144 	VM_WARN_ON(!irqs_disabled());
1145 
1146 	if (!local) {
1147 		inc_irq_stat(irq_tlb_count);
1148 		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1149 	}
1150 
1151 	/* The CPU was left in the mm_cpumask of the target mm. Clear it. */
1152 	if (f->mm && f->mm != loaded_mm) {
1153 		cpumask_clear_cpu(raw_smp_processor_id(), mm_cpumask(f->mm));
1154 		trace_tlb_flush(TLB_REMOTE_WRONG_CPU, 0);
1155 		return;
1156 	}
1157 
1158 	if (unlikely(loaded_mm == &init_mm))
1159 		return;
1160 
1161 	/* Reload the ASID if transitioning into or out of a global ASID */
1162 	if (mm_needs_global_asid(loaded_mm, loaded_mm_asid)) {
1163 		switch_mm_irqs_off(NULL, loaded_mm, NULL);
1164 		loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1165 	}
1166 
1167 	/* Broadcast ASIDs are always kept up to date with INVLPGB. */
1168 	if (is_global_asid(loaded_mm_asid))
1169 		return;
1170 
1171 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
1172 		   loaded_mm->context.ctx_id);
1173 
1174 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
1175 		/*
1176 		 * We're in lazy mode.  We need to at least flush our
1177 		 * paging-structure cache to avoid speculatively reading
1178 		 * garbage into our TLB.  Since switching to init_mm is barely
1179 		 * slower than a minimal flush, just switch to init_mm.
1180 		 *
1181 		 * This should be rare, with native_flush_tlb_multi() skipping
1182 		 * IPIs to lazy TLB mode CPUs.
1183 		 */
1184 		switch_mm_irqs_off(NULL, &init_mm, NULL);
1185 		return;
1186 	}
1187 
1188 	local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
1189 
1190 	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
1191 		     f->new_tlb_gen <= local_tlb_gen)) {
1192 		/*
1193 		 * The TLB is already up to date in respect to f->new_tlb_gen.
1194 		 * While the core might be still behind mm_tlb_gen, checking
1195 		 * mm_tlb_gen unnecessarily would have negative caching effects
1196 		 * so avoid it.
1197 		 */
1198 		return;
1199 	}
1200 
1201 	/*
1202 	 * Defer mm_tlb_gen reading as long as possible to avoid cache
1203 	 * contention.
1204 	 */
1205 	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
1206 
1207 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
1208 		/*
1209 		 * There's nothing to do: we're already up to date.  This can
1210 		 * happen if two concurrent flushes happen -- the first flush to
1211 		 * be handled can catch us all the way up, leaving no work for
1212 		 * the second flush.
1213 		 */
1214 		goto done;
1215 	}
1216 
1217 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
1218 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
1219 
1220 	/*
1221 	 * If we get to this point, we know that our TLB is out of date.
1222 	 * This does not strictly imply that we need to flush (it's
1223 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
1224 	 * going to need to flush in the very near future, so we might
1225 	 * as well get it over with.
1226 	 *
1227 	 * The only question is whether to do a full or partial flush.
1228 	 *
1229 	 * We do a partial flush if requested and two extra conditions
1230 	 * are met:
1231 	 *
1232 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
1233 	 *    we've always done all needed flushes to catch up to
1234 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
1235 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
1236 	 *    us up to date for tlb_gen 3 is the partial flush we're
1237 	 *    processing.
1238 	 *
1239 	 *    As an example of why this check is needed, suppose that there
1240 	 *    are two concurrent flushes.  The first is a full flush that
1241 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
1242 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
1243 	 *    processed on this CPU in reverse order, we'll see
1244 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
1245 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
1246 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
1247 	 *    1 without the full flush that's needed for tlb_gen 2.
1248 	 *
1249 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
1250 	 *    Partial TLB flushes are not all that much cheaper than full TLB
1251 	 *    flushes, so it seems unlikely that it would be a performance win
1252 	 *    to do a partial flush if that won't bring our TLB fully up to
1253 	 *    date.  By doing a full flush instead, we can increase
1254 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
1255 	 *    avoid another flush in the very near future.
1256 	 */
1257 	if (f->end != TLB_FLUSH_ALL &&
1258 	    f->new_tlb_gen == local_tlb_gen + 1 &&
1259 	    f->new_tlb_gen == mm_tlb_gen) {
1260 		/* Partial flush */
1261 		unsigned long addr = f->start;
1262 
1263 		/* Partial flush cannot have invalid generations */
1264 		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
1265 
1266 		/* Partial flush must have valid mm */
1267 		VM_WARN_ON(f->mm == NULL);
1268 
1269 		nr_invalidate = (f->end - f->start) >> f->stride_shift;
1270 
1271 		while (addr < f->end) {
1272 			flush_tlb_one_user(addr);
1273 			addr += 1UL << f->stride_shift;
1274 		}
1275 		if (local)
1276 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
1277 	} else {
1278 		/* Full flush. */
1279 		nr_invalidate = TLB_FLUSH_ALL;
1280 
1281 		flush_tlb_local();
1282 		if (local)
1283 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1284 	}
1285 
1286 	/* Both paths above update our state to mm_tlb_gen. */
1287 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
1288 
1289 	/* Tracing is done in a unified manner to reduce the code size */
1290 done:
1291 	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
1292 				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
1293 						  TLB_LOCAL_MM_SHOOTDOWN,
1294 			nr_invalidate);
1295 }
1296 
1297 static bool should_flush_tlb(int cpu, void *data)
1298 {
1299 	struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu);
1300 	struct flush_tlb_info *info = data;
1301 
1302 	/*
1303 	 * Order the 'loaded_mm' and 'is_lazy' against their
1304 	 * write ordering in switch_mm_irqs_off(). Ensure
1305 	 * 'is_lazy' is at least as new as 'loaded_mm'.
1306 	 */
1307 	smp_rmb();
1308 
1309 	/* Lazy TLB will get flushed at the next context switch. */
1310 	if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
1311 		return false;
1312 
1313 	/* No mm means kernel memory flush. */
1314 	if (!info->mm)
1315 		return true;
1316 
1317 	/*
1318 	 * While switching, the remote CPU could have state from
1319 	 * either the prev or next mm. Assume the worst and flush.
1320 	 */
1321 	if (loaded_mm == LOADED_MM_SWITCHING)
1322 		return true;
1323 
1324 	/* The target mm is loaded, and the CPU is not lazy. */
1325 	if (loaded_mm == info->mm)
1326 		return true;
1327 
1328 	/* In cpumask, but not the loaded mm? Periodically remove by flushing. */
1329 	if (info->trim_cpumask)
1330 		return true;
1331 
1332 	return false;
1333 }
1334 
1335 static bool should_trim_cpumask(struct mm_struct *mm)
1336 {
1337 	if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) {
1338 		WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ);
1339 		return true;
1340 	}
1341 	return false;
1342 }
1343 
1344 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
1345 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
1346 
1347 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
1348 					 const struct flush_tlb_info *info)
1349 {
1350 	/*
1351 	 * Do accounting and tracing. Note that there are (and have always been)
1352 	 * cases in which a remote TLB flush will be traced, but eventually
1353 	 * would not happen.
1354 	 */
1355 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1356 	if (info->end == TLB_FLUSH_ALL)
1357 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
1358 	else
1359 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
1360 				(info->end - info->start) >> PAGE_SHIFT);
1361 
1362 	/*
1363 	 * If no page tables were freed, we can skip sending IPIs to
1364 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
1365 	 * at the next context switch.
1366 	 *
1367 	 * However, if page tables are getting freed, we need to send the
1368 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
1369 	 * up on the new contents of what used to be page tables, while
1370 	 * doing a speculative memory access.
1371 	 */
1372 	if (info->freed_tables || mm_in_asid_transition(info->mm))
1373 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
1374 	else
1375 		on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
1376 				(void *)info, 1, cpumask);
1377 }
1378 
1379 void flush_tlb_multi(const struct cpumask *cpumask,
1380 		      const struct flush_tlb_info *info)
1381 {
1382 	__flush_tlb_multi(cpumask, info);
1383 }
1384 
1385 /*
1386  * See Documentation/arch/x86/tlb.rst for details.  We choose 33
1387  * because it is large enough to cover the vast majority (at
1388  * least 95%) of allocations, and is small enough that we are
1389  * confident it will not cause too much overhead.  Each single
1390  * flush is about 100 ns, so this caps the maximum overhead at
1391  * _about_ 3,000 ns.
1392  *
1393  * This is in units of pages.
1394  */
1395 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
1396 
1397 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
1398 
1399 #ifdef CONFIG_DEBUG_VM
1400 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
1401 #endif
1402 
1403 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
1404 			unsigned long start, unsigned long end,
1405 			unsigned int stride_shift, bool freed_tables,
1406 			u64 new_tlb_gen)
1407 {
1408 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
1409 
1410 #ifdef CONFIG_DEBUG_VM
1411 	/*
1412 	 * Ensure that the following code is non-reentrant and flush_tlb_info
1413 	 * is not overwritten. This means no TLB flushing is initiated by
1414 	 * interrupt handlers and machine-check exception handlers.
1415 	 */
1416 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
1417 #endif
1418 
1419 	/*
1420 	 * If the number of flushes is so large that a full flush
1421 	 * would be faster, do a full flush.
1422 	 */
1423 	if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) {
1424 		start = 0;
1425 		end = TLB_FLUSH_ALL;
1426 	}
1427 
1428 	info->start		= start;
1429 	info->end		= end;
1430 	info->mm		= mm;
1431 	info->stride_shift	= stride_shift;
1432 	info->freed_tables	= freed_tables;
1433 	info->new_tlb_gen	= new_tlb_gen;
1434 	info->initiating_cpu	= smp_processor_id();
1435 	info->trim_cpumask	= 0;
1436 
1437 	return info;
1438 }
1439 
1440 static void put_flush_tlb_info(void)
1441 {
1442 #ifdef CONFIG_DEBUG_VM
1443 	/* Complete reentrancy prevention checks */
1444 	barrier();
1445 	this_cpu_dec(flush_tlb_info_idx);
1446 #endif
1447 }
1448 
1449 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
1450 				unsigned long end, unsigned int stride_shift,
1451 				bool freed_tables)
1452 {
1453 	struct flush_tlb_info *info;
1454 	int cpu = get_cpu();
1455 	u64 new_tlb_gen;
1456 
1457 	/* This is also a barrier that synchronizes with switch_mm(). */
1458 	new_tlb_gen = inc_mm_tlb_gen(mm);
1459 
1460 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1461 				  new_tlb_gen);
1462 
1463 	/*
1464 	 * flush_tlb_multi() is not optimized for the common case in which only
1465 	 * a local TLB flush is needed. Optimize this use-case by calling
1466 	 * flush_tlb_func_local() directly in this case.
1467 	 */
1468 	if (mm_global_asid(mm)) {
1469 		broadcast_tlb_flush(info);
1470 	} else if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1471 		info->trim_cpumask = should_trim_cpumask(mm);
1472 		flush_tlb_multi(mm_cpumask(mm), info);
1473 		consider_global_asid(mm);
1474 	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1475 		lockdep_assert_irqs_enabled();
1476 		local_irq_disable();
1477 		flush_tlb_func(info);
1478 		local_irq_enable();
1479 	}
1480 
1481 	put_flush_tlb_info();
1482 	put_cpu();
1483 	mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1484 }
1485 
1486 static void do_flush_tlb_all(void *info)
1487 {
1488 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1489 	__flush_tlb_all();
1490 }
1491 
1492 void flush_tlb_all(void)
1493 {
1494 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1495 
1496 	/* First try (faster) hardware-assisted TLB invalidation. */
1497 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1498 		invlpgb_flush_all();
1499 	else
1500 		/* Fall back to the IPI-based invalidation. */
1501 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1502 }
1503 
1504 /* Flush an arbitrarily large range of memory with INVLPGB. */
1505 static void invlpgb_kernel_range_flush(struct flush_tlb_info *info)
1506 {
1507 	unsigned long addr, nr;
1508 
1509 	for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) {
1510 		nr = (info->end - addr) >> PAGE_SHIFT;
1511 
1512 		/*
1513 		 * INVLPGB has a limit on the size of ranges it can
1514 		 * flush. Break up large flushes.
1515 		 */
1516 		nr = clamp_val(nr, 1, invlpgb_count_max);
1517 
1518 		invlpgb_flush_addr_nosync(addr, nr);
1519 	}
1520 	__tlbsync();
1521 }
1522 
1523 static void do_kernel_range_flush(void *info)
1524 {
1525 	struct flush_tlb_info *f = info;
1526 	unsigned long addr;
1527 
1528 	/* flush range by one by one 'invlpg' */
1529 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1530 		flush_tlb_one_kernel(addr);
1531 }
1532 
1533 static void kernel_tlb_flush_all(struct flush_tlb_info *info)
1534 {
1535 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1536 		invlpgb_flush_all();
1537 	else
1538 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1539 }
1540 
1541 static void kernel_tlb_flush_range(struct flush_tlb_info *info)
1542 {
1543 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1544 		invlpgb_kernel_range_flush(info);
1545 	else
1546 		on_each_cpu(do_kernel_range_flush, info, 1);
1547 }
1548 
1549 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1550 {
1551 	struct flush_tlb_info *info;
1552 
1553 	guard(preempt)();
1554 
1555 	info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, false,
1556 				  TLB_GENERATION_INVALID);
1557 
1558 	if (info->end == TLB_FLUSH_ALL)
1559 		kernel_tlb_flush_all(info);
1560 	else
1561 		kernel_tlb_flush_range(info);
1562 
1563 	put_flush_tlb_info();
1564 }
1565 
1566 /*
1567  * This can be used from process context to figure out what the value of
1568  * CR3 is without needing to do a (slow) __read_cr3().
1569  *
1570  * It's intended to be used for code like KVM that sneakily changes CR3
1571  * and needs to restore it.  It needs to be used very carefully.
1572  */
1573 unsigned long __get_current_cr3_fast(void)
1574 {
1575 	unsigned long cr3 =
1576 		build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1577 			  this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1578 			  tlbstate_lam_cr3_mask());
1579 
1580 	/* For now, be very restrictive about when this can be called. */
1581 	VM_WARN_ON(in_nmi() || preemptible());
1582 
1583 	VM_BUG_ON(cr3 != __read_cr3());
1584 	return cr3;
1585 }
1586 EXPORT_SYMBOL_FOR_KVM(__get_current_cr3_fast);
1587 
1588 /*
1589  * Flush one page in the kernel mapping
1590  */
1591 void flush_tlb_one_kernel(unsigned long addr)
1592 {
1593 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1594 
1595 	/*
1596 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1597 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1598 	 * use PCID if we also use global PTEs for the kernel mapping, and
1599 	 * INVLPG flushes global translations across all address spaces.
1600 	 *
1601 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1602 	 * __flush_tlb_one_user() will flush the given address for the current
1603 	 * kernel address space and for its usermode counterpart, but it does
1604 	 * not flush it for other address spaces.
1605 	 */
1606 	flush_tlb_one_user(addr);
1607 
1608 	if (!static_cpu_has(X86_FEATURE_PTI))
1609 		return;
1610 
1611 	/*
1612 	 * See above.  We need to propagate the flush to all other address
1613 	 * spaces.  In principle, we only need to propagate it to kernelmode
1614 	 * address spaces, but the extra bookkeeping we would need is not
1615 	 * worth it.
1616 	 */
1617 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1618 }
1619 
1620 /*
1621  * Flush one page in the user mapping
1622  */
1623 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1624 {
1625 	u32 loaded_mm_asid;
1626 	bool cpu_pcide;
1627 
1628 	/* Flush 'addr' from the kernel PCID: */
1629 	invlpg(addr);
1630 
1631 	/* If PTI is off there is no user PCID and nothing to flush. */
1632 	if (!static_cpu_has(X86_FEATURE_PTI))
1633 		return;
1634 
1635 	loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1636 	cpu_pcide      = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1637 
1638 	/*
1639 	 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0.  Check
1640 	 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1641 	 * #GP's even if called before CR4.PCIDE has been initialized.
1642 	 */
1643 	if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1644 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1645 	else
1646 		invalidate_user_asid(loaded_mm_asid);
1647 }
1648 
1649 void flush_tlb_one_user(unsigned long addr)
1650 {
1651 	__flush_tlb_one_user(addr);
1652 }
1653 
1654 /*
1655  * Flush everything
1656  */
1657 STATIC_NOPV void native_flush_tlb_global(void)
1658 {
1659 	unsigned long flags;
1660 
1661 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1662 		/*
1663 		 * Using INVPCID is considerably faster than a pair of writes
1664 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1665 		 *
1666 		 * Note, this works with CR4.PCIDE=0 or 1.
1667 		 */
1668 		invpcid_flush_all();
1669 		return;
1670 	}
1671 
1672 	/*
1673 	 * Read-modify-write to CR4 - protect it from preemption and
1674 	 * from interrupts. (Use the raw variant because this code can
1675 	 * be called from deep inside debugging code.)
1676 	 */
1677 	raw_local_irq_save(flags);
1678 
1679 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1680 
1681 	raw_local_irq_restore(flags);
1682 }
1683 
1684 /*
1685  * Flush the entire current user mapping
1686  */
1687 STATIC_NOPV void native_flush_tlb_local(void)
1688 {
1689 	/*
1690 	 * Preemption or interrupts must be disabled to protect the access
1691 	 * to the per CPU variable and to prevent being preempted between
1692 	 * read_cr3() and write_cr3().
1693 	 */
1694 	WARN_ON_ONCE(preemptible());
1695 
1696 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1697 
1698 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1699 	native_write_cr3(__native_read_cr3());
1700 }
1701 
1702 void flush_tlb_local(void)
1703 {
1704 	__flush_tlb_local();
1705 }
1706 
1707 /*
1708  * Flush everything
1709  */
1710 void __flush_tlb_all(void)
1711 {
1712 	/*
1713 	 * This is to catch users with enabled preemption and the PGE feature
1714 	 * and don't trigger the warning in __native_flush_tlb().
1715 	 */
1716 	VM_WARN_ON_ONCE(preemptible());
1717 
1718 	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1719 		__flush_tlb_global();
1720 	} else {
1721 		/*
1722 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1723 		 */
1724 		flush_tlb_local();
1725 	}
1726 }
1727 EXPORT_SYMBOL_FOR_KVM(__flush_tlb_all);
1728 
1729 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1730 {
1731 	struct flush_tlb_info *info;
1732 
1733 	int cpu = get_cpu();
1734 
1735 	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1736 				  TLB_GENERATION_INVALID);
1737 	/*
1738 	 * flush_tlb_multi() is not optimized for the common case in which only
1739 	 * a local TLB flush is needed. Optimize this use-case by calling
1740 	 * flush_tlb_func_local() directly in this case.
1741 	 */
1742 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) {
1743 		invlpgb_flush_all_nonglobals();
1744 		batch->unmapped_pages = false;
1745 	} else if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1746 		flush_tlb_multi(&batch->cpumask, info);
1747 	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1748 		lockdep_assert_irqs_enabled();
1749 		local_irq_disable();
1750 		flush_tlb_func(info);
1751 		local_irq_enable();
1752 	}
1753 
1754 	cpumask_clear(&batch->cpumask);
1755 
1756 	put_flush_tlb_info();
1757 	put_cpu();
1758 }
1759 
1760 /*
1761  * Blindly accessing user memory from NMI context can be dangerous
1762  * if we're in the middle of switching the current user task or
1763  * switching the loaded mm.  It can also be dangerous if we
1764  * interrupted some kernel code that was temporarily using a
1765  * different mm.
1766  */
1767 bool nmi_uaccess_okay(void)
1768 {
1769 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1770 	struct mm_struct *current_mm = current->mm;
1771 
1772 	VM_WARN_ON_ONCE(!loaded_mm);
1773 
1774 	/*
1775 	 * The condition we want to check is
1776 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1777 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1778 	 * is supposed to be reasonably fast.
1779 	 *
1780 	 * Instead, we check the almost equivalent but somewhat conservative
1781 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1782 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1783 	 */
1784 	if (loaded_mm != current_mm)
1785 		return false;
1786 
1787 	VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa());
1788 
1789 	return true;
1790 }
1791 
1792 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1793 			     size_t count, loff_t *ppos)
1794 {
1795 	char buf[32];
1796 	unsigned int len;
1797 
1798 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1799 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1800 }
1801 
1802 static ssize_t tlbflush_write_file(struct file *file,
1803 		 const char __user *user_buf, size_t count, loff_t *ppos)
1804 {
1805 	char buf[32];
1806 	ssize_t len;
1807 	int ceiling;
1808 
1809 	len = min(count, sizeof(buf) - 1);
1810 	if (copy_from_user(buf, user_buf, len))
1811 		return -EFAULT;
1812 
1813 	buf[len] = '\0';
1814 	if (kstrtoint(buf, 0, &ceiling))
1815 		return -EINVAL;
1816 
1817 	if (ceiling < 0)
1818 		return -EINVAL;
1819 
1820 	tlb_single_page_flush_ceiling = ceiling;
1821 	return count;
1822 }
1823 
1824 static const struct file_operations fops_tlbflush = {
1825 	.read = tlbflush_read_file,
1826 	.write = tlbflush_write_file,
1827 	.llseek = default_llseek,
1828 };
1829 
1830 static int __init create_tlb_single_page_flush_ceiling(void)
1831 {
1832 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1833 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1834 	return 0;
1835 }
1836 late_initcall(create_tlb_single_page_flush_ceiling);
1837