xref: /linux/arch/x86/mm/tlb.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 
15 #include <asm/tlbflush.h>
16 #include <asm/mmu_context.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/cache.h>
19 #include <asm/cacheflush.h>
20 #include <asm/apic.h>
21 #include <asm/perf_event.h>
22 
23 #include "mm_internal.h"
24 
25 #ifdef CONFIG_PARAVIRT
26 # define STATIC_NOPV
27 #else
28 # define STATIC_NOPV			static
29 # define __flush_tlb_local		native_flush_tlb_local
30 # define __flush_tlb_global		native_flush_tlb_global
31 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
32 # define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
33 #endif
34 
35 /*
36  *	TLB flushing, formerly SMP-only
37  *		c/o Linus Torvalds.
38  *
39  *	These mean you can really definitely utterly forget about
40  *	writing to user space from interrupts. (Its not allowed anyway).
41  *
42  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
43  *
44  *	More scalable flush, from Andi Kleen
45  *
46  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
47  */
48 
49 /*
50  * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
51  * stored in cpu_tlb_state.last_user_mm_spec.
52  */
53 #define LAST_USER_MM_IBPB	0x1UL
54 #define LAST_USER_MM_L1D_FLUSH	0x2UL
55 #define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
56 
57 /* Bits to set when tlbstate and flush is (re)initialized */
58 #define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
59 
60 /*
61  * The x86 feature is called PCID (Process Context IDentifier). It is similar
62  * to what is traditionally called ASID on the RISC processors.
63  *
64  * We don't use the traditional ASID implementation, where each process/mm gets
65  * its own ASID and flush/restart when we run out of ASID space.
66  *
67  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
68  * that came by on this CPU, allowing cheaper switch_mm between processes on
69  * this CPU.
70  *
71  * We end up with different spaces for different things. To avoid confusion we
72  * use different names for each of them:
73  *
74  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
75  *         the canonical identifier for an mm
76  *
77  * kPCID - [1, TLB_NR_DYN_ASIDS]
78  *         the value we write into the PCID part of CR3; corresponds to the
79  *         ASID+1, because PCID 0 is special.
80  *
81  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
82  *         for KPTI each mm has two address spaces and thus needs two
83  *         PCID values, but we can still do with a single ASID denomination
84  *         for each mm. Corresponds to kPCID + 2048.
85  *
86  */
87 
88 /* There are 12 bits of space for ASIDS in CR3 */
89 #define CR3_HW_ASID_BITS		12
90 
91 /*
92  * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
93  * user/kernel switches
94  */
95 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
96 # define PTI_CONSUMED_PCID_BITS	1
97 #else
98 # define PTI_CONSUMED_PCID_BITS	0
99 #endif
100 
101 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
102 
103 /*
104  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
105  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
106  * use by non-PCID-aware users.
107  */
108 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
109 
110 /*
111  * Given @asid, compute kPCID
112  */
113 static inline u16 kern_pcid(u16 asid)
114 {
115 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
116 
117 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
118 	/*
119 	 * Make sure that the dynamic ASID space does not conflict with the
120 	 * bit we are using to switch between user and kernel ASIDs.
121 	 */
122 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
123 
124 	/*
125 	 * The ASID being passed in here should have respected the
126 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
127 	 */
128 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
129 #endif
130 	/*
131 	 * The dynamically-assigned ASIDs that get passed in are small
132 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
133 	 * so do not bother to clear it.
134 	 *
135 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
136 	 * PCID bits.  This serves two purposes.  It prevents a nasty
137 	 * situation in which PCID-unaware code saves CR3, loads some other
138 	 * value (with PCID == 0), and then restores CR3, thus corrupting
139 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
140 	 * that any bugs involving loading a PCID-enabled CR3 with
141 	 * CR4.PCIDE off will trigger deterministically.
142 	 */
143 	return asid + 1;
144 }
145 
146 /*
147  * Given @asid, compute uPCID
148  */
149 static inline u16 user_pcid(u16 asid)
150 {
151 	u16 ret = kern_pcid(asid);
152 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
153 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
154 #endif
155 	return ret;
156 }
157 
158 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
159 {
160 	unsigned long cr3 = __sme_pa(pgd) | lam;
161 
162 	if (static_cpu_has(X86_FEATURE_PCID)) {
163 		VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
164 		cr3 |= kern_pcid(asid);
165 	} else {
166 		VM_WARN_ON_ONCE(asid != 0);
167 	}
168 
169 	return cr3;
170 }
171 
172 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
173 					      unsigned long lam)
174 {
175 	/*
176 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
177 	 * might be called during early boot. This should work even after
178 	 * boot because all CPU's the have same capabilities:
179 	 */
180 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
181 	return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
182 }
183 
184 /*
185  * We get here when we do something requiring a TLB invalidation
186  * but could not go invalidate all of the contexts.  We do the
187  * necessary invalidation by clearing out the 'ctx_id' which
188  * forces a TLB flush when the context is loaded.
189  */
190 static void clear_asid_other(void)
191 {
192 	u16 asid;
193 
194 	/*
195 	 * This is only expected to be set if we have disabled
196 	 * kernel _PAGE_GLOBAL pages.
197 	 */
198 	if (!static_cpu_has(X86_FEATURE_PTI)) {
199 		WARN_ON_ONCE(1);
200 		return;
201 	}
202 
203 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
204 		/* Do not need to flush the current asid */
205 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
206 			continue;
207 		/*
208 		 * Make sure the next time we go to switch to
209 		 * this asid, we do a flush:
210 		 */
211 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
212 	}
213 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
214 }
215 
216 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
217 
218 
219 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
220 			    u16 *new_asid, bool *need_flush)
221 {
222 	u16 asid;
223 
224 	if (!static_cpu_has(X86_FEATURE_PCID)) {
225 		*new_asid = 0;
226 		*need_flush = true;
227 		return;
228 	}
229 
230 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
231 		clear_asid_other();
232 
233 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
234 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
235 		    next->context.ctx_id)
236 			continue;
237 
238 		*new_asid = asid;
239 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
240 			       next_tlb_gen);
241 		return;
242 	}
243 
244 	/*
245 	 * We don't currently own an ASID slot on this CPU.
246 	 * Allocate a slot.
247 	 */
248 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
249 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
250 		*new_asid = 0;
251 		this_cpu_write(cpu_tlbstate.next_asid, 1);
252 	}
253 	*need_flush = true;
254 }
255 
256 /*
257  * Given an ASID, flush the corresponding user ASID.  We can delay this
258  * until the next time we switch to it.
259  *
260  * See SWITCH_TO_USER_CR3.
261  */
262 static inline void invalidate_user_asid(u16 asid)
263 {
264 	/* There is no user ASID if address space separation is off */
265 	if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
266 		return;
267 
268 	/*
269 	 * We only have a single ASID if PCID is off and the CR3
270 	 * write will have flushed it.
271 	 */
272 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
273 		return;
274 
275 	if (!static_cpu_has(X86_FEATURE_PTI))
276 		return;
277 
278 	__set_bit(kern_pcid(asid),
279 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
280 }
281 
282 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
283 			    bool need_flush)
284 {
285 	unsigned long new_mm_cr3;
286 
287 	if (need_flush) {
288 		invalidate_user_asid(new_asid);
289 		new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
290 	} else {
291 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
292 	}
293 
294 	/*
295 	 * Caution: many callers of this function expect
296 	 * that load_cr3() is serializing and orders TLB
297 	 * fills with respect to the mm_cpumask writes.
298 	 */
299 	write_cr3(new_mm_cr3);
300 }
301 
302 void leave_mm(void)
303 {
304 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
305 
306 	/*
307 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
308 	 * If so, our callers still expect us to flush the TLB, but there
309 	 * aren't any user TLB entries in init_mm to worry about.
310 	 *
311 	 * This needs to happen before any other sanity checks due to
312 	 * intel_idle's shenanigans.
313 	 */
314 	if (loaded_mm == &init_mm)
315 		return;
316 
317 	/* Warn if we're not lazy. */
318 	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
319 
320 	switch_mm(NULL, &init_mm, NULL);
321 }
322 EXPORT_SYMBOL_GPL(leave_mm);
323 
324 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
325 	       struct task_struct *tsk)
326 {
327 	unsigned long flags;
328 
329 	local_irq_save(flags);
330 	switch_mm_irqs_off(NULL, next, tsk);
331 	local_irq_restore(flags);
332 }
333 
334 /*
335  * Invoked from return to user/guest by a task that opted-in to L1D
336  * flushing but ended up running on an SMT enabled core due to wrong
337  * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
338  * contract which this task requested.
339  */
340 static void l1d_flush_force_sigbus(struct callback_head *ch)
341 {
342 	force_sig(SIGBUS);
343 }
344 
345 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
346 				struct task_struct *next)
347 {
348 	/* Flush L1D if the outgoing task requests it */
349 	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
350 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
351 
352 	/* Check whether the incoming task opted in for L1D flush */
353 	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
354 		return;
355 
356 	/*
357 	 * Validate that it is not running on an SMT sibling as this would
358 	 * make the exercise pointless because the siblings share L1D. If
359 	 * it runs on a SMT sibling, notify it with SIGBUS on return to
360 	 * user/guest
361 	 */
362 	if (this_cpu_read(cpu_info.smt_active)) {
363 		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
364 		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
365 		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
366 	}
367 }
368 
369 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
370 {
371 	unsigned long next_tif = read_task_thread_flags(next);
372 	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
373 
374 	/*
375 	 * Ensure that the bit shift above works as expected and the two flags
376 	 * end up in bit 0 and 1.
377 	 */
378 	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
379 
380 	return (unsigned long)next->mm | spec_bits;
381 }
382 
383 static void cond_mitigation(struct task_struct *next)
384 {
385 	unsigned long prev_mm, next_mm;
386 
387 	if (!next || !next->mm)
388 		return;
389 
390 	next_mm = mm_mangle_tif_spec_bits(next);
391 	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
392 
393 	/*
394 	 * Avoid user/user BTB poisoning by flushing the branch predictor
395 	 * when switching between processes. This stops one process from
396 	 * doing Spectre-v2 attacks on another.
397 	 *
398 	 * Both, the conditional and the always IBPB mode use the mm
399 	 * pointer to avoid the IBPB when switching between tasks of the
400 	 * same process. Using the mm pointer instead of mm->context.ctx_id
401 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
402 	 * less impossible to control by an attacker. Aside of that it
403 	 * would only affect the first schedule so the theoretically
404 	 * exposed data is not really interesting.
405 	 */
406 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
407 		/*
408 		 * This is a bit more complex than the always mode because
409 		 * it has to handle two cases:
410 		 *
411 		 * 1) Switch from a user space task (potential attacker)
412 		 *    which has TIF_SPEC_IB set to a user space task
413 		 *    (potential victim) which has TIF_SPEC_IB not set.
414 		 *
415 		 * 2) Switch from a user space task (potential attacker)
416 		 *    which has TIF_SPEC_IB not set to a user space task
417 		 *    (potential victim) which has TIF_SPEC_IB set.
418 		 *
419 		 * This could be done by unconditionally issuing IBPB when
420 		 * a task which has TIF_SPEC_IB set is either scheduled in
421 		 * or out. Though that results in two flushes when:
422 		 *
423 		 * - the same user space task is scheduled out and later
424 		 *   scheduled in again and only a kernel thread ran in
425 		 *   between.
426 		 *
427 		 * - a user space task belonging to the same process is
428 		 *   scheduled in after a kernel thread ran in between
429 		 *
430 		 * - a user space task belonging to the same process is
431 		 *   scheduled in immediately.
432 		 *
433 		 * Optimize this with reasonably small overhead for the
434 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
435 		 * pointer of the incoming task which is stored in
436 		 * cpu_tlbstate.last_user_mm_spec for comparison.
437 		 *
438 		 * Issue IBPB only if the mm's are different and one or
439 		 * both have the IBPB bit set.
440 		 */
441 		if (next_mm != prev_mm &&
442 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
443 			indirect_branch_prediction_barrier();
444 	}
445 
446 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
447 		/*
448 		 * Only flush when switching to a user space task with a
449 		 * different context than the user space task which ran
450 		 * last on this CPU.
451 		 */
452 		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
453 					(unsigned long)next->mm)
454 			indirect_branch_prediction_barrier();
455 	}
456 
457 	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
458 		/*
459 		 * Flush L1D when the outgoing task requested it and/or
460 		 * check whether the incoming task requested L1D flushing
461 		 * and ended up on an SMT sibling.
462 		 */
463 		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
464 			l1d_flush_evaluate(prev_mm, next_mm, next);
465 	}
466 
467 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
468 }
469 
470 #ifdef CONFIG_PERF_EVENTS
471 static inline void cr4_update_pce_mm(struct mm_struct *mm)
472 {
473 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
474 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
475 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
476 		/*
477 		 * Clear the existing dirty counters to
478 		 * prevent the leak for an RDPMC task.
479 		 */
480 		perf_clear_dirty_counters();
481 		cr4_set_bits_irqsoff(X86_CR4_PCE);
482 	} else
483 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
484 }
485 
486 void cr4_update_pce(void *ignored)
487 {
488 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
489 }
490 
491 #else
492 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
493 #endif
494 
495 /*
496  * This optimizes when not actually switching mm's.  Some architectures use the
497  * 'unused' argument for this optimization, but x86 must use
498  * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
499  * 'current->active_mm' up to date.
500  */
501 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
502 			struct task_struct *tsk)
503 {
504 	struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
505 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
506 	unsigned long new_lam = mm_lam_cr3_mask(next);
507 	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
508 	unsigned cpu = smp_processor_id();
509 	u64 next_tlb_gen;
510 	bool need_flush;
511 	u16 new_asid;
512 
513 	/* We don't want flush_tlb_func() to run concurrently with us. */
514 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
515 		WARN_ON_ONCE(!irqs_disabled());
516 
517 	/*
518 	 * Verify that CR3 is what we think it is.  This will catch
519 	 * hypothetical buggy code that directly switches to swapper_pg_dir
520 	 * without going through leave_mm() / switch_mm_irqs_off() or that
521 	 * does something like write_cr3(read_cr3_pa()).
522 	 *
523 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
524 	 * isn't free.
525 	 */
526 #ifdef CONFIG_DEBUG_VM
527 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
528 						   tlbstate_lam_cr3_mask()))) {
529 		/*
530 		 * If we were to BUG here, we'd be very likely to kill
531 		 * the system so hard that we don't see the call trace.
532 		 * Try to recover instead by ignoring the error and doing
533 		 * a global flush to minimize the chance of corruption.
534 		 *
535 		 * (This is far from being a fully correct recovery.
536 		 *  Architecturally, the CPU could prefetch something
537 		 *  back into an incorrect ASID slot and leave it there
538 		 *  to cause trouble down the road.  It's better than
539 		 *  nothing, though.)
540 		 */
541 		__flush_tlb_all();
542 	}
543 #endif
544 	if (was_lazy)
545 		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
546 
547 	/*
548 	 * The membarrier system call requires a full memory barrier and
549 	 * core serialization before returning to user-space, after
550 	 * storing to rq->curr, when changing mm.  This is because
551 	 * membarrier() sends IPIs to all CPUs that are in the target mm
552 	 * to make them issue memory barriers.  However, if another CPU
553 	 * switches to/from the target mm concurrently with
554 	 * membarrier(), it can cause that CPU not to receive an IPI
555 	 * when it really should issue a memory barrier.  Writing to CR3
556 	 * provides that full memory barrier and core serializing
557 	 * instruction.
558 	 */
559 	if (prev == next) {
560 		/* Not actually switching mm's */
561 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
562 			   next->context.ctx_id);
563 
564 		/*
565 		 * If this races with another thread that enables lam, 'new_lam'
566 		 * might not match tlbstate_lam_cr3_mask().
567 		 */
568 
569 		/*
570 		 * Even in lazy TLB mode, the CPU should stay set in the
571 		 * mm_cpumask. The TLB shootdown code can figure out from
572 		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
573 		 */
574 		if (WARN_ON_ONCE(prev != &init_mm &&
575 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
576 			cpumask_set_cpu(cpu, mm_cpumask(next));
577 
578 		/*
579 		 * If the CPU is not in lazy TLB mode, we are just switching
580 		 * from one thread in a process to another thread in the same
581 		 * process. No TLB flush required.
582 		 */
583 		if (!was_lazy)
584 			return;
585 
586 		/*
587 		 * Read the tlb_gen to check whether a flush is needed.
588 		 * If the TLB is up to date, just use it.
589 		 * The barrier synchronizes with the tlb_gen increment in
590 		 * the TLB shootdown code.
591 		 */
592 		smp_mb();
593 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
594 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
595 				next_tlb_gen)
596 			return;
597 
598 		/*
599 		 * TLB contents went out of date while we were in lazy
600 		 * mode. Fall through to the TLB switching code below.
601 		 */
602 		new_asid = prev_asid;
603 		need_flush = true;
604 	} else {
605 		/*
606 		 * Apply process to process speculation vulnerability
607 		 * mitigations if applicable.
608 		 */
609 		cond_mitigation(tsk);
610 
611 		/*
612 		 * Stop remote flushes for the previous mm.
613 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
614 		 * but the bitmap manipulation can cause cache line contention.
615 		 */
616 		if (prev != &init_mm) {
617 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
618 						mm_cpumask(prev)));
619 			cpumask_clear_cpu(cpu, mm_cpumask(prev));
620 		}
621 
622 		/*
623 		 * Start remote flushes and then read tlb_gen.
624 		 */
625 		if (next != &init_mm)
626 			cpumask_set_cpu(cpu, mm_cpumask(next));
627 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
628 
629 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
630 
631 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
632 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
633 		barrier();
634 	}
635 
636 	set_tlbstate_lam_mode(next);
637 	if (need_flush) {
638 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
639 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
640 		load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
641 
642 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
643 	} else {
644 		/* The new ASID is already up to date. */
645 		load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
646 
647 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
648 	}
649 
650 	/* Make sure we write CR3 before loaded_mm. */
651 	barrier();
652 
653 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
654 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
655 
656 	if (next != prev) {
657 		cr4_update_pce_mm(next);
658 		switch_ldt(prev, next);
659 	}
660 }
661 
662 /*
663  * Please ignore the name of this function.  It should be called
664  * switch_to_kernel_thread().
665  *
666  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
667  * kernel thread or other context without an mm.  Acceptable implementations
668  * include doing nothing whatsoever, switching to init_mm, or various clever
669  * lazy tricks to try to minimize TLB flushes.
670  *
671  * The scheduler reserves the right to call enter_lazy_tlb() several times
672  * in a row.  It will notify us that we're going back to a real mm by
673  * calling switch_mm_irqs_off().
674  */
675 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
676 {
677 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
678 		return;
679 
680 	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
681 }
682 
683 /*
684  * Call this when reinitializing a CPU.  It fixes the following potential
685  * problems:
686  *
687  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
688  *   because the CPU was taken down and came back up with CR3's PCID
689  *   bits clear.  CPU hotplug can do this.
690  *
691  * - The TLB contains junk in slots corresponding to inactive ASIDs.
692  *
693  * - The CPU went so far out to lunch that it may have missed a TLB
694  *   flush.
695  */
696 void initialize_tlbstate_and_flush(void)
697 {
698 	int i;
699 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
700 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
701 	unsigned long cr3 = __read_cr3();
702 
703 	/* Assert that CR3 already references the right mm. */
704 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
705 
706 	/* LAM expected to be disabled */
707 	WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
708 	WARN_ON(mm_lam_cr3_mask(mm));
709 
710 	/*
711 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
712 	 * doesn't work like other CR4 bits because it can only be set from
713 	 * long mode.)
714 	 */
715 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
716 		!(cr4_read_shadow() & X86_CR4_PCIDE));
717 
718 	/* Disable LAM, force ASID 0 and force a TLB flush. */
719 	write_cr3(build_cr3(mm->pgd, 0, 0));
720 
721 	/* Reinitialize tlbstate. */
722 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
723 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
724 	this_cpu_write(cpu_tlbstate.next_asid, 1);
725 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
726 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
727 	set_tlbstate_lam_mode(mm);
728 
729 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
730 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
731 }
732 
733 /*
734  * flush_tlb_func()'s memory ordering requirement is that any
735  * TLB fills that happen after we flush the TLB are ordered after we
736  * read active_mm's tlb_gen.  We don't need any explicit barriers
737  * because all x86 flush operations are serializing and the
738  * atomic64_read operation won't be reordered by the compiler.
739  */
740 static void flush_tlb_func(void *info)
741 {
742 	/*
743 	 * We have three different tlb_gen values in here.  They are:
744 	 *
745 	 * - mm_tlb_gen:     the latest generation.
746 	 * - local_tlb_gen:  the generation that this CPU has already caught
747 	 *                   up to.
748 	 * - f->new_tlb_gen: the generation that the requester of the flush
749 	 *                   wants us to catch up to.
750 	 */
751 	const struct flush_tlb_info *f = info;
752 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
753 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
754 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
755 	bool local = smp_processor_id() == f->initiating_cpu;
756 	unsigned long nr_invalidate = 0;
757 	u64 mm_tlb_gen;
758 
759 	/* This code cannot presently handle being reentered. */
760 	VM_WARN_ON(!irqs_disabled());
761 
762 	if (!local) {
763 		inc_irq_stat(irq_tlb_count);
764 		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
765 
766 		/* Can only happen on remote CPUs */
767 		if (f->mm && f->mm != loaded_mm)
768 			return;
769 	}
770 
771 	if (unlikely(loaded_mm == &init_mm))
772 		return;
773 
774 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
775 		   loaded_mm->context.ctx_id);
776 
777 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
778 		/*
779 		 * We're in lazy mode.  We need to at least flush our
780 		 * paging-structure cache to avoid speculatively reading
781 		 * garbage into our TLB.  Since switching to init_mm is barely
782 		 * slower than a minimal flush, just switch to init_mm.
783 		 *
784 		 * This should be rare, with native_flush_tlb_multi() skipping
785 		 * IPIs to lazy TLB mode CPUs.
786 		 */
787 		switch_mm_irqs_off(NULL, &init_mm, NULL);
788 		return;
789 	}
790 
791 	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
792 		     f->new_tlb_gen <= local_tlb_gen)) {
793 		/*
794 		 * The TLB is already up to date in respect to f->new_tlb_gen.
795 		 * While the core might be still behind mm_tlb_gen, checking
796 		 * mm_tlb_gen unnecessarily would have negative caching effects
797 		 * so avoid it.
798 		 */
799 		return;
800 	}
801 
802 	/*
803 	 * Defer mm_tlb_gen reading as long as possible to avoid cache
804 	 * contention.
805 	 */
806 	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
807 
808 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
809 		/*
810 		 * There's nothing to do: we're already up to date.  This can
811 		 * happen if two concurrent flushes happen -- the first flush to
812 		 * be handled can catch us all the way up, leaving no work for
813 		 * the second flush.
814 		 */
815 		goto done;
816 	}
817 
818 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
819 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
820 
821 	/*
822 	 * If we get to this point, we know that our TLB is out of date.
823 	 * This does not strictly imply that we need to flush (it's
824 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
825 	 * going to need to flush in the very near future, so we might
826 	 * as well get it over with.
827 	 *
828 	 * The only question is whether to do a full or partial flush.
829 	 *
830 	 * We do a partial flush if requested and two extra conditions
831 	 * are met:
832 	 *
833 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
834 	 *    we've always done all needed flushes to catch up to
835 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
836 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
837 	 *    us up to date for tlb_gen 3 is the partial flush we're
838 	 *    processing.
839 	 *
840 	 *    As an example of why this check is needed, suppose that there
841 	 *    are two concurrent flushes.  The first is a full flush that
842 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
843 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
844 	 *    processed on this CPU in reverse order, we'll see
845 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
846 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
847 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
848 	 *    1 without the full flush that's needed for tlb_gen 2.
849 	 *
850 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
851 	 *    Partial TLB flushes are not all that much cheaper than full TLB
852 	 *    flushes, so it seems unlikely that it would be a performance win
853 	 *    to do a partial flush if that won't bring our TLB fully up to
854 	 *    date.  By doing a full flush instead, we can increase
855 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
856 	 *    avoid another flush in the very near future.
857 	 */
858 	if (f->end != TLB_FLUSH_ALL &&
859 	    f->new_tlb_gen == local_tlb_gen + 1 &&
860 	    f->new_tlb_gen == mm_tlb_gen) {
861 		/* Partial flush */
862 		unsigned long addr = f->start;
863 
864 		/* Partial flush cannot have invalid generations */
865 		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
866 
867 		/* Partial flush must have valid mm */
868 		VM_WARN_ON(f->mm == NULL);
869 
870 		nr_invalidate = (f->end - f->start) >> f->stride_shift;
871 
872 		while (addr < f->end) {
873 			flush_tlb_one_user(addr);
874 			addr += 1UL << f->stride_shift;
875 		}
876 		if (local)
877 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
878 	} else {
879 		/* Full flush. */
880 		nr_invalidate = TLB_FLUSH_ALL;
881 
882 		flush_tlb_local();
883 		if (local)
884 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
885 	}
886 
887 	/* Both paths above update our state to mm_tlb_gen. */
888 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
889 
890 	/* Tracing is done in a unified manner to reduce the code size */
891 done:
892 	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
893 				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
894 						  TLB_LOCAL_MM_SHOOTDOWN,
895 			nr_invalidate);
896 }
897 
898 static bool tlb_is_not_lazy(int cpu, void *data)
899 {
900 	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
901 }
902 
903 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
904 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
905 
906 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
907 					 const struct flush_tlb_info *info)
908 {
909 	/*
910 	 * Do accounting and tracing. Note that there are (and have always been)
911 	 * cases in which a remote TLB flush will be traced, but eventually
912 	 * would not happen.
913 	 */
914 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
915 	if (info->end == TLB_FLUSH_ALL)
916 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
917 	else
918 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
919 				(info->end - info->start) >> PAGE_SHIFT);
920 
921 	/*
922 	 * If no page tables were freed, we can skip sending IPIs to
923 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
924 	 * at the next context switch.
925 	 *
926 	 * However, if page tables are getting freed, we need to send the
927 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
928 	 * up on the new contents of what used to be page tables, while
929 	 * doing a speculative memory access.
930 	 */
931 	if (info->freed_tables)
932 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
933 	else
934 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
935 				(void *)info, 1, cpumask);
936 }
937 
938 void flush_tlb_multi(const struct cpumask *cpumask,
939 		      const struct flush_tlb_info *info)
940 {
941 	__flush_tlb_multi(cpumask, info);
942 }
943 
944 /*
945  * See Documentation/arch/x86/tlb.rst for details.  We choose 33
946  * because it is large enough to cover the vast majority (at
947  * least 95%) of allocations, and is small enough that we are
948  * confident it will not cause too much overhead.  Each single
949  * flush is about 100 ns, so this caps the maximum overhead at
950  * _about_ 3,000 ns.
951  *
952  * This is in units of pages.
953  */
954 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
955 
956 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
957 
958 #ifdef CONFIG_DEBUG_VM
959 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
960 #endif
961 
962 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
963 			unsigned long start, unsigned long end,
964 			unsigned int stride_shift, bool freed_tables,
965 			u64 new_tlb_gen)
966 {
967 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
968 
969 #ifdef CONFIG_DEBUG_VM
970 	/*
971 	 * Ensure that the following code is non-reentrant and flush_tlb_info
972 	 * is not overwritten. This means no TLB flushing is initiated by
973 	 * interrupt handlers and machine-check exception handlers.
974 	 */
975 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
976 #endif
977 
978 	info->start		= start;
979 	info->end		= end;
980 	info->mm		= mm;
981 	info->stride_shift	= stride_shift;
982 	info->freed_tables	= freed_tables;
983 	info->new_tlb_gen	= new_tlb_gen;
984 	info->initiating_cpu	= smp_processor_id();
985 
986 	return info;
987 }
988 
989 static void put_flush_tlb_info(void)
990 {
991 #ifdef CONFIG_DEBUG_VM
992 	/* Complete reentrancy prevention checks */
993 	barrier();
994 	this_cpu_dec(flush_tlb_info_idx);
995 #endif
996 }
997 
998 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
999 				unsigned long end, unsigned int stride_shift,
1000 				bool freed_tables)
1001 {
1002 	struct flush_tlb_info *info;
1003 	u64 new_tlb_gen;
1004 	int cpu;
1005 
1006 	cpu = get_cpu();
1007 
1008 	/* Should we flush just the requested range? */
1009 	if ((end == TLB_FLUSH_ALL) ||
1010 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1011 		start = 0;
1012 		end = TLB_FLUSH_ALL;
1013 	}
1014 
1015 	/* This is also a barrier that synchronizes with switch_mm(). */
1016 	new_tlb_gen = inc_mm_tlb_gen(mm);
1017 
1018 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1019 				  new_tlb_gen);
1020 
1021 	/*
1022 	 * flush_tlb_multi() is not optimized for the common case in which only
1023 	 * a local TLB flush is needed. Optimize this use-case by calling
1024 	 * flush_tlb_func_local() directly in this case.
1025 	 */
1026 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1027 		flush_tlb_multi(mm_cpumask(mm), info);
1028 	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1029 		lockdep_assert_irqs_enabled();
1030 		local_irq_disable();
1031 		flush_tlb_func(info);
1032 		local_irq_enable();
1033 	}
1034 
1035 	put_flush_tlb_info();
1036 	put_cpu();
1037 	mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1038 }
1039 
1040 
1041 static void do_flush_tlb_all(void *info)
1042 {
1043 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1044 	__flush_tlb_all();
1045 }
1046 
1047 void flush_tlb_all(void)
1048 {
1049 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1050 	on_each_cpu(do_flush_tlb_all, NULL, 1);
1051 }
1052 
1053 static void do_kernel_range_flush(void *info)
1054 {
1055 	struct flush_tlb_info *f = info;
1056 	unsigned long addr;
1057 
1058 	/* flush range by one by one 'invlpg' */
1059 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1060 		flush_tlb_one_kernel(addr);
1061 }
1062 
1063 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1064 {
1065 	/* Balance as user space task's flush, a bit conservative */
1066 	if (end == TLB_FLUSH_ALL ||
1067 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1068 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1069 	} else {
1070 		struct flush_tlb_info *info;
1071 
1072 		preempt_disable();
1073 		info = get_flush_tlb_info(NULL, start, end, 0, false,
1074 					  TLB_GENERATION_INVALID);
1075 
1076 		on_each_cpu(do_kernel_range_flush, info, 1);
1077 
1078 		put_flush_tlb_info();
1079 		preempt_enable();
1080 	}
1081 }
1082 
1083 /*
1084  * This can be used from process context to figure out what the value of
1085  * CR3 is without needing to do a (slow) __read_cr3().
1086  *
1087  * It's intended to be used for code like KVM that sneakily changes CR3
1088  * and needs to restore it.  It needs to be used very carefully.
1089  */
1090 unsigned long __get_current_cr3_fast(void)
1091 {
1092 	unsigned long cr3 =
1093 		build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1094 			  this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1095 			  tlbstate_lam_cr3_mask());
1096 
1097 	/* For now, be very restrictive about when this can be called. */
1098 	VM_WARN_ON(in_nmi() || preemptible());
1099 
1100 	VM_BUG_ON(cr3 != __read_cr3());
1101 	return cr3;
1102 }
1103 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1104 
1105 /*
1106  * Flush one page in the kernel mapping
1107  */
1108 void flush_tlb_one_kernel(unsigned long addr)
1109 {
1110 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1111 
1112 	/*
1113 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1114 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1115 	 * use PCID if we also use global PTEs for the kernel mapping, and
1116 	 * INVLPG flushes global translations across all address spaces.
1117 	 *
1118 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1119 	 * __flush_tlb_one_user() will flush the given address for the current
1120 	 * kernel address space and for its usermode counterpart, but it does
1121 	 * not flush it for other address spaces.
1122 	 */
1123 	flush_tlb_one_user(addr);
1124 
1125 	if (!static_cpu_has(X86_FEATURE_PTI))
1126 		return;
1127 
1128 	/*
1129 	 * See above.  We need to propagate the flush to all other address
1130 	 * spaces.  In principle, we only need to propagate it to kernelmode
1131 	 * address spaces, but the extra bookkeeping we would need is not
1132 	 * worth it.
1133 	 */
1134 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1135 }
1136 
1137 /*
1138  * Flush one page in the user mapping
1139  */
1140 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1141 {
1142 	u32 loaded_mm_asid;
1143 	bool cpu_pcide;
1144 
1145 	/* Flush 'addr' from the kernel PCID: */
1146 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1147 
1148 	/* If PTI is off there is no user PCID and nothing to flush. */
1149 	if (!static_cpu_has(X86_FEATURE_PTI))
1150 		return;
1151 
1152 	loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1153 	cpu_pcide      = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1154 
1155 	/*
1156 	 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0.  Check
1157 	 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1158 	 * #GP's even if called before CR4.PCIDE has been initialized.
1159 	 */
1160 	if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1161 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1162 	else
1163 		invalidate_user_asid(loaded_mm_asid);
1164 }
1165 
1166 void flush_tlb_one_user(unsigned long addr)
1167 {
1168 	__flush_tlb_one_user(addr);
1169 }
1170 
1171 /*
1172  * Flush everything
1173  */
1174 STATIC_NOPV void native_flush_tlb_global(void)
1175 {
1176 	unsigned long flags;
1177 
1178 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1179 		/*
1180 		 * Using INVPCID is considerably faster than a pair of writes
1181 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1182 		 *
1183 		 * Note, this works with CR4.PCIDE=0 or 1.
1184 		 */
1185 		invpcid_flush_all();
1186 		return;
1187 	}
1188 
1189 	/*
1190 	 * Read-modify-write to CR4 - protect it from preemption and
1191 	 * from interrupts. (Use the raw variant because this code can
1192 	 * be called from deep inside debugging code.)
1193 	 */
1194 	raw_local_irq_save(flags);
1195 
1196 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1197 
1198 	raw_local_irq_restore(flags);
1199 }
1200 
1201 /*
1202  * Flush the entire current user mapping
1203  */
1204 STATIC_NOPV void native_flush_tlb_local(void)
1205 {
1206 	/*
1207 	 * Preemption or interrupts must be disabled to protect the access
1208 	 * to the per CPU variable and to prevent being preempted between
1209 	 * read_cr3() and write_cr3().
1210 	 */
1211 	WARN_ON_ONCE(preemptible());
1212 
1213 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1214 
1215 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1216 	native_write_cr3(__native_read_cr3());
1217 }
1218 
1219 void flush_tlb_local(void)
1220 {
1221 	__flush_tlb_local();
1222 }
1223 
1224 /*
1225  * Flush everything
1226  */
1227 void __flush_tlb_all(void)
1228 {
1229 	/*
1230 	 * This is to catch users with enabled preemption and the PGE feature
1231 	 * and don't trigger the warning in __native_flush_tlb().
1232 	 */
1233 	VM_WARN_ON_ONCE(preemptible());
1234 
1235 	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1236 		__flush_tlb_global();
1237 	} else {
1238 		/*
1239 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1240 		 */
1241 		flush_tlb_local();
1242 	}
1243 }
1244 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1245 
1246 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1247 {
1248 	struct flush_tlb_info *info;
1249 
1250 	int cpu = get_cpu();
1251 
1252 	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1253 				  TLB_GENERATION_INVALID);
1254 	/*
1255 	 * flush_tlb_multi() is not optimized for the common case in which only
1256 	 * a local TLB flush is needed. Optimize this use-case by calling
1257 	 * flush_tlb_func_local() directly in this case.
1258 	 */
1259 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1260 		flush_tlb_multi(&batch->cpumask, info);
1261 	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1262 		lockdep_assert_irqs_enabled();
1263 		local_irq_disable();
1264 		flush_tlb_func(info);
1265 		local_irq_enable();
1266 	}
1267 
1268 	cpumask_clear(&batch->cpumask);
1269 
1270 	put_flush_tlb_info();
1271 	put_cpu();
1272 }
1273 
1274 /*
1275  * Blindly accessing user memory from NMI context can be dangerous
1276  * if we're in the middle of switching the current user task or
1277  * switching the loaded mm.  It can also be dangerous if we
1278  * interrupted some kernel code that was temporarily using a
1279  * different mm.
1280  */
1281 bool nmi_uaccess_okay(void)
1282 {
1283 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1284 	struct mm_struct *current_mm = current->mm;
1285 
1286 	VM_WARN_ON_ONCE(!loaded_mm);
1287 
1288 	/*
1289 	 * The condition we want to check is
1290 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1291 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1292 	 * is supposed to be reasonably fast.
1293 	 *
1294 	 * Instead, we check the almost equivalent but somewhat conservative
1295 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1296 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1297 	 */
1298 	if (loaded_mm != current_mm)
1299 		return false;
1300 
1301 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1302 
1303 	return true;
1304 }
1305 
1306 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1307 			     size_t count, loff_t *ppos)
1308 {
1309 	char buf[32];
1310 	unsigned int len;
1311 
1312 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1313 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1314 }
1315 
1316 static ssize_t tlbflush_write_file(struct file *file,
1317 		 const char __user *user_buf, size_t count, loff_t *ppos)
1318 {
1319 	char buf[32];
1320 	ssize_t len;
1321 	int ceiling;
1322 
1323 	len = min(count, sizeof(buf) - 1);
1324 	if (copy_from_user(buf, user_buf, len))
1325 		return -EFAULT;
1326 
1327 	buf[len] = '\0';
1328 	if (kstrtoint(buf, 0, &ceiling))
1329 		return -EINVAL;
1330 
1331 	if (ceiling < 0)
1332 		return -EINVAL;
1333 
1334 	tlb_single_page_flush_ceiling = ceiling;
1335 	return count;
1336 }
1337 
1338 static const struct file_operations fops_tlbflush = {
1339 	.read = tlbflush_read_file,
1340 	.write = tlbflush_write_file,
1341 	.llseek = default_llseek,
1342 };
1343 
1344 static int __init create_tlb_single_page_flush_ceiling(void)
1345 {
1346 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1347 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1348 	return 0;
1349 }
1350 late_initcall(create_tlb_single_page_flush_ceiling);
1351