1 #include <linux/init.h> 2 3 #include <linux/mm.h> 4 #include <linux/spinlock.h> 5 #include <linux/smp.h> 6 #include <linux/interrupt.h> 7 #include <linux/export.h> 8 #include <linux/cpu.h> 9 10 #include <asm/tlbflush.h> 11 #include <asm/mmu_context.h> 12 #include <asm/cache.h> 13 #include <asm/apic.h> 14 #include <asm/uv/uv.h> 15 #include <linux/debugfs.h> 16 17 /* 18 * TLB flushing, formerly SMP-only 19 * c/o Linus Torvalds. 20 * 21 * These mean you can really definitely utterly forget about 22 * writing to user space from interrupts. (Its not allowed anyway). 23 * 24 * Optimizations Manfred Spraul <manfred@colorfullife.com> 25 * 26 * More scalable flush, from Andi Kleen 27 * 28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 29 */ 30 31 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 32 33 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 34 u16 *new_asid, bool *need_flush) 35 { 36 u16 asid; 37 38 if (!static_cpu_has(X86_FEATURE_PCID)) { 39 *new_asid = 0; 40 *need_flush = true; 41 return; 42 } 43 44 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 45 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 46 next->context.ctx_id) 47 continue; 48 49 *new_asid = asid; 50 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 51 next_tlb_gen); 52 return; 53 } 54 55 /* 56 * We don't currently own an ASID slot on this CPU. 57 * Allocate a slot. 58 */ 59 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 60 if (*new_asid >= TLB_NR_DYN_ASIDS) { 61 *new_asid = 0; 62 this_cpu_write(cpu_tlbstate.next_asid, 1); 63 } 64 *need_flush = true; 65 } 66 67 void leave_mm(int cpu) 68 { 69 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 70 71 /* 72 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 73 * If so, our callers still expect us to flush the TLB, but there 74 * aren't any user TLB entries in init_mm to worry about. 75 * 76 * This needs to happen before any other sanity checks due to 77 * intel_idle's shenanigans. 78 */ 79 if (loaded_mm == &init_mm) 80 return; 81 82 /* Warn if we're not lazy. */ 83 WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm))); 84 85 switch_mm(NULL, &init_mm, NULL); 86 } 87 88 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 89 struct task_struct *tsk) 90 { 91 unsigned long flags; 92 93 local_irq_save(flags); 94 switch_mm_irqs_off(prev, next, tsk); 95 local_irq_restore(flags); 96 } 97 98 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 99 struct task_struct *tsk) 100 { 101 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 102 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 103 unsigned cpu = smp_processor_id(); 104 u64 next_tlb_gen; 105 106 /* 107 * NB: The scheduler will call us with prev == next when switching 108 * from lazy TLB mode to normal mode if active_mm isn't changing. 109 * When this happens, we don't assume that CR3 (and hence 110 * cpu_tlbstate.loaded_mm) matches next. 111 * 112 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 113 */ 114 115 /* We don't want flush_tlb_func_* to run concurrently with us. */ 116 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 117 WARN_ON_ONCE(!irqs_disabled()); 118 119 /* 120 * Verify that CR3 is what we think it is. This will catch 121 * hypothetical buggy code that directly switches to swapper_pg_dir 122 * without going through leave_mm() / switch_mm_irqs_off() or that 123 * does something like write_cr3(read_cr3_pa()). 124 */ 125 VM_BUG_ON(__read_cr3() != (__sme_pa(real_prev->pgd) | prev_asid)); 126 127 if (real_prev == next) { 128 VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 129 next->context.ctx_id); 130 131 if (cpumask_test_cpu(cpu, mm_cpumask(next))) { 132 /* 133 * There's nothing to do: we weren't lazy, and we 134 * aren't changing our mm. We don't need to flush 135 * anything, nor do we need to update CR3, CR4, or 136 * LDTR. 137 */ 138 return; 139 } 140 141 /* Resume remote flushes and then read tlb_gen. */ 142 cpumask_set_cpu(cpu, mm_cpumask(next)); 143 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 144 145 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) < 146 next_tlb_gen) { 147 /* 148 * Ideally, we'd have a flush_tlb() variant that 149 * takes the known CR3 value as input. This would 150 * be faster on Xen PV and on hypothetical CPUs 151 * on which INVPCID is fast. 152 */ 153 this_cpu_write(cpu_tlbstate.ctxs[prev_asid].tlb_gen, 154 next_tlb_gen); 155 write_cr3(__sme_pa(next->pgd) | prev_asid); 156 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 157 TLB_FLUSH_ALL); 158 } 159 160 /* 161 * We just exited lazy mode, which means that CR4 and/or LDTR 162 * may be stale. (Changes to the required CR4 and LDTR states 163 * are not reflected in tlb_gen.) 164 */ 165 } else { 166 u16 new_asid; 167 bool need_flush; 168 169 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 170 /* 171 * If our current stack is in vmalloc space and isn't 172 * mapped in the new pgd, we'll double-fault. Forcibly 173 * map it. 174 */ 175 unsigned int index = pgd_index(current_stack_pointer()); 176 pgd_t *pgd = next->pgd + index; 177 178 if (unlikely(pgd_none(*pgd))) 179 set_pgd(pgd, init_mm.pgd[index]); 180 } 181 182 /* Stop remote flushes for the previous mm */ 183 if (cpumask_test_cpu(cpu, mm_cpumask(real_prev))) 184 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 185 186 VM_WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next))); 187 188 /* 189 * Start remote flushes and then read tlb_gen. 190 */ 191 cpumask_set_cpu(cpu, mm_cpumask(next)); 192 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 193 194 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 195 196 if (need_flush) { 197 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 198 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 199 write_cr3(__sme_pa(next->pgd) | new_asid); 200 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 201 TLB_FLUSH_ALL); 202 } else { 203 /* The new ASID is already up to date. */ 204 write_cr3(__sme_pa(next->pgd) | new_asid | CR3_NOFLUSH); 205 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 206 } 207 208 this_cpu_write(cpu_tlbstate.loaded_mm, next); 209 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 210 } 211 212 load_mm_cr4(next); 213 switch_ldt(real_prev, next); 214 } 215 216 /* 217 * flush_tlb_func_common()'s memory ordering requirement is that any 218 * TLB fills that happen after we flush the TLB are ordered after we 219 * read active_mm's tlb_gen. We don't need any explicit barriers 220 * because all x86 flush operations are serializing and the 221 * atomic64_read operation won't be reordered by the compiler. 222 */ 223 static void flush_tlb_func_common(const struct flush_tlb_info *f, 224 bool local, enum tlb_flush_reason reason) 225 { 226 /* 227 * We have three different tlb_gen values in here. They are: 228 * 229 * - mm_tlb_gen: the latest generation. 230 * - local_tlb_gen: the generation that this CPU has already caught 231 * up to. 232 * - f->new_tlb_gen: the generation that the requester of the flush 233 * wants us to catch up to. 234 */ 235 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 236 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 237 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 238 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 239 240 /* This code cannot presently handle being reentered. */ 241 VM_WARN_ON(!irqs_disabled()); 242 243 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 244 loaded_mm->context.ctx_id); 245 246 if (!cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm))) { 247 /* 248 * We're in lazy mode -- don't flush. We can get here on 249 * remote flushes due to races and on local flushes if a 250 * kernel thread coincidentally flushes the mm it's lazily 251 * still using. 252 */ 253 return; 254 } 255 256 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 257 /* 258 * There's nothing to do: we're already up to date. This can 259 * happen if two concurrent flushes happen -- the first flush to 260 * be handled can catch us all the way up, leaving no work for 261 * the second flush. 262 */ 263 trace_tlb_flush(reason, 0); 264 return; 265 } 266 267 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 268 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 269 270 /* 271 * If we get to this point, we know that our TLB is out of date. 272 * This does not strictly imply that we need to flush (it's 273 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 274 * going to need to flush in the very near future, so we might 275 * as well get it over with. 276 * 277 * The only question is whether to do a full or partial flush. 278 * 279 * We do a partial flush if requested and two extra conditions 280 * are met: 281 * 282 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 283 * we've always done all needed flushes to catch up to 284 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 285 * f->new_tlb_gen == 3, then we know that the flush needed to bring 286 * us up to date for tlb_gen 3 is the partial flush we're 287 * processing. 288 * 289 * As an example of why this check is needed, suppose that there 290 * are two concurrent flushes. The first is a full flush that 291 * changes context.tlb_gen from 1 to 2. The second is a partial 292 * flush that changes context.tlb_gen from 2 to 3. If they get 293 * processed on this CPU in reverse order, we'll see 294 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 295 * If we were to use __flush_tlb_single() and set local_tlb_gen to 296 * 3, we'd be break the invariant: we'd update local_tlb_gen above 297 * 1 without the full flush that's needed for tlb_gen 2. 298 * 299 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation. 300 * Partial TLB flushes are not all that much cheaper than full TLB 301 * flushes, so it seems unlikely that it would be a performance win 302 * to do a partial flush if that won't bring our TLB fully up to 303 * date. By doing a full flush instead, we can increase 304 * local_tlb_gen all the way to mm_tlb_gen and we can probably 305 * avoid another flush in the very near future. 306 */ 307 if (f->end != TLB_FLUSH_ALL && 308 f->new_tlb_gen == local_tlb_gen + 1 && 309 f->new_tlb_gen == mm_tlb_gen) { 310 /* Partial flush */ 311 unsigned long addr; 312 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT; 313 314 addr = f->start; 315 while (addr < f->end) { 316 __flush_tlb_single(addr); 317 addr += PAGE_SIZE; 318 } 319 if (local) 320 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages); 321 trace_tlb_flush(reason, nr_pages); 322 } else { 323 /* Full flush. */ 324 local_flush_tlb(); 325 if (local) 326 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 327 trace_tlb_flush(reason, TLB_FLUSH_ALL); 328 } 329 330 /* Both paths above update our state to mm_tlb_gen. */ 331 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 332 } 333 334 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason) 335 { 336 const struct flush_tlb_info *f = info; 337 338 flush_tlb_func_common(f, true, reason); 339 } 340 341 static void flush_tlb_func_remote(void *info) 342 { 343 const struct flush_tlb_info *f = info; 344 345 inc_irq_stat(irq_tlb_count); 346 347 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) 348 return; 349 350 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 351 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); 352 } 353 354 void native_flush_tlb_others(const struct cpumask *cpumask, 355 const struct flush_tlb_info *info) 356 { 357 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 358 if (info->end == TLB_FLUSH_ALL) 359 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 360 else 361 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 362 (info->end - info->start) >> PAGE_SHIFT); 363 364 if (is_uv_system()) { 365 /* 366 * This whole special case is confused. UV has a "Broadcast 367 * Assist Unit", which seems to be a fancy way to send IPIs. 368 * Back when x86 used an explicit TLB flush IPI, UV was 369 * optimized to use its own mechanism. These days, x86 uses 370 * smp_call_function_many(), but UV still uses a manual IPI, 371 * and that IPI's action is out of date -- it does a manual 372 * flush instead of calling flush_tlb_func_remote(). This 373 * means that the percpu tlb_gen variables won't be updated 374 * and we'll do pointless flushes on future context switches. 375 * 376 * Rather than hooking native_flush_tlb_others() here, I think 377 * that UV should be updated so that smp_call_function_many(), 378 * etc, are optimal on UV. 379 */ 380 unsigned int cpu; 381 382 cpu = smp_processor_id(); 383 cpumask = uv_flush_tlb_others(cpumask, info); 384 if (cpumask) 385 smp_call_function_many(cpumask, flush_tlb_func_remote, 386 (void *)info, 1); 387 return; 388 } 389 smp_call_function_many(cpumask, flush_tlb_func_remote, 390 (void *)info, 1); 391 } 392 393 /* 394 * See Documentation/x86/tlb.txt for details. We choose 33 395 * because it is large enough to cover the vast majority (at 396 * least 95%) of allocations, and is small enough that we are 397 * confident it will not cause too much overhead. Each single 398 * flush is about 100 ns, so this caps the maximum overhead at 399 * _about_ 3,000 ns. 400 * 401 * This is in units of pages. 402 */ 403 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 404 405 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 406 unsigned long end, unsigned long vmflag) 407 { 408 int cpu; 409 410 struct flush_tlb_info info = { 411 .mm = mm, 412 }; 413 414 cpu = get_cpu(); 415 416 /* This is also a barrier that synchronizes with switch_mm(). */ 417 info.new_tlb_gen = inc_mm_tlb_gen(mm); 418 419 /* Should we flush just the requested range? */ 420 if ((end != TLB_FLUSH_ALL) && 421 !(vmflag & VM_HUGETLB) && 422 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) { 423 info.start = start; 424 info.end = end; 425 } else { 426 info.start = 0UL; 427 info.end = TLB_FLUSH_ALL; 428 } 429 430 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 431 VM_WARN_ON(irqs_disabled()); 432 local_irq_disable(); 433 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN); 434 local_irq_enable(); 435 } 436 437 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) 438 flush_tlb_others(mm_cpumask(mm), &info); 439 440 put_cpu(); 441 } 442 443 444 static void do_flush_tlb_all(void *info) 445 { 446 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 447 __flush_tlb_all(); 448 } 449 450 void flush_tlb_all(void) 451 { 452 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 453 on_each_cpu(do_flush_tlb_all, NULL, 1); 454 } 455 456 static void do_kernel_range_flush(void *info) 457 { 458 struct flush_tlb_info *f = info; 459 unsigned long addr; 460 461 /* flush range by one by one 'invlpg' */ 462 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 463 __flush_tlb_single(addr); 464 } 465 466 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 467 { 468 469 /* Balance as user space task's flush, a bit conservative */ 470 if (end == TLB_FLUSH_ALL || 471 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 472 on_each_cpu(do_flush_tlb_all, NULL, 1); 473 } else { 474 struct flush_tlb_info info; 475 info.start = start; 476 info.end = end; 477 on_each_cpu(do_kernel_range_flush, &info, 1); 478 } 479 } 480 481 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 482 { 483 struct flush_tlb_info info = { 484 .mm = NULL, 485 .start = 0UL, 486 .end = TLB_FLUSH_ALL, 487 }; 488 489 int cpu = get_cpu(); 490 491 if (cpumask_test_cpu(cpu, &batch->cpumask)) { 492 VM_WARN_ON(irqs_disabled()); 493 local_irq_disable(); 494 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN); 495 local_irq_enable(); 496 } 497 498 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) 499 flush_tlb_others(&batch->cpumask, &info); 500 501 cpumask_clear(&batch->cpumask); 502 503 put_cpu(); 504 } 505 506 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 507 size_t count, loff_t *ppos) 508 { 509 char buf[32]; 510 unsigned int len; 511 512 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 513 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 514 } 515 516 static ssize_t tlbflush_write_file(struct file *file, 517 const char __user *user_buf, size_t count, loff_t *ppos) 518 { 519 char buf[32]; 520 ssize_t len; 521 int ceiling; 522 523 len = min(count, sizeof(buf) - 1); 524 if (copy_from_user(buf, user_buf, len)) 525 return -EFAULT; 526 527 buf[len] = '\0'; 528 if (kstrtoint(buf, 0, &ceiling)) 529 return -EINVAL; 530 531 if (ceiling < 0) 532 return -EINVAL; 533 534 tlb_single_page_flush_ceiling = ceiling; 535 return count; 536 } 537 538 static const struct file_operations fops_tlbflush = { 539 .read = tlbflush_read_file, 540 .write = tlbflush_write_file, 541 .llseek = default_llseek, 542 }; 543 544 static int __init create_tlb_single_page_flush_ceiling(void) 545 { 546 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 547 arch_debugfs_dir, NULL, &fops_tlbflush); 548 return 0; 549 } 550 late_initcall(create_tlb_single_page_flush_ceiling); 551