1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 #include <linux/sched/smt.h> 12 13 #include <asm/tlbflush.h> 14 #include <asm/mmu_context.h> 15 #include <asm/nospec-branch.h> 16 #include <asm/cache.h> 17 #include <asm/cacheflush.h> 18 #include <asm/apic.h> 19 #include <asm/perf_event.h> 20 21 #include "mm_internal.h" 22 23 #ifdef CONFIG_PARAVIRT 24 # define STATIC_NOPV 25 #else 26 # define STATIC_NOPV static 27 # define __flush_tlb_local native_flush_tlb_local 28 # define __flush_tlb_global native_flush_tlb_global 29 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 30 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) 31 #endif 32 33 /* 34 * TLB flushing, formerly SMP-only 35 * c/o Linus Torvalds. 36 * 37 * These mean you can really definitely utterly forget about 38 * writing to user space from interrupts. (Its not allowed anyway). 39 * 40 * Optimizations Manfred Spraul <manfred@colorfullife.com> 41 * 42 * More scalable flush, from Andi Kleen 43 * 44 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 45 */ 46 47 /* 48 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is 49 * stored in cpu_tlb_state.last_user_mm_spec. 50 */ 51 #define LAST_USER_MM_IBPB 0x1UL 52 #define LAST_USER_MM_L1D_FLUSH 0x2UL 53 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH) 54 55 /* Bits to set when tlbstate and flush is (re)initialized */ 56 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB 57 58 /* 59 * The x86 feature is called PCID (Process Context IDentifier). It is similar 60 * to what is traditionally called ASID on the RISC processors. 61 * 62 * We don't use the traditional ASID implementation, where each process/mm gets 63 * its own ASID and flush/restart when we run out of ASID space. 64 * 65 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 66 * that came by on this CPU, allowing cheaper switch_mm between processes on 67 * this CPU. 68 * 69 * We end up with different spaces for different things. To avoid confusion we 70 * use different names for each of them: 71 * 72 * ASID - [0, TLB_NR_DYN_ASIDS-1] 73 * the canonical identifier for an mm 74 * 75 * kPCID - [1, TLB_NR_DYN_ASIDS] 76 * the value we write into the PCID part of CR3; corresponds to the 77 * ASID+1, because PCID 0 is special. 78 * 79 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 80 * for KPTI each mm has two address spaces and thus needs two 81 * PCID values, but we can still do with a single ASID denomination 82 * for each mm. Corresponds to kPCID + 2048. 83 * 84 */ 85 86 /* There are 12 bits of space for ASIDS in CR3 */ 87 #define CR3_HW_ASID_BITS 12 88 89 /* 90 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 91 * user/kernel switches 92 */ 93 #ifdef CONFIG_PAGE_TABLE_ISOLATION 94 # define PTI_CONSUMED_PCID_BITS 1 95 #else 96 # define PTI_CONSUMED_PCID_BITS 0 97 #endif 98 99 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 100 101 /* 102 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 103 * for them being zero-based. Another -1 is because PCID 0 is reserved for 104 * use by non-PCID-aware users. 105 */ 106 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 107 108 /* 109 * Given @asid, compute kPCID 110 */ 111 static inline u16 kern_pcid(u16 asid) 112 { 113 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 114 115 #ifdef CONFIG_PAGE_TABLE_ISOLATION 116 /* 117 * Make sure that the dynamic ASID space does not conflict with the 118 * bit we are using to switch between user and kernel ASIDs. 119 */ 120 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 121 122 /* 123 * The ASID being passed in here should have respected the 124 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 125 */ 126 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 127 #endif 128 /* 129 * The dynamically-assigned ASIDs that get passed in are small 130 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 131 * so do not bother to clear it. 132 * 133 * If PCID is on, ASID-aware code paths put the ASID+1 into the 134 * PCID bits. This serves two purposes. It prevents a nasty 135 * situation in which PCID-unaware code saves CR3, loads some other 136 * value (with PCID == 0), and then restores CR3, thus corrupting 137 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 138 * that any bugs involving loading a PCID-enabled CR3 with 139 * CR4.PCIDE off will trigger deterministically. 140 */ 141 return asid + 1; 142 } 143 144 /* 145 * Given @asid, compute uPCID 146 */ 147 static inline u16 user_pcid(u16 asid) 148 { 149 u16 ret = kern_pcid(asid); 150 #ifdef CONFIG_PAGE_TABLE_ISOLATION 151 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 152 #endif 153 return ret; 154 } 155 156 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 157 { 158 if (static_cpu_has(X86_FEATURE_PCID)) { 159 return __sme_pa(pgd) | kern_pcid(asid); 160 } else { 161 VM_WARN_ON_ONCE(asid != 0); 162 return __sme_pa(pgd); 163 } 164 } 165 166 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 167 { 168 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 169 /* 170 * Use boot_cpu_has() instead of this_cpu_has() as this function 171 * might be called during early boot. This should work even after 172 * boot because all CPU's the have same capabilities: 173 */ 174 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 175 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 176 } 177 178 /* 179 * We get here when we do something requiring a TLB invalidation 180 * but could not go invalidate all of the contexts. We do the 181 * necessary invalidation by clearing out the 'ctx_id' which 182 * forces a TLB flush when the context is loaded. 183 */ 184 static void clear_asid_other(void) 185 { 186 u16 asid; 187 188 /* 189 * This is only expected to be set if we have disabled 190 * kernel _PAGE_GLOBAL pages. 191 */ 192 if (!static_cpu_has(X86_FEATURE_PTI)) { 193 WARN_ON_ONCE(1); 194 return; 195 } 196 197 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 198 /* Do not need to flush the current asid */ 199 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 200 continue; 201 /* 202 * Make sure the next time we go to switch to 203 * this asid, we do a flush: 204 */ 205 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 206 } 207 this_cpu_write(cpu_tlbstate.invalidate_other, false); 208 } 209 210 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 211 212 213 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 214 u16 *new_asid, bool *need_flush) 215 { 216 u16 asid; 217 218 if (!static_cpu_has(X86_FEATURE_PCID)) { 219 *new_asid = 0; 220 *need_flush = true; 221 return; 222 } 223 224 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 225 clear_asid_other(); 226 227 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 228 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 229 next->context.ctx_id) 230 continue; 231 232 *new_asid = asid; 233 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 234 next_tlb_gen); 235 return; 236 } 237 238 /* 239 * We don't currently own an ASID slot on this CPU. 240 * Allocate a slot. 241 */ 242 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 243 if (*new_asid >= TLB_NR_DYN_ASIDS) { 244 *new_asid = 0; 245 this_cpu_write(cpu_tlbstate.next_asid, 1); 246 } 247 *need_flush = true; 248 } 249 250 /* 251 * Given an ASID, flush the corresponding user ASID. We can delay this 252 * until the next time we switch to it. 253 * 254 * See SWITCH_TO_USER_CR3. 255 */ 256 static inline void invalidate_user_asid(u16 asid) 257 { 258 /* There is no user ASID if address space separation is off */ 259 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 260 return; 261 262 /* 263 * We only have a single ASID if PCID is off and the CR3 264 * write will have flushed it. 265 */ 266 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 267 return; 268 269 if (!static_cpu_has(X86_FEATURE_PTI)) 270 return; 271 272 __set_bit(kern_pcid(asid), 273 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 274 } 275 276 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 277 { 278 unsigned long new_mm_cr3; 279 280 if (need_flush) { 281 invalidate_user_asid(new_asid); 282 new_mm_cr3 = build_cr3(pgdir, new_asid); 283 } else { 284 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 285 } 286 287 /* 288 * Caution: many callers of this function expect 289 * that load_cr3() is serializing and orders TLB 290 * fills with respect to the mm_cpumask writes. 291 */ 292 write_cr3(new_mm_cr3); 293 } 294 295 void leave_mm(int cpu) 296 { 297 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 298 299 /* 300 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 301 * If so, our callers still expect us to flush the TLB, but there 302 * aren't any user TLB entries in init_mm to worry about. 303 * 304 * This needs to happen before any other sanity checks due to 305 * intel_idle's shenanigans. 306 */ 307 if (loaded_mm == &init_mm) 308 return; 309 310 /* Warn if we're not lazy. */ 311 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); 312 313 switch_mm(NULL, &init_mm, NULL); 314 } 315 EXPORT_SYMBOL_GPL(leave_mm); 316 317 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 318 struct task_struct *tsk) 319 { 320 unsigned long flags; 321 322 local_irq_save(flags); 323 switch_mm_irqs_off(prev, next, tsk); 324 local_irq_restore(flags); 325 } 326 327 /* 328 * Invoked from return to user/guest by a task that opted-in to L1D 329 * flushing but ended up running on an SMT enabled core due to wrong 330 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush 331 * contract which this task requested. 332 */ 333 static void l1d_flush_force_sigbus(struct callback_head *ch) 334 { 335 force_sig(SIGBUS); 336 } 337 338 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm, 339 struct task_struct *next) 340 { 341 /* Flush L1D if the outgoing task requests it */ 342 if (prev_mm & LAST_USER_MM_L1D_FLUSH) 343 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 344 345 /* Check whether the incoming task opted in for L1D flush */ 346 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH))) 347 return; 348 349 /* 350 * Validate that it is not running on an SMT sibling as this would 351 * make the excercise pointless because the siblings share L1D. If 352 * it runs on a SMT sibling, notify it with SIGBUS on return to 353 * user/guest 354 */ 355 if (this_cpu_read(cpu_info.smt_active)) { 356 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH); 357 next->l1d_flush_kill.func = l1d_flush_force_sigbus; 358 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME); 359 } 360 } 361 362 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next) 363 { 364 unsigned long next_tif = read_task_thread_flags(next); 365 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK; 366 367 /* 368 * Ensure that the bit shift above works as expected and the two flags 369 * end up in bit 0 and 1. 370 */ 371 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1); 372 373 return (unsigned long)next->mm | spec_bits; 374 } 375 376 static void cond_mitigation(struct task_struct *next) 377 { 378 unsigned long prev_mm, next_mm; 379 380 if (!next || !next->mm) 381 return; 382 383 next_mm = mm_mangle_tif_spec_bits(next); 384 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec); 385 386 /* 387 * Avoid user/user BTB poisoning by flushing the branch predictor 388 * when switching between processes. This stops one process from 389 * doing Spectre-v2 attacks on another. 390 * 391 * Both, the conditional and the always IBPB mode use the mm 392 * pointer to avoid the IBPB when switching between tasks of the 393 * same process. Using the mm pointer instead of mm->context.ctx_id 394 * opens a hypothetical hole vs. mm_struct reuse, which is more or 395 * less impossible to control by an attacker. Aside of that it 396 * would only affect the first schedule so the theoretically 397 * exposed data is not really interesting. 398 */ 399 if (static_branch_likely(&switch_mm_cond_ibpb)) { 400 /* 401 * This is a bit more complex than the always mode because 402 * it has to handle two cases: 403 * 404 * 1) Switch from a user space task (potential attacker) 405 * which has TIF_SPEC_IB set to a user space task 406 * (potential victim) which has TIF_SPEC_IB not set. 407 * 408 * 2) Switch from a user space task (potential attacker) 409 * which has TIF_SPEC_IB not set to a user space task 410 * (potential victim) which has TIF_SPEC_IB set. 411 * 412 * This could be done by unconditionally issuing IBPB when 413 * a task which has TIF_SPEC_IB set is either scheduled in 414 * or out. Though that results in two flushes when: 415 * 416 * - the same user space task is scheduled out and later 417 * scheduled in again and only a kernel thread ran in 418 * between. 419 * 420 * - a user space task belonging to the same process is 421 * scheduled in after a kernel thread ran in between 422 * 423 * - a user space task belonging to the same process is 424 * scheduled in immediately. 425 * 426 * Optimize this with reasonably small overhead for the 427 * above cases. Mangle the TIF_SPEC_IB bit into the mm 428 * pointer of the incoming task which is stored in 429 * cpu_tlbstate.last_user_mm_spec for comparison. 430 * 431 * Issue IBPB only if the mm's are different and one or 432 * both have the IBPB bit set. 433 */ 434 if (next_mm != prev_mm && 435 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 436 indirect_branch_prediction_barrier(); 437 } 438 439 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 440 /* 441 * Only flush when switching to a user space task with a 442 * different context than the user space task which ran 443 * last on this CPU. 444 */ 445 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != 446 (unsigned long)next->mm) 447 indirect_branch_prediction_barrier(); 448 } 449 450 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) { 451 /* 452 * Flush L1D when the outgoing task requested it and/or 453 * check whether the incoming task requested L1D flushing 454 * and ended up on an SMT sibling. 455 */ 456 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH)) 457 l1d_flush_evaluate(prev_mm, next_mm, next); 458 } 459 460 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm); 461 } 462 463 #ifdef CONFIG_PERF_EVENTS 464 static inline void cr4_update_pce_mm(struct mm_struct *mm) 465 { 466 if (static_branch_unlikely(&rdpmc_always_available_key) || 467 (!static_branch_unlikely(&rdpmc_never_available_key) && 468 atomic_read(&mm->context.perf_rdpmc_allowed))) { 469 /* 470 * Clear the existing dirty counters to 471 * prevent the leak for an RDPMC task. 472 */ 473 perf_clear_dirty_counters(); 474 cr4_set_bits_irqsoff(X86_CR4_PCE); 475 } else 476 cr4_clear_bits_irqsoff(X86_CR4_PCE); 477 } 478 479 void cr4_update_pce(void *ignored) 480 { 481 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 482 } 483 484 #else 485 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 486 #endif 487 488 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 489 struct task_struct *tsk) 490 { 491 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 492 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 493 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); 494 unsigned cpu = smp_processor_id(); 495 u64 next_tlb_gen; 496 bool need_flush; 497 u16 new_asid; 498 499 /* 500 * NB: The scheduler will call us with prev == next when switching 501 * from lazy TLB mode to normal mode if active_mm isn't changing. 502 * When this happens, we don't assume that CR3 (and hence 503 * cpu_tlbstate.loaded_mm) matches next. 504 * 505 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 506 */ 507 508 /* We don't want flush_tlb_func() to run concurrently with us. */ 509 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 510 WARN_ON_ONCE(!irqs_disabled()); 511 512 /* 513 * Verify that CR3 is what we think it is. This will catch 514 * hypothetical buggy code that directly switches to swapper_pg_dir 515 * without going through leave_mm() / switch_mm_irqs_off() or that 516 * does something like write_cr3(read_cr3_pa()). 517 * 518 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 519 * isn't free. 520 */ 521 #ifdef CONFIG_DEBUG_VM 522 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 523 /* 524 * If we were to BUG here, we'd be very likely to kill 525 * the system so hard that we don't see the call trace. 526 * Try to recover instead by ignoring the error and doing 527 * a global flush to minimize the chance of corruption. 528 * 529 * (This is far from being a fully correct recovery. 530 * Architecturally, the CPU could prefetch something 531 * back into an incorrect ASID slot and leave it there 532 * to cause trouble down the road. It's better than 533 * nothing, though.) 534 */ 535 __flush_tlb_all(); 536 } 537 #endif 538 if (was_lazy) 539 this_cpu_write(cpu_tlbstate_shared.is_lazy, false); 540 541 /* 542 * The membarrier system call requires a full memory barrier and 543 * core serialization before returning to user-space, after 544 * storing to rq->curr, when changing mm. This is because 545 * membarrier() sends IPIs to all CPUs that are in the target mm 546 * to make them issue memory barriers. However, if another CPU 547 * switches to/from the target mm concurrently with 548 * membarrier(), it can cause that CPU not to receive an IPI 549 * when it really should issue a memory barrier. Writing to CR3 550 * provides that full memory barrier and core serializing 551 * instruction. 552 */ 553 if (real_prev == next) { 554 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 555 next->context.ctx_id); 556 557 /* 558 * Even in lazy TLB mode, the CPU should stay set in the 559 * mm_cpumask. The TLB shootdown code can figure out from 560 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. 561 */ 562 if (WARN_ON_ONCE(real_prev != &init_mm && 563 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 564 cpumask_set_cpu(cpu, mm_cpumask(next)); 565 566 /* 567 * If the CPU is not in lazy TLB mode, we are just switching 568 * from one thread in a process to another thread in the same 569 * process. No TLB flush required. 570 */ 571 if (!was_lazy) 572 return; 573 574 /* 575 * Read the tlb_gen to check whether a flush is needed. 576 * If the TLB is up to date, just use it. 577 * The barrier synchronizes with the tlb_gen increment in 578 * the TLB shootdown code. 579 */ 580 smp_mb(); 581 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 582 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 583 next_tlb_gen) 584 return; 585 586 /* 587 * TLB contents went out of date while we were in lazy 588 * mode. Fall through to the TLB switching code below. 589 */ 590 new_asid = prev_asid; 591 need_flush = true; 592 } else { 593 /* 594 * Apply process to process speculation vulnerability 595 * mitigations if applicable. 596 */ 597 cond_mitigation(tsk); 598 599 /* 600 * Stop remote flushes for the previous mm. 601 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 602 * but the bitmap manipulation can cause cache line contention. 603 */ 604 if (real_prev != &init_mm) { 605 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 606 mm_cpumask(real_prev))); 607 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 608 } 609 610 /* 611 * Start remote flushes and then read tlb_gen. 612 */ 613 if (next != &init_mm) 614 cpumask_set_cpu(cpu, mm_cpumask(next)); 615 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 616 617 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 618 619 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 620 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 621 barrier(); 622 } 623 624 if (need_flush) { 625 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 626 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 627 load_new_mm_cr3(next->pgd, new_asid, true); 628 629 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 630 } else { 631 /* The new ASID is already up to date. */ 632 load_new_mm_cr3(next->pgd, new_asid, false); 633 634 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 635 } 636 637 /* Make sure we write CR3 before loaded_mm. */ 638 barrier(); 639 640 this_cpu_write(cpu_tlbstate.loaded_mm, next); 641 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 642 643 if (next != real_prev) { 644 cr4_update_pce_mm(next); 645 switch_ldt(real_prev, next); 646 } 647 } 648 649 /* 650 * Please ignore the name of this function. It should be called 651 * switch_to_kernel_thread(). 652 * 653 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 654 * kernel thread or other context without an mm. Acceptable implementations 655 * include doing nothing whatsoever, switching to init_mm, or various clever 656 * lazy tricks to try to minimize TLB flushes. 657 * 658 * The scheduler reserves the right to call enter_lazy_tlb() several times 659 * in a row. It will notify us that we're going back to a real mm by 660 * calling switch_mm_irqs_off(). 661 */ 662 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 663 { 664 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 665 return; 666 667 this_cpu_write(cpu_tlbstate_shared.is_lazy, true); 668 } 669 670 /* 671 * Call this when reinitializing a CPU. It fixes the following potential 672 * problems: 673 * 674 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 675 * because the CPU was taken down and came back up with CR3's PCID 676 * bits clear. CPU hotplug can do this. 677 * 678 * - The TLB contains junk in slots corresponding to inactive ASIDs. 679 * 680 * - The CPU went so far out to lunch that it may have missed a TLB 681 * flush. 682 */ 683 void initialize_tlbstate_and_flush(void) 684 { 685 int i; 686 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 687 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 688 unsigned long cr3 = __read_cr3(); 689 690 /* Assert that CR3 already references the right mm. */ 691 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 692 693 /* 694 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 695 * doesn't work like other CR4 bits because it can only be set from 696 * long mode.) 697 */ 698 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 699 !(cr4_read_shadow() & X86_CR4_PCIDE)); 700 701 /* Force ASID 0 and force a TLB flush. */ 702 write_cr3(build_cr3(mm->pgd, 0)); 703 704 /* Reinitialize tlbstate. */ 705 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT); 706 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 707 this_cpu_write(cpu_tlbstate.next_asid, 1); 708 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 709 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 710 711 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 712 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 713 } 714 715 /* 716 * flush_tlb_func()'s memory ordering requirement is that any 717 * TLB fills that happen after we flush the TLB are ordered after we 718 * read active_mm's tlb_gen. We don't need any explicit barriers 719 * because all x86 flush operations are serializing and the 720 * atomic64_read operation won't be reordered by the compiler. 721 */ 722 static void flush_tlb_func(void *info) 723 { 724 /* 725 * We have three different tlb_gen values in here. They are: 726 * 727 * - mm_tlb_gen: the latest generation. 728 * - local_tlb_gen: the generation that this CPU has already caught 729 * up to. 730 * - f->new_tlb_gen: the generation that the requester of the flush 731 * wants us to catch up to. 732 */ 733 const struct flush_tlb_info *f = info; 734 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 735 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 736 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 737 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 738 bool local = smp_processor_id() == f->initiating_cpu; 739 unsigned long nr_invalidate = 0; 740 741 /* This code cannot presently handle being reentered. */ 742 VM_WARN_ON(!irqs_disabled()); 743 744 if (!local) { 745 inc_irq_stat(irq_tlb_count); 746 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 747 748 /* Can only happen on remote CPUs */ 749 if (f->mm && f->mm != loaded_mm) 750 return; 751 } 752 753 if (unlikely(loaded_mm == &init_mm)) 754 return; 755 756 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 757 loaded_mm->context.ctx_id); 758 759 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { 760 /* 761 * We're in lazy mode. We need to at least flush our 762 * paging-structure cache to avoid speculatively reading 763 * garbage into our TLB. Since switching to init_mm is barely 764 * slower than a minimal flush, just switch to init_mm. 765 * 766 * This should be rare, with native_flush_tlb_multi() skipping 767 * IPIs to lazy TLB mode CPUs. 768 */ 769 switch_mm_irqs_off(NULL, &init_mm, NULL); 770 return; 771 } 772 773 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 774 /* 775 * There's nothing to do: we're already up to date. This can 776 * happen if two concurrent flushes happen -- the first flush to 777 * be handled can catch us all the way up, leaving no work for 778 * the second flush. 779 */ 780 goto done; 781 } 782 783 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 784 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 785 786 /* 787 * If we get to this point, we know that our TLB is out of date. 788 * This does not strictly imply that we need to flush (it's 789 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 790 * going to need to flush in the very near future, so we might 791 * as well get it over with. 792 * 793 * The only question is whether to do a full or partial flush. 794 * 795 * We do a partial flush if requested and two extra conditions 796 * are met: 797 * 798 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 799 * we've always done all needed flushes to catch up to 800 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 801 * f->new_tlb_gen == 3, then we know that the flush needed to bring 802 * us up to date for tlb_gen 3 is the partial flush we're 803 * processing. 804 * 805 * As an example of why this check is needed, suppose that there 806 * are two concurrent flushes. The first is a full flush that 807 * changes context.tlb_gen from 1 to 2. The second is a partial 808 * flush that changes context.tlb_gen from 2 to 3. If they get 809 * processed on this CPU in reverse order, we'll see 810 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 811 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 812 * 3, we'd be break the invariant: we'd update local_tlb_gen above 813 * 1 without the full flush that's needed for tlb_gen 2. 814 * 815 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. 816 * Partial TLB flushes are not all that much cheaper than full TLB 817 * flushes, so it seems unlikely that it would be a performance win 818 * to do a partial flush if that won't bring our TLB fully up to 819 * date. By doing a full flush instead, we can increase 820 * local_tlb_gen all the way to mm_tlb_gen and we can probably 821 * avoid another flush in the very near future. 822 */ 823 if (f->end != TLB_FLUSH_ALL && 824 f->new_tlb_gen == local_tlb_gen + 1 && 825 f->new_tlb_gen == mm_tlb_gen) { 826 /* Partial flush */ 827 unsigned long addr = f->start; 828 829 nr_invalidate = (f->end - f->start) >> f->stride_shift; 830 831 while (addr < f->end) { 832 flush_tlb_one_user(addr); 833 addr += 1UL << f->stride_shift; 834 } 835 if (local) 836 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 837 } else { 838 /* Full flush. */ 839 nr_invalidate = TLB_FLUSH_ALL; 840 841 flush_tlb_local(); 842 if (local) 843 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 844 } 845 846 /* Both paths above update our state to mm_tlb_gen. */ 847 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 848 849 /* Tracing is done in a unified manner to reduce the code size */ 850 done: 851 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : 852 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : 853 TLB_LOCAL_MM_SHOOTDOWN, 854 nr_invalidate); 855 } 856 857 static bool tlb_is_not_lazy(int cpu) 858 { 859 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu); 860 } 861 862 static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask); 863 864 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); 865 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); 866 867 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, 868 const struct flush_tlb_info *info) 869 { 870 /* 871 * Do accounting and tracing. Note that there are (and have always been) 872 * cases in which a remote TLB flush will be traced, but eventually 873 * would not happen. 874 */ 875 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 876 if (info->end == TLB_FLUSH_ALL) 877 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 878 else 879 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 880 (info->end - info->start) >> PAGE_SHIFT); 881 882 /* 883 * If no page tables were freed, we can skip sending IPIs to 884 * CPUs in lazy TLB mode. They will flush the CPU themselves 885 * at the next context switch. 886 * 887 * However, if page tables are getting freed, we need to send the 888 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 889 * up on the new contents of what used to be page tables, while 890 * doing a speculative memory access. 891 */ 892 if (info->freed_tables) { 893 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); 894 } else { 895 /* 896 * Although we could have used on_each_cpu_cond_mask(), 897 * open-coding it has performance advantages, as it eliminates 898 * the need for indirect calls or retpolines. In addition, it 899 * allows to use a designated cpumask for evaluating the 900 * condition, instead of allocating one. 901 * 902 * This code works under the assumption that there are no nested 903 * TLB flushes, an assumption that is already made in 904 * flush_tlb_mm_range(). 905 * 906 * cond_cpumask is logically a stack-local variable, but it is 907 * more efficient to have it off the stack and not to allocate 908 * it on demand. Preemption is disabled and this code is 909 * non-reentrant. 910 */ 911 struct cpumask *cond_cpumask = this_cpu_ptr(&flush_tlb_mask); 912 int cpu; 913 914 cpumask_clear(cond_cpumask); 915 916 for_each_cpu(cpu, cpumask) { 917 if (tlb_is_not_lazy(cpu)) 918 __cpumask_set_cpu(cpu, cond_cpumask); 919 } 920 on_each_cpu_mask(cond_cpumask, flush_tlb_func, (void *)info, true); 921 } 922 } 923 924 void flush_tlb_multi(const struct cpumask *cpumask, 925 const struct flush_tlb_info *info) 926 { 927 __flush_tlb_multi(cpumask, info); 928 } 929 930 /* 931 * See Documentation/x86/tlb.rst for details. We choose 33 932 * because it is large enough to cover the vast majority (at 933 * least 95%) of allocations, and is small enough that we are 934 * confident it will not cause too much overhead. Each single 935 * flush is about 100 ns, so this caps the maximum overhead at 936 * _about_ 3,000 ns. 937 * 938 * This is in units of pages. 939 */ 940 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 941 942 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 943 944 #ifdef CONFIG_DEBUG_VM 945 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 946 #endif 947 948 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 949 unsigned long start, unsigned long end, 950 unsigned int stride_shift, bool freed_tables, 951 u64 new_tlb_gen) 952 { 953 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 954 955 #ifdef CONFIG_DEBUG_VM 956 /* 957 * Ensure that the following code is non-reentrant and flush_tlb_info 958 * is not overwritten. This means no TLB flushing is initiated by 959 * interrupt handlers and machine-check exception handlers. 960 */ 961 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 962 #endif 963 964 info->start = start; 965 info->end = end; 966 info->mm = mm; 967 info->stride_shift = stride_shift; 968 info->freed_tables = freed_tables; 969 info->new_tlb_gen = new_tlb_gen; 970 info->initiating_cpu = smp_processor_id(); 971 972 return info; 973 } 974 975 static void put_flush_tlb_info(void) 976 { 977 #ifdef CONFIG_DEBUG_VM 978 /* Complete reentrancy prevention checks */ 979 barrier(); 980 this_cpu_dec(flush_tlb_info_idx); 981 #endif 982 } 983 984 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 985 unsigned long end, unsigned int stride_shift, 986 bool freed_tables) 987 { 988 struct flush_tlb_info *info; 989 u64 new_tlb_gen; 990 int cpu; 991 992 cpu = get_cpu(); 993 994 /* Should we flush just the requested range? */ 995 if ((end == TLB_FLUSH_ALL) || 996 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 997 start = 0; 998 end = TLB_FLUSH_ALL; 999 } 1000 1001 /* This is also a barrier that synchronizes with switch_mm(). */ 1002 new_tlb_gen = inc_mm_tlb_gen(mm); 1003 1004 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 1005 new_tlb_gen); 1006 1007 /* 1008 * flush_tlb_multi() is not optimized for the common case in which only 1009 * a local TLB flush is needed. Optimize this use-case by calling 1010 * flush_tlb_func_local() directly in this case. 1011 */ 1012 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { 1013 flush_tlb_multi(mm_cpumask(mm), info); 1014 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 1015 lockdep_assert_irqs_enabled(); 1016 local_irq_disable(); 1017 flush_tlb_func(info); 1018 local_irq_enable(); 1019 } 1020 1021 put_flush_tlb_info(); 1022 put_cpu(); 1023 } 1024 1025 1026 static void do_flush_tlb_all(void *info) 1027 { 1028 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 1029 __flush_tlb_all(); 1030 } 1031 1032 void flush_tlb_all(void) 1033 { 1034 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 1035 on_each_cpu(do_flush_tlb_all, NULL, 1); 1036 } 1037 1038 static void do_kernel_range_flush(void *info) 1039 { 1040 struct flush_tlb_info *f = info; 1041 unsigned long addr; 1042 1043 /* flush range by one by one 'invlpg' */ 1044 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 1045 flush_tlb_one_kernel(addr); 1046 } 1047 1048 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 1049 { 1050 /* Balance as user space task's flush, a bit conservative */ 1051 if (end == TLB_FLUSH_ALL || 1052 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 1053 on_each_cpu(do_flush_tlb_all, NULL, 1); 1054 } else { 1055 struct flush_tlb_info *info; 1056 1057 preempt_disable(); 1058 info = get_flush_tlb_info(NULL, start, end, 0, false, 0); 1059 1060 on_each_cpu(do_kernel_range_flush, info, 1); 1061 1062 put_flush_tlb_info(); 1063 preempt_enable(); 1064 } 1065 } 1066 1067 /* 1068 * This can be used from process context to figure out what the value of 1069 * CR3 is without needing to do a (slow) __read_cr3(). 1070 * 1071 * It's intended to be used for code like KVM that sneakily changes CR3 1072 * and needs to restore it. It needs to be used very carefully. 1073 */ 1074 unsigned long __get_current_cr3_fast(void) 1075 { 1076 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 1077 this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1078 1079 /* For now, be very restrictive about when this can be called. */ 1080 VM_WARN_ON(in_nmi() || preemptible()); 1081 1082 VM_BUG_ON(cr3 != __read_cr3()); 1083 return cr3; 1084 } 1085 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1086 1087 /* 1088 * Flush one page in the kernel mapping 1089 */ 1090 void flush_tlb_one_kernel(unsigned long addr) 1091 { 1092 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1093 1094 /* 1095 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1096 * paravirt equivalent. Even with PCID, this is sufficient: we only 1097 * use PCID if we also use global PTEs for the kernel mapping, and 1098 * INVLPG flushes global translations across all address spaces. 1099 * 1100 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1101 * __flush_tlb_one_user() will flush the given address for the current 1102 * kernel address space and for its usermode counterpart, but it does 1103 * not flush it for other address spaces. 1104 */ 1105 flush_tlb_one_user(addr); 1106 1107 if (!static_cpu_has(X86_FEATURE_PTI)) 1108 return; 1109 1110 /* 1111 * See above. We need to propagate the flush to all other address 1112 * spaces. In principle, we only need to propagate it to kernelmode 1113 * address spaces, but the extra bookkeeping we would need is not 1114 * worth it. 1115 */ 1116 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1117 } 1118 1119 /* 1120 * Flush one page in the user mapping 1121 */ 1122 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1123 { 1124 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1125 1126 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 1127 1128 if (!static_cpu_has(X86_FEATURE_PTI)) 1129 return; 1130 1131 /* 1132 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 1133 * Just use invalidate_user_asid() in case we are called early. 1134 */ 1135 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 1136 invalidate_user_asid(loaded_mm_asid); 1137 else 1138 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1139 } 1140 1141 void flush_tlb_one_user(unsigned long addr) 1142 { 1143 __flush_tlb_one_user(addr); 1144 } 1145 1146 /* 1147 * Flush everything 1148 */ 1149 STATIC_NOPV void native_flush_tlb_global(void) 1150 { 1151 unsigned long flags; 1152 1153 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1154 /* 1155 * Using INVPCID is considerably faster than a pair of writes 1156 * to CR4 sandwiched inside an IRQ flag save/restore. 1157 * 1158 * Note, this works with CR4.PCIDE=0 or 1. 1159 */ 1160 invpcid_flush_all(); 1161 return; 1162 } 1163 1164 /* 1165 * Read-modify-write to CR4 - protect it from preemption and 1166 * from interrupts. (Use the raw variant because this code can 1167 * be called from deep inside debugging code.) 1168 */ 1169 raw_local_irq_save(flags); 1170 1171 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); 1172 1173 raw_local_irq_restore(flags); 1174 } 1175 1176 /* 1177 * Flush the entire current user mapping 1178 */ 1179 STATIC_NOPV void native_flush_tlb_local(void) 1180 { 1181 /* 1182 * Preemption or interrupts must be disabled to protect the access 1183 * to the per CPU variable and to prevent being preempted between 1184 * read_cr3() and write_cr3(). 1185 */ 1186 WARN_ON_ONCE(preemptible()); 1187 1188 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1189 1190 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1191 native_write_cr3(__native_read_cr3()); 1192 } 1193 1194 void flush_tlb_local(void) 1195 { 1196 __flush_tlb_local(); 1197 } 1198 1199 /* 1200 * Flush everything 1201 */ 1202 void __flush_tlb_all(void) 1203 { 1204 /* 1205 * This is to catch users with enabled preemption and the PGE feature 1206 * and don't trigger the warning in __native_flush_tlb(). 1207 */ 1208 VM_WARN_ON_ONCE(preemptible()); 1209 1210 if (boot_cpu_has(X86_FEATURE_PGE)) { 1211 __flush_tlb_global(); 1212 } else { 1213 /* 1214 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1215 */ 1216 flush_tlb_local(); 1217 } 1218 } 1219 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1220 1221 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1222 { 1223 struct flush_tlb_info *info; 1224 1225 int cpu = get_cpu(); 1226 1227 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0); 1228 /* 1229 * flush_tlb_multi() is not optimized for the common case in which only 1230 * a local TLB flush is needed. Optimize this use-case by calling 1231 * flush_tlb_func_local() directly in this case. 1232 */ 1233 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { 1234 flush_tlb_multi(&batch->cpumask, info); 1235 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1236 lockdep_assert_irqs_enabled(); 1237 local_irq_disable(); 1238 flush_tlb_func(info); 1239 local_irq_enable(); 1240 } 1241 1242 cpumask_clear(&batch->cpumask); 1243 1244 put_flush_tlb_info(); 1245 put_cpu(); 1246 } 1247 1248 /* 1249 * Blindly accessing user memory from NMI context can be dangerous 1250 * if we're in the middle of switching the current user task or 1251 * switching the loaded mm. It can also be dangerous if we 1252 * interrupted some kernel code that was temporarily using a 1253 * different mm. 1254 */ 1255 bool nmi_uaccess_okay(void) 1256 { 1257 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1258 struct mm_struct *current_mm = current->mm; 1259 1260 VM_WARN_ON_ONCE(!loaded_mm); 1261 1262 /* 1263 * The condition we want to check is 1264 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1265 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1266 * is supposed to be reasonably fast. 1267 * 1268 * Instead, we check the almost equivalent but somewhat conservative 1269 * condition below, and we rely on the fact that switch_mm_irqs_off() 1270 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1271 */ 1272 if (loaded_mm != current_mm) 1273 return false; 1274 1275 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 1276 1277 return true; 1278 } 1279 1280 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1281 size_t count, loff_t *ppos) 1282 { 1283 char buf[32]; 1284 unsigned int len; 1285 1286 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1287 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1288 } 1289 1290 static ssize_t tlbflush_write_file(struct file *file, 1291 const char __user *user_buf, size_t count, loff_t *ppos) 1292 { 1293 char buf[32]; 1294 ssize_t len; 1295 int ceiling; 1296 1297 len = min(count, sizeof(buf) - 1); 1298 if (copy_from_user(buf, user_buf, len)) 1299 return -EFAULT; 1300 1301 buf[len] = '\0'; 1302 if (kstrtoint(buf, 0, &ceiling)) 1303 return -EINVAL; 1304 1305 if (ceiling < 0) 1306 return -EINVAL; 1307 1308 tlb_single_page_flush_ceiling = ceiling; 1309 return count; 1310 } 1311 1312 static const struct file_operations fops_tlbflush = { 1313 .read = tlbflush_read_file, 1314 .write = tlbflush_write_file, 1315 .llseek = default_llseek, 1316 }; 1317 1318 static int __init create_tlb_single_page_flush_ceiling(void) 1319 { 1320 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1321 arch_debugfs_dir, NULL, &fops_tlbflush); 1322 return 0; 1323 } 1324 late_initcall(create_tlb_single_page_flush_ceiling); 1325