xref: /linux/arch/x86/mm/tlb.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/uv/uv.h>
18 
19 #include "mm_internal.h"
20 
21 /*
22  *	TLB flushing, formerly SMP-only
23  *		c/o Linus Torvalds.
24  *
25  *	These mean you can really definitely utterly forget about
26  *	writing to user space from interrupts. (Its not allowed anyway).
27  *
28  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
29  *
30  *	More scalable flush, from Andi Kleen
31  *
32  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
33  */
34 
35 /*
36  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
37  * stored in cpu_tlb_state.last_user_mm_ibpb.
38  */
39 #define LAST_USER_MM_IBPB	0x1UL
40 
41 /*
42  * We get here when we do something requiring a TLB invalidation
43  * but could not go invalidate all of the contexts.  We do the
44  * necessary invalidation by clearing out the 'ctx_id' which
45  * forces a TLB flush when the context is loaded.
46  */
47 static void clear_asid_other(void)
48 {
49 	u16 asid;
50 
51 	/*
52 	 * This is only expected to be set if we have disabled
53 	 * kernel _PAGE_GLOBAL pages.
54 	 */
55 	if (!static_cpu_has(X86_FEATURE_PTI)) {
56 		WARN_ON_ONCE(1);
57 		return;
58 	}
59 
60 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
61 		/* Do not need to flush the current asid */
62 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
63 			continue;
64 		/*
65 		 * Make sure the next time we go to switch to
66 		 * this asid, we do a flush:
67 		 */
68 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
69 	}
70 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
71 }
72 
73 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
74 
75 
76 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
77 			    u16 *new_asid, bool *need_flush)
78 {
79 	u16 asid;
80 
81 	if (!static_cpu_has(X86_FEATURE_PCID)) {
82 		*new_asid = 0;
83 		*need_flush = true;
84 		return;
85 	}
86 
87 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
88 		clear_asid_other();
89 
90 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
91 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
92 		    next->context.ctx_id)
93 			continue;
94 
95 		*new_asid = asid;
96 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
97 			       next_tlb_gen);
98 		return;
99 	}
100 
101 	/*
102 	 * We don't currently own an ASID slot on this CPU.
103 	 * Allocate a slot.
104 	 */
105 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
106 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
107 		*new_asid = 0;
108 		this_cpu_write(cpu_tlbstate.next_asid, 1);
109 	}
110 	*need_flush = true;
111 }
112 
113 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
114 {
115 	unsigned long new_mm_cr3;
116 
117 	if (need_flush) {
118 		invalidate_user_asid(new_asid);
119 		new_mm_cr3 = build_cr3(pgdir, new_asid);
120 	} else {
121 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
122 	}
123 
124 	/*
125 	 * Caution: many callers of this function expect
126 	 * that load_cr3() is serializing and orders TLB
127 	 * fills with respect to the mm_cpumask writes.
128 	 */
129 	write_cr3(new_mm_cr3);
130 }
131 
132 void leave_mm(int cpu)
133 {
134 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
135 
136 	/*
137 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
138 	 * If so, our callers still expect us to flush the TLB, but there
139 	 * aren't any user TLB entries in init_mm to worry about.
140 	 *
141 	 * This needs to happen before any other sanity checks due to
142 	 * intel_idle's shenanigans.
143 	 */
144 	if (loaded_mm == &init_mm)
145 		return;
146 
147 	/* Warn if we're not lazy. */
148 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
149 
150 	switch_mm(NULL, &init_mm, NULL);
151 }
152 EXPORT_SYMBOL_GPL(leave_mm);
153 
154 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
155 	       struct task_struct *tsk)
156 {
157 	unsigned long flags;
158 
159 	local_irq_save(flags);
160 	switch_mm_irqs_off(prev, next, tsk);
161 	local_irq_restore(flags);
162 }
163 
164 static void sync_current_stack_to_mm(struct mm_struct *mm)
165 {
166 	unsigned long sp = current_stack_pointer;
167 	pgd_t *pgd = pgd_offset(mm, sp);
168 
169 	if (pgtable_l5_enabled()) {
170 		if (unlikely(pgd_none(*pgd))) {
171 			pgd_t *pgd_ref = pgd_offset_k(sp);
172 
173 			set_pgd(pgd, *pgd_ref);
174 		}
175 	} else {
176 		/*
177 		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
178 		 * the p4d.  This compiles to approximately the same code as
179 		 * the 5-level case.
180 		 */
181 		p4d_t *p4d = p4d_offset(pgd, sp);
182 
183 		if (unlikely(p4d_none(*p4d))) {
184 			pgd_t *pgd_ref = pgd_offset_k(sp);
185 			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
186 
187 			set_p4d(p4d, *p4d_ref);
188 		}
189 	}
190 }
191 
192 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
193 {
194 	unsigned long next_tif = task_thread_info(next)->flags;
195 	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
196 
197 	return (unsigned long)next->mm | ibpb;
198 }
199 
200 static void cond_ibpb(struct task_struct *next)
201 {
202 	if (!next || !next->mm)
203 		return;
204 
205 	/*
206 	 * Both, the conditional and the always IBPB mode use the mm
207 	 * pointer to avoid the IBPB when switching between tasks of the
208 	 * same process. Using the mm pointer instead of mm->context.ctx_id
209 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
210 	 * less impossible to control by an attacker. Aside of that it
211 	 * would only affect the first schedule so the theoretically
212 	 * exposed data is not really interesting.
213 	 */
214 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
215 		unsigned long prev_mm, next_mm;
216 
217 		/*
218 		 * This is a bit more complex than the always mode because
219 		 * it has to handle two cases:
220 		 *
221 		 * 1) Switch from a user space task (potential attacker)
222 		 *    which has TIF_SPEC_IB set to a user space task
223 		 *    (potential victim) which has TIF_SPEC_IB not set.
224 		 *
225 		 * 2) Switch from a user space task (potential attacker)
226 		 *    which has TIF_SPEC_IB not set to a user space task
227 		 *    (potential victim) which has TIF_SPEC_IB set.
228 		 *
229 		 * This could be done by unconditionally issuing IBPB when
230 		 * a task which has TIF_SPEC_IB set is either scheduled in
231 		 * or out. Though that results in two flushes when:
232 		 *
233 		 * - the same user space task is scheduled out and later
234 		 *   scheduled in again and only a kernel thread ran in
235 		 *   between.
236 		 *
237 		 * - a user space task belonging to the same process is
238 		 *   scheduled in after a kernel thread ran in between
239 		 *
240 		 * - a user space task belonging to the same process is
241 		 *   scheduled in immediately.
242 		 *
243 		 * Optimize this with reasonably small overhead for the
244 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
245 		 * pointer of the incoming task which is stored in
246 		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
247 		 */
248 		next_mm = mm_mangle_tif_spec_ib(next);
249 		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
250 
251 		/*
252 		 * Issue IBPB only if the mm's are different and one or
253 		 * both have the IBPB bit set.
254 		 */
255 		if (next_mm != prev_mm &&
256 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
257 			indirect_branch_prediction_barrier();
258 
259 		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
260 	}
261 
262 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
263 		/*
264 		 * Only flush when switching to a user space task with a
265 		 * different context than the user space task which ran
266 		 * last on this CPU.
267 		 */
268 		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
269 			indirect_branch_prediction_barrier();
270 			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
271 		}
272 	}
273 }
274 
275 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
276 			struct task_struct *tsk)
277 {
278 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
279 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
280 	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
281 	unsigned cpu = smp_processor_id();
282 	u64 next_tlb_gen;
283 	bool need_flush;
284 	u16 new_asid;
285 
286 	/*
287 	 * NB: The scheduler will call us with prev == next when switching
288 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
289 	 * When this happens, we don't assume that CR3 (and hence
290 	 * cpu_tlbstate.loaded_mm) matches next.
291 	 *
292 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
293 	 */
294 
295 	/* We don't want flush_tlb_func_* to run concurrently with us. */
296 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
297 		WARN_ON_ONCE(!irqs_disabled());
298 
299 	/*
300 	 * Verify that CR3 is what we think it is.  This will catch
301 	 * hypothetical buggy code that directly switches to swapper_pg_dir
302 	 * without going through leave_mm() / switch_mm_irqs_off() or that
303 	 * does something like write_cr3(read_cr3_pa()).
304 	 *
305 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
306 	 * isn't free.
307 	 */
308 #ifdef CONFIG_DEBUG_VM
309 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
310 		/*
311 		 * If we were to BUG here, we'd be very likely to kill
312 		 * the system so hard that we don't see the call trace.
313 		 * Try to recover instead by ignoring the error and doing
314 		 * a global flush to minimize the chance of corruption.
315 		 *
316 		 * (This is far from being a fully correct recovery.
317 		 *  Architecturally, the CPU could prefetch something
318 		 *  back into an incorrect ASID slot and leave it there
319 		 *  to cause trouble down the road.  It's better than
320 		 *  nothing, though.)
321 		 */
322 		__flush_tlb_all();
323 	}
324 #endif
325 	this_cpu_write(cpu_tlbstate.is_lazy, false);
326 
327 	/*
328 	 * The membarrier system call requires a full memory barrier and
329 	 * core serialization before returning to user-space, after
330 	 * storing to rq->curr. Writing to CR3 provides that full
331 	 * memory barrier and core serializing instruction.
332 	 */
333 	if (real_prev == next) {
334 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
335 			   next->context.ctx_id);
336 
337 		/*
338 		 * Even in lazy TLB mode, the CPU should stay set in the
339 		 * mm_cpumask. The TLB shootdown code can figure out from
340 		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
341 		 */
342 		if (WARN_ON_ONCE(real_prev != &init_mm &&
343 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
344 			cpumask_set_cpu(cpu, mm_cpumask(next));
345 
346 		/*
347 		 * If the CPU is not in lazy TLB mode, we are just switching
348 		 * from one thread in a process to another thread in the same
349 		 * process. No TLB flush required.
350 		 */
351 		if (!was_lazy)
352 			return;
353 
354 		/*
355 		 * Read the tlb_gen to check whether a flush is needed.
356 		 * If the TLB is up to date, just use it.
357 		 * The barrier synchronizes with the tlb_gen increment in
358 		 * the TLB shootdown code.
359 		 */
360 		smp_mb();
361 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
362 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
363 				next_tlb_gen)
364 			return;
365 
366 		/*
367 		 * TLB contents went out of date while we were in lazy
368 		 * mode. Fall through to the TLB switching code below.
369 		 */
370 		new_asid = prev_asid;
371 		need_flush = true;
372 	} else {
373 		/*
374 		 * Avoid user/user BTB poisoning by flushing the branch
375 		 * predictor when switching between processes. This stops
376 		 * one process from doing Spectre-v2 attacks on another.
377 		 */
378 		cond_ibpb(tsk);
379 
380 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
381 			/*
382 			 * If our current stack is in vmalloc space and isn't
383 			 * mapped in the new pgd, we'll double-fault.  Forcibly
384 			 * map it.
385 			 */
386 			sync_current_stack_to_mm(next);
387 		}
388 
389 		/*
390 		 * Stop remote flushes for the previous mm.
391 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
392 		 * but the bitmap manipulation can cause cache line contention.
393 		 */
394 		if (real_prev != &init_mm) {
395 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
396 						mm_cpumask(real_prev)));
397 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
398 		}
399 
400 		/*
401 		 * Start remote flushes and then read tlb_gen.
402 		 */
403 		if (next != &init_mm)
404 			cpumask_set_cpu(cpu, mm_cpumask(next));
405 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
406 
407 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
408 
409 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
410 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
411 		barrier();
412 	}
413 
414 	if (need_flush) {
415 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
416 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
417 		load_new_mm_cr3(next->pgd, new_asid, true);
418 
419 		/*
420 		 * NB: This gets called via leave_mm() in the idle path
421 		 * where RCU functions differently.  Tracing normally
422 		 * uses RCU, so we need to use the _rcuidle variant.
423 		 *
424 		 * (There is no good reason for this.  The idle code should
425 		 *  be rearranged to call this before rcu_idle_enter().)
426 		 */
427 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
428 	} else {
429 		/* The new ASID is already up to date. */
430 		load_new_mm_cr3(next->pgd, new_asid, false);
431 
432 		/* See above wrt _rcuidle. */
433 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
434 	}
435 
436 	/* Make sure we write CR3 before loaded_mm. */
437 	barrier();
438 
439 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
440 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
441 
442 	if (next != real_prev) {
443 		load_mm_cr4_irqsoff(next);
444 		switch_ldt(real_prev, next);
445 	}
446 }
447 
448 /*
449  * Please ignore the name of this function.  It should be called
450  * switch_to_kernel_thread().
451  *
452  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
453  * kernel thread or other context without an mm.  Acceptable implementations
454  * include doing nothing whatsoever, switching to init_mm, or various clever
455  * lazy tricks to try to minimize TLB flushes.
456  *
457  * The scheduler reserves the right to call enter_lazy_tlb() several times
458  * in a row.  It will notify us that we're going back to a real mm by
459  * calling switch_mm_irqs_off().
460  */
461 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
462 {
463 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
464 		return;
465 
466 	this_cpu_write(cpu_tlbstate.is_lazy, true);
467 }
468 
469 /*
470  * Call this when reinitializing a CPU.  It fixes the following potential
471  * problems:
472  *
473  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
474  *   because the CPU was taken down and came back up with CR3's PCID
475  *   bits clear.  CPU hotplug can do this.
476  *
477  * - The TLB contains junk in slots corresponding to inactive ASIDs.
478  *
479  * - The CPU went so far out to lunch that it may have missed a TLB
480  *   flush.
481  */
482 void initialize_tlbstate_and_flush(void)
483 {
484 	int i;
485 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
486 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
487 	unsigned long cr3 = __read_cr3();
488 
489 	/* Assert that CR3 already references the right mm. */
490 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
491 
492 	/*
493 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
494 	 * doesn't work like other CR4 bits because it can only be set from
495 	 * long mode.)
496 	 */
497 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
498 		!(cr4_read_shadow() & X86_CR4_PCIDE));
499 
500 	/* Force ASID 0 and force a TLB flush. */
501 	write_cr3(build_cr3(mm->pgd, 0));
502 
503 	/* Reinitialize tlbstate. */
504 	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
505 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
506 	this_cpu_write(cpu_tlbstate.next_asid, 1);
507 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
508 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
509 
510 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
511 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
512 }
513 
514 /*
515  * flush_tlb_func_common()'s memory ordering requirement is that any
516  * TLB fills that happen after we flush the TLB are ordered after we
517  * read active_mm's tlb_gen.  We don't need any explicit barriers
518  * because all x86 flush operations are serializing and the
519  * atomic64_read operation won't be reordered by the compiler.
520  */
521 static void flush_tlb_func_common(const struct flush_tlb_info *f,
522 				  bool local, enum tlb_flush_reason reason)
523 {
524 	/*
525 	 * We have three different tlb_gen values in here.  They are:
526 	 *
527 	 * - mm_tlb_gen:     the latest generation.
528 	 * - local_tlb_gen:  the generation that this CPU has already caught
529 	 *                   up to.
530 	 * - f->new_tlb_gen: the generation that the requester of the flush
531 	 *                   wants us to catch up to.
532 	 */
533 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
534 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
535 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
536 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
537 
538 	/* This code cannot presently handle being reentered. */
539 	VM_WARN_ON(!irqs_disabled());
540 
541 	if (unlikely(loaded_mm == &init_mm))
542 		return;
543 
544 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
545 		   loaded_mm->context.ctx_id);
546 
547 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
548 		/*
549 		 * We're in lazy mode.  We need to at least flush our
550 		 * paging-structure cache to avoid speculatively reading
551 		 * garbage into our TLB.  Since switching to init_mm is barely
552 		 * slower than a minimal flush, just switch to init_mm.
553 		 *
554 		 * This should be rare, with native_flush_tlb_others skipping
555 		 * IPIs to lazy TLB mode CPUs.
556 		 */
557 		switch_mm_irqs_off(NULL, &init_mm, NULL);
558 		return;
559 	}
560 
561 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
562 		/*
563 		 * There's nothing to do: we're already up to date.  This can
564 		 * happen if two concurrent flushes happen -- the first flush to
565 		 * be handled can catch us all the way up, leaving no work for
566 		 * the second flush.
567 		 */
568 		trace_tlb_flush(reason, 0);
569 		return;
570 	}
571 
572 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
573 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
574 
575 	/*
576 	 * If we get to this point, we know that our TLB is out of date.
577 	 * This does not strictly imply that we need to flush (it's
578 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
579 	 * going to need to flush in the very near future, so we might
580 	 * as well get it over with.
581 	 *
582 	 * The only question is whether to do a full or partial flush.
583 	 *
584 	 * We do a partial flush if requested and two extra conditions
585 	 * are met:
586 	 *
587 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
588 	 *    we've always done all needed flushes to catch up to
589 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
590 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
591 	 *    us up to date for tlb_gen 3 is the partial flush we're
592 	 *    processing.
593 	 *
594 	 *    As an example of why this check is needed, suppose that there
595 	 *    are two concurrent flushes.  The first is a full flush that
596 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
597 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
598 	 *    processed on this CPU in reverse order, we'll see
599 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
600 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
601 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
602 	 *    1 without the full flush that's needed for tlb_gen 2.
603 	 *
604 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
605 	 *    Partial TLB flushes are not all that much cheaper than full TLB
606 	 *    flushes, so it seems unlikely that it would be a performance win
607 	 *    to do a partial flush if that won't bring our TLB fully up to
608 	 *    date.  By doing a full flush instead, we can increase
609 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
610 	 *    avoid another flush in the very near future.
611 	 */
612 	if (f->end != TLB_FLUSH_ALL &&
613 	    f->new_tlb_gen == local_tlb_gen + 1 &&
614 	    f->new_tlb_gen == mm_tlb_gen) {
615 		/* Partial flush */
616 		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
617 		unsigned long addr = f->start;
618 
619 		while (addr < f->end) {
620 			__flush_tlb_one_user(addr);
621 			addr += 1UL << f->stride_shift;
622 		}
623 		if (local)
624 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
625 		trace_tlb_flush(reason, nr_invalidate);
626 	} else {
627 		/* Full flush. */
628 		local_flush_tlb();
629 		if (local)
630 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
631 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
632 	}
633 
634 	/* Both paths above update our state to mm_tlb_gen. */
635 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
636 }
637 
638 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
639 {
640 	const struct flush_tlb_info *f = info;
641 
642 	flush_tlb_func_common(f, true, reason);
643 }
644 
645 static void flush_tlb_func_remote(void *info)
646 {
647 	const struct flush_tlb_info *f = info;
648 
649 	inc_irq_stat(irq_tlb_count);
650 
651 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
652 		return;
653 
654 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
655 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
656 }
657 
658 static bool tlb_is_not_lazy(int cpu, void *data)
659 {
660 	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
661 }
662 
663 void native_flush_tlb_others(const struct cpumask *cpumask,
664 			     const struct flush_tlb_info *info)
665 {
666 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
667 	if (info->end == TLB_FLUSH_ALL)
668 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
669 	else
670 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
671 				(info->end - info->start) >> PAGE_SHIFT);
672 
673 	if (is_uv_system()) {
674 		/*
675 		 * This whole special case is confused.  UV has a "Broadcast
676 		 * Assist Unit", which seems to be a fancy way to send IPIs.
677 		 * Back when x86 used an explicit TLB flush IPI, UV was
678 		 * optimized to use its own mechanism.  These days, x86 uses
679 		 * smp_call_function_many(), but UV still uses a manual IPI,
680 		 * and that IPI's action is out of date -- it does a manual
681 		 * flush instead of calling flush_tlb_func_remote().  This
682 		 * means that the percpu tlb_gen variables won't be updated
683 		 * and we'll do pointless flushes on future context switches.
684 		 *
685 		 * Rather than hooking native_flush_tlb_others() here, I think
686 		 * that UV should be updated so that smp_call_function_many(),
687 		 * etc, are optimal on UV.
688 		 */
689 		cpumask = uv_flush_tlb_others(cpumask, info);
690 		if (cpumask)
691 			smp_call_function_many(cpumask, flush_tlb_func_remote,
692 					       (void *)info, 1);
693 		return;
694 	}
695 
696 	/*
697 	 * If no page tables were freed, we can skip sending IPIs to
698 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
699 	 * at the next context switch.
700 	 *
701 	 * However, if page tables are getting freed, we need to send the
702 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
703 	 * up on the new contents of what used to be page tables, while
704 	 * doing a speculative memory access.
705 	 */
706 	if (info->freed_tables)
707 		smp_call_function_many(cpumask, flush_tlb_func_remote,
708 			       (void *)info, 1);
709 	else
710 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
711 				(void *)info, 1, cpumask);
712 }
713 
714 /*
715  * See Documentation/x86/tlb.rst for details.  We choose 33
716  * because it is large enough to cover the vast majority (at
717  * least 95%) of allocations, and is small enough that we are
718  * confident it will not cause too much overhead.  Each single
719  * flush is about 100 ns, so this caps the maximum overhead at
720  * _about_ 3,000 ns.
721  *
722  * This is in units of pages.
723  */
724 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
725 
726 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
727 
728 #ifdef CONFIG_DEBUG_VM
729 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
730 #endif
731 
732 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
733 			unsigned long start, unsigned long end,
734 			unsigned int stride_shift, bool freed_tables,
735 			u64 new_tlb_gen)
736 {
737 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
738 
739 #ifdef CONFIG_DEBUG_VM
740 	/*
741 	 * Ensure that the following code is non-reentrant and flush_tlb_info
742 	 * is not overwritten. This means no TLB flushing is initiated by
743 	 * interrupt handlers and machine-check exception handlers.
744 	 */
745 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
746 #endif
747 
748 	info->start		= start;
749 	info->end		= end;
750 	info->mm		= mm;
751 	info->stride_shift	= stride_shift;
752 	info->freed_tables	= freed_tables;
753 	info->new_tlb_gen	= new_tlb_gen;
754 
755 	return info;
756 }
757 
758 static inline void put_flush_tlb_info(void)
759 {
760 #ifdef CONFIG_DEBUG_VM
761 	/* Complete reentrency prevention checks */
762 	barrier();
763 	this_cpu_dec(flush_tlb_info_idx);
764 #endif
765 }
766 
767 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
768 				unsigned long end, unsigned int stride_shift,
769 				bool freed_tables)
770 {
771 	struct flush_tlb_info *info;
772 	u64 new_tlb_gen;
773 	int cpu;
774 
775 	cpu = get_cpu();
776 
777 	/* Should we flush just the requested range? */
778 	if ((end == TLB_FLUSH_ALL) ||
779 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
780 		start = 0;
781 		end = TLB_FLUSH_ALL;
782 	}
783 
784 	/* This is also a barrier that synchronizes with switch_mm(). */
785 	new_tlb_gen = inc_mm_tlb_gen(mm);
786 
787 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
788 				  new_tlb_gen);
789 
790 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
791 		lockdep_assert_irqs_enabled();
792 		local_irq_disable();
793 		flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
794 		local_irq_enable();
795 	}
796 
797 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
798 		flush_tlb_others(mm_cpumask(mm), info);
799 
800 	put_flush_tlb_info();
801 	put_cpu();
802 }
803 
804 
805 static void do_flush_tlb_all(void *info)
806 {
807 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
808 	__flush_tlb_all();
809 }
810 
811 void flush_tlb_all(void)
812 {
813 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
814 	on_each_cpu(do_flush_tlb_all, NULL, 1);
815 }
816 
817 static void do_kernel_range_flush(void *info)
818 {
819 	struct flush_tlb_info *f = info;
820 	unsigned long addr;
821 
822 	/* flush range by one by one 'invlpg' */
823 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
824 		__flush_tlb_one_kernel(addr);
825 }
826 
827 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
828 {
829 	/* Balance as user space task's flush, a bit conservative */
830 	if (end == TLB_FLUSH_ALL ||
831 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
832 		on_each_cpu(do_flush_tlb_all, NULL, 1);
833 	} else {
834 		struct flush_tlb_info *info;
835 
836 		preempt_disable();
837 		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
838 
839 		on_each_cpu(do_kernel_range_flush, info, 1);
840 
841 		put_flush_tlb_info();
842 		preempt_enable();
843 	}
844 }
845 
846 /*
847  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
848  * This means that the 'struct flush_tlb_info' that describes which mappings to
849  * flush is actually fixed. We therefore set a single fixed struct and use it in
850  * arch_tlbbatch_flush().
851  */
852 static const struct flush_tlb_info full_flush_tlb_info = {
853 	.mm = NULL,
854 	.start = 0,
855 	.end = TLB_FLUSH_ALL,
856 };
857 
858 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
859 {
860 	int cpu = get_cpu();
861 
862 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
863 		lockdep_assert_irqs_enabled();
864 		local_irq_disable();
865 		flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
866 		local_irq_enable();
867 	}
868 
869 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
870 		flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
871 
872 	cpumask_clear(&batch->cpumask);
873 
874 	put_cpu();
875 }
876 
877 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
878 			     size_t count, loff_t *ppos)
879 {
880 	char buf[32];
881 	unsigned int len;
882 
883 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
884 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
885 }
886 
887 static ssize_t tlbflush_write_file(struct file *file,
888 		 const char __user *user_buf, size_t count, loff_t *ppos)
889 {
890 	char buf[32];
891 	ssize_t len;
892 	int ceiling;
893 
894 	len = min(count, sizeof(buf) - 1);
895 	if (copy_from_user(buf, user_buf, len))
896 		return -EFAULT;
897 
898 	buf[len] = '\0';
899 	if (kstrtoint(buf, 0, &ceiling))
900 		return -EINVAL;
901 
902 	if (ceiling < 0)
903 		return -EINVAL;
904 
905 	tlb_single_page_flush_ceiling = ceiling;
906 	return count;
907 }
908 
909 static const struct file_operations fops_tlbflush = {
910 	.read = tlbflush_read_file,
911 	.write = tlbflush_write_file,
912 	.llseek = default_llseek,
913 };
914 
915 static int __init create_tlb_single_page_flush_ceiling(void)
916 {
917 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
918 			    arch_debugfs_dir, NULL, &fops_tlbflush);
919 	return 0;
920 }
921 late_initcall(create_tlb_single_page_flush_ceiling);
922