xref: /linux/arch/x86/mm/tlb.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16 
17 /*
18  *	TLB flushing, formerly SMP-only
19  *		c/o Linus Torvalds.
20  *
21  *	These mean you can really definitely utterly forget about
22  *	writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *	More scalable flush, from Andi Kleen
27  *
28  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30 
31 /*
32  * We get here when we do something requiring a TLB invalidation
33  * but could not go invalidate all of the contexts.  We do the
34  * necessary invalidation by clearing out the 'ctx_id' which
35  * forces a TLB flush when the context is loaded.
36  */
37 void clear_asid_other(void)
38 {
39 	u16 asid;
40 
41 	/*
42 	 * This is only expected to be set if we have disabled
43 	 * kernel _PAGE_GLOBAL pages.
44 	 */
45 	if (!static_cpu_has(X86_FEATURE_PTI)) {
46 		WARN_ON_ONCE(1);
47 		return;
48 	}
49 
50 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
51 		/* Do not need to flush the current asid */
52 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
53 			continue;
54 		/*
55 		 * Make sure the next time we go to switch to
56 		 * this asid, we do a flush:
57 		 */
58 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
59 	}
60 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
61 }
62 
63 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
64 
65 
66 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
67 			    u16 *new_asid, bool *need_flush)
68 {
69 	u16 asid;
70 
71 	if (!static_cpu_has(X86_FEATURE_PCID)) {
72 		*new_asid = 0;
73 		*need_flush = true;
74 		return;
75 	}
76 
77 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
78 		clear_asid_other();
79 
80 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
81 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
82 		    next->context.ctx_id)
83 			continue;
84 
85 		*new_asid = asid;
86 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
87 			       next_tlb_gen);
88 		return;
89 	}
90 
91 	/*
92 	 * We don't currently own an ASID slot on this CPU.
93 	 * Allocate a slot.
94 	 */
95 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
96 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
97 		*new_asid = 0;
98 		this_cpu_write(cpu_tlbstate.next_asid, 1);
99 	}
100 	*need_flush = true;
101 }
102 
103 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
104 {
105 	unsigned long new_mm_cr3;
106 
107 	if (need_flush) {
108 		invalidate_user_asid(new_asid);
109 		new_mm_cr3 = build_cr3(pgdir, new_asid);
110 	} else {
111 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
112 	}
113 
114 	/*
115 	 * Caution: many callers of this function expect
116 	 * that load_cr3() is serializing and orders TLB
117 	 * fills with respect to the mm_cpumask writes.
118 	 */
119 	write_cr3(new_mm_cr3);
120 }
121 
122 void leave_mm(int cpu)
123 {
124 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
125 
126 	/*
127 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
128 	 * If so, our callers still expect us to flush the TLB, but there
129 	 * aren't any user TLB entries in init_mm to worry about.
130 	 *
131 	 * This needs to happen before any other sanity checks due to
132 	 * intel_idle's shenanigans.
133 	 */
134 	if (loaded_mm == &init_mm)
135 		return;
136 
137 	/* Warn if we're not lazy. */
138 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
139 
140 	switch_mm(NULL, &init_mm, NULL);
141 }
142 EXPORT_SYMBOL_GPL(leave_mm);
143 
144 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
145 	       struct task_struct *tsk)
146 {
147 	unsigned long flags;
148 
149 	local_irq_save(flags);
150 	switch_mm_irqs_off(prev, next, tsk);
151 	local_irq_restore(flags);
152 }
153 
154 static void sync_current_stack_to_mm(struct mm_struct *mm)
155 {
156 	unsigned long sp = current_stack_pointer;
157 	pgd_t *pgd = pgd_offset(mm, sp);
158 
159 	if (CONFIG_PGTABLE_LEVELS > 4) {
160 		if (unlikely(pgd_none(*pgd))) {
161 			pgd_t *pgd_ref = pgd_offset_k(sp);
162 
163 			set_pgd(pgd, *pgd_ref);
164 		}
165 	} else {
166 		/*
167 		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
168 		 * the p4d.  This compiles to approximately the same code as
169 		 * the 5-level case.
170 		 */
171 		p4d_t *p4d = p4d_offset(pgd, sp);
172 
173 		if (unlikely(p4d_none(*p4d))) {
174 			pgd_t *pgd_ref = pgd_offset_k(sp);
175 			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
176 
177 			set_p4d(p4d, *p4d_ref);
178 		}
179 	}
180 }
181 
182 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
183 			struct task_struct *tsk)
184 {
185 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
186 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
187 	unsigned cpu = smp_processor_id();
188 	u64 next_tlb_gen;
189 
190 	/*
191 	 * NB: The scheduler will call us with prev == next when switching
192 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
193 	 * When this happens, we don't assume that CR3 (and hence
194 	 * cpu_tlbstate.loaded_mm) matches next.
195 	 *
196 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
197 	 */
198 
199 	/* We don't want flush_tlb_func_* to run concurrently with us. */
200 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
201 		WARN_ON_ONCE(!irqs_disabled());
202 
203 	/*
204 	 * Verify that CR3 is what we think it is.  This will catch
205 	 * hypothetical buggy code that directly switches to swapper_pg_dir
206 	 * without going through leave_mm() / switch_mm_irqs_off() or that
207 	 * does something like write_cr3(read_cr3_pa()).
208 	 *
209 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
210 	 * isn't free.
211 	 */
212 #ifdef CONFIG_DEBUG_VM
213 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
214 		/*
215 		 * If we were to BUG here, we'd be very likely to kill
216 		 * the system so hard that we don't see the call trace.
217 		 * Try to recover instead by ignoring the error and doing
218 		 * a global flush to minimize the chance of corruption.
219 		 *
220 		 * (This is far from being a fully correct recovery.
221 		 *  Architecturally, the CPU could prefetch something
222 		 *  back into an incorrect ASID slot and leave it there
223 		 *  to cause trouble down the road.  It's better than
224 		 *  nothing, though.)
225 		 */
226 		__flush_tlb_all();
227 	}
228 #endif
229 	this_cpu_write(cpu_tlbstate.is_lazy, false);
230 
231 	if (real_prev == next) {
232 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
233 			   next->context.ctx_id);
234 
235 		/*
236 		 * We don't currently support having a real mm loaded without
237 		 * our cpu set in mm_cpumask().  We have all the bookkeeping
238 		 * in place to figure out whether we would need to flush
239 		 * if our cpu were cleared in mm_cpumask(), but we don't
240 		 * currently use it.
241 		 */
242 		if (WARN_ON_ONCE(real_prev != &init_mm &&
243 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
244 			cpumask_set_cpu(cpu, mm_cpumask(next));
245 
246 		return;
247 	} else {
248 		u16 new_asid;
249 		bool need_flush;
250 
251 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
252 			/*
253 			 * If our current stack is in vmalloc space and isn't
254 			 * mapped in the new pgd, we'll double-fault.  Forcibly
255 			 * map it.
256 			 */
257 			sync_current_stack_to_mm(next);
258 		}
259 
260 		/* Stop remote flushes for the previous mm */
261 		VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
262 				real_prev != &init_mm);
263 		cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
264 
265 		/*
266 		 * Start remote flushes and then read tlb_gen.
267 		 */
268 		cpumask_set_cpu(cpu, mm_cpumask(next));
269 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
270 
271 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
272 
273 		if (need_flush) {
274 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
275 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
276 			load_new_mm_cr3(next->pgd, new_asid, true);
277 
278 			/*
279 			 * NB: This gets called via leave_mm() in the idle path
280 			 * where RCU functions differently.  Tracing normally
281 			 * uses RCU, so we need to use the _rcuidle variant.
282 			 *
283 			 * (There is no good reason for this.  The idle code should
284 			 *  be rearranged to call this before rcu_idle_enter().)
285 			 */
286 			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
287 		} else {
288 			/* The new ASID is already up to date. */
289 			load_new_mm_cr3(next->pgd, new_asid, false);
290 
291 			/* See above wrt _rcuidle. */
292 			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
293 		}
294 
295 		this_cpu_write(cpu_tlbstate.loaded_mm, next);
296 		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
297 	}
298 
299 	load_mm_cr4(next);
300 	switch_ldt(real_prev, next);
301 }
302 
303 /*
304  * Please ignore the name of this function.  It should be called
305  * switch_to_kernel_thread().
306  *
307  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
308  * kernel thread or other context without an mm.  Acceptable implementations
309  * include doing nothing whatsoever, switching to init_mm, or various clever
310  * lazy tricks to try to minimize TLB flushes.
311  *
312  * The scheduler reserves the right to call enter_lazy_tlb() several times
313  * in a row.  It will notify us that we're going back to a real mm by
314  * calling switch_mm_irqs_off().
315  */
316 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
317 {
318 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
319 		return;
320 
321 	if (tlb_defer_switch_to_init_mm()) {
322 		/*
323 		 * There's a significant optimization that may be possible
324 		 * here.  We have accurate enough TLB flush tracking that we
325 		 * don't need to maintain coherence of TLB per se when we're
326 		 * lazy.  We do, however, need to maintain coherence of
327 		 * paging-structure caches.  We could, in principle, leave our
328 		 * old mm loaded and only switch to init_mm when
329 		 * tlb_remove_page() happens.
330 		 */
331 		this_cpu_write(cpu_tlbstate.is_lazy, true);
332 	} else {
333 		switch_mm(NULL, &init_mm, NULL);
334 	}
335 }
336 
337 /*
338  * Call this when reinitializing a CPU.  It fixes the following potential
339  * problems:
340  *
341  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
342  *   because the CPU was taken down and came back up with CR3's PCID
343  *   bits clear.  CPU hotplug can do this.
344  *
345  * - The TLB contains junk in slots corresponding to inactive ASIDs.
346  *
347  * - The CPU went so far out to lunch that it may have missed a TLB
348  *   flush.
349  */
350 void initialize_tlbstate_and_flush(void)
351 {
352 	int i;
353 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
354 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
355 	unsigned long cr3 = __read_cr3();
356 
357 	/* Assert that CR3 already references the right mm. */
358 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
359 
360 	/*
361 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
362 	 * doesn't work like other CR4 bits because it can only be set from
363 	 * long mode.)
364 	 */
365 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
366 		!(cr4_read_shadow() & X86_CR4_PCIDE));
367 
368 	/* Force ASID 0 and force a TLB flush. */
369 	write_cr3(build_cr3(mm->pgd, 0));
370 
371 	/* Reinitialize tlbstate. */
372 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
373 	this_cpu_write(cpu_tlbstate.next_asid, 1);
374 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
375 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
376 
377 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
378 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
379 }
380 
381 /*
382  * flush_tlb_func_common()'s memory ordering requirement is that any
383  * TLB fills that happen after we flush the TLB are ordered after we
384  * read active_mm's tlb_gen.  We don't need any explicit barriers
385  * because all x86 flush operations are serializing and the
386  * atomic64_read operation won't be reordered by the compiler.
387  */
388 static void flush_tlb_func_common(const struct flush_tlb_info *f,
389 				  bool local, enum tlb_flush_reason reason)
390 {
391 	/*
392 	 * We have three different tlb_gen values in here.  They are:
393 	 *
394 	 * - mm_tlb_gen:     the latest generation.
395 	 * - local_tlb_gen:  the generation that this CPU has already caught
396 	 *                   up to.
397 	 * - f->new_tlb_gen: the generation that the requester of the flush
398 	 *                   wants us to catch up to.
399 	 */
400 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
401 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
402 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
403 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
404 
405 	/* This code cannot presently handle being reentered. */
406 	VM_WARN_ON(!irqs_disabled());
407 
408 	if (unlikely(loaded_mm == &init_mm))
409 		return;
410 
411 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
412 		   loaded_mm->context.ctx_id);
413 
414 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
415 		/*
416 		 * We're in lazy mode.  We need to at least flush our
417 		 * paging-structure cache to avoid speculatively reading
418 		 * garbage into our TLB.  Since switching to init_mm is barely
419 		 * slower than a minimal flush, just switch to init_mm.
420 		 */
421 		switch_mm_irqs_off(NULL, &init_mm, NULL);
422 		return;
423 	}
424 
425 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
426 		/*
427 		 * There's nothing to do: we're already up to date.  This can
428 		 * happen if two concurrent flushes happen -- the first flush to
429 		 * be handled can catch us all the way up, leaving no work for
430 		 * the second flush.
431 		 */
432 		trace_tlb_flush(reason, 0);
433 		return;
434 	}
435 
436 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
437 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
438 
439 	/*
440 	 * If we get to this point, we know that our TLB is out of date.
441 	 * This does not strictly imply that we need to flush (it's
442 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
443 	 * going to need to flush in the very near future, so we might
444 	 * as well get it over with.
445 	 *
446 	 * The only question is whether to do a full or partial flush.
447 	 *
448 	 * We do a partial flush if requested and two extra conditions
449 	 * are met:
450 	 *
451 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
452 	 *    we've always done all needed flushes to catch up to
453 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
454 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
455 	 *    us up to date for tlb_gen 3 is the partial flush we're
456 	 *    processing.
457 	 *
458 	 *    As an example of why this check is needed, suppose that there
459 	 *    are two concurrent flushes.  The first is a full flush that
460 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
461 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
462 	 *    processed on this CPU in reverse order, we'll see
463 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
464 	 *    If we were to use __flush_tlb_single() and set local_tlb_gen to
465 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
466 	 *    1 without the full flush that's needed for tlb_gen 2.
467 	 *
468 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
469 	 *    Partial TLB flushes are not all that much cheaper than full TLB
470 	 *    flushes, so it seems unlikely that it would be a performance win
471 	 *    to do a partial flush if that won't bring our TLB fully up to
472 	 *    date.  By doing a full flush instead, we can increase
473 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
474 	 *    avoid another flush in the very near future.
475 	 */
476 	if (f->end != TLB_FLUSH_ALL &&
477 	    f->new_tlb_gen == local_tlb_gen + 1 &&
478 	    f->new_tlb_gen == mm_tlb_gen) {
479 		/* Partial flush */
480 		unsigned long addr;
481 		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
482 
483 		addr = f->start;
484 		while (addr < f->end) {
485 			__flush_tlb_single(addr);
486 			addr += PAGE_SIZE;
487 		}
488 		if (local)
489 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
490 		trace_tlb_flush(reason, nr_pages);
491 	} else {
492 		/* Full flush. */
493 		local_flush_tlb();
494 		if (local)
495 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
496 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
497 	}
498 
499 	/* Both paths above update our state to mm_tlb_gen. */
500 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
501 }
502 
503 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
504 {
505 	const struct flush_tlb_info *f = info;
506 
507 	flush_tlb_func_common(f, true, reason);
508 }
509 
510 static void flush_tlb_func_remote(void *info)
511 {
512 	const struct flush_tlb_info *f = info;
513 
514 	inc_irq_stat(irq_tlb_count);
515 
516 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
517 		return;
518 
519 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
520 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
521 }
522 
523 void native_flush_tlb_others(const struct cpumask *cpumask,
524 			     const struct flush_tlb_info *info)
525 {
526 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
527 	if (info->end == TLB_FLUSH_ALL)
528 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
529 	else
530 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
531 				(info->end - info->start) >> PAGE_SHIFT);
532 
533 	if (is_uv_system()) {
534 		/*
535 		 * This whole special case is confused.  UV has a "Broadcast
536 		 * Assist Unit", which seems to be a fancy way to send IPIs.
537 		 * Back when x86 used an explicit TLB flush IPI, UV was
538 		 * optimized to use its own mechanism.  These days, x86 uses
539 		 * smp_call_function_many(), but UV still uses a manual IPI,
540 		 * and that IPI's action is out of date -- it does a manual
541 		 * flush instead of calling flush_tlb_func_remote().  This
542 		 * means that the percpu tlb_gen variables won't be updated
543 		 * and we'll do pointless flushes on future context switches.
544 		 *
545 		 * Rather than hooking native_flush_tlb_others() here, I think
546 		 * that UV should be updated so that smp_call_function_many(),
547 		 * etc, are optimal on UV.
548 		 */
549 		unsigned int cpu;
550 
551 		cpu = smp_processor_id();
552 		cpumask = uv_flush_tlb_others(cpumask, info);
553 		if (cpumask)
554 			smp_call_function_many(cpumask, flush_tlb_func_remote,
555 					       (void *)info, 1);
556 		return;
557 	}
558 	smp_call_function_many(cpumask, flush_tlb_func_remote,
559 			       (void *)info, 1);
560 }
561 
562 /*
563  * See Documentation/x86/tlb.txt for details.  We choose 33
564  * because it is large enough to cover the vast majority (at
565  * least 95%) of allocations, and is small enough that we are
566  * confident it will not cause too much overhead.  Each single
567  * flush is about 100 ns, so this caps the maximum overhead at
568  * _about_ 3,000 ns.
569  *
570  * This is in units of pages.
571  */
572 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
573 
574 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
575 				unsigned long end, unsigned long vmflag)
576 {
577 	int cpu;
578 
579 	struct flush_tlb_info info = {
580 		.mm = mm,
581 	};
582 
583 	cpu = get_cpu();
584 
585 	/* This is also a barrier that synchronizes with switch_mm(). */
586 	info.new_tlb_gen = inc_mm_tlb_gen(mm);
587 
588 	/* Should we flush just the requested range? */
589 	if ((end != TLB_FLUSH_ALL) &&
590 	    !(vmflag & VM_HUGETLB) &&
591 	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
592 		info.start = start;
593 		info.end = end;
594 	} else {
595 		info.start = 0UL;
596 		info.end = TLB_FLUSH_ALL;
597 	}
598 
599 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
600 		VM_WARN_ON(irqs_disabled());
601 		local_irq_disable();
602 		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
603 		local_irq_enable();
604 	}
605 
606 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
607 		flush_tlb_others(mm_cpumask(mm), &info);
608 
609 	put_cpu();
610 }
611 
612 
613 static void do_flush_tlb_all(void *info)
614 {
615 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
616 	__flush_tlb_all();
617 }
618 
619 void flush_tlb_all(void)
620 {
621 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
622 	on_each_cpu(do_flush_tlb_all, NULL, 1);
623 }
624 
625 static void do_kernel_range_flush(void *info)
626 {
627 	struct flush_tlb_info *f = info;
628 	unsigned long addr;
629 
630 	/* flush range by one by one 'invlpg' */
631 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
632 		__flush_tlb_one(addr);
633 }
634 
635 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
636 {
637 
638 	/* Balance as user space task's flush, a bit conservative */
639 	if (end == TLB_FLUSH_ALL ||
640 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
641 		on_each_cpu(do_flush_tlb_all, NULL, 1);
642 	} else {
643 		struct flush_tlb_info info;
644 		info.start = start;
645 		info.end = end;
646 		on_each_cpu(do_kernel_range_flush, &info, 1);
647 	}
648 }
649 
650 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
651 {
652 	struct flush_tlb_info info = {
653 		.mm = NULL,
654 		.start = 0UL,
655 		.end = TLB_FLUSH_ALL,
656 	};
657 
658 	int cpu = get_cpu();
659 
660 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
661 		VM_WARN_ON(irqs_disabled());
662 		local_irq_disable();
663 		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
664 		local_irq_enable();
665 	}
666 
667 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
668 		flush_tlb_others(&batch->cpumask, &info);
669 
670 	cpumask_clear(&batch->cpumask);
671 
672 	put_cpu();
673 }
674 
675 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
676 			     size_t count, loff_t *ppos)
677 {
678 	char buf[32];
679 	unsigned int len;
680 
681 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
682 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
683 }
684 
685 static ssize_t tlbflush_write_file(struct file *file,
686 		 const char __user *user_buf, size_t count, loff_t *ppos)
687 {
688 	char buf[32];
689 	ssize_t len;
690 	int ceiling;
691 
692 	len = min(count, sizeof(buf) - 1);
693 	if (copy_from_user(buf, user_buf, len))
694 		return -EFAULT;
695 
696 	buf[len] = '\0';
697 	if (kstrtoint(buf, 0, &ceiling))
698 		return -EINVAL;
699 
700 	if (ceiling < 0)
701 		return -EINVAL;
702 
703 	tlb_single_page_flush_ceiling = ceiling;
704 	return count;
705 }
706 
707 static const struct file_operations fops_tlbflush = {
708 	.read = tlbflush_read_file,
709 	.write = tlbflush_write_file,
710 	.llseek = default_llseek,
711 };
712 
713 static int __init create_tlb_single_page_flush_ceiling(void)
714 {
715 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
716 			    arch_debugfs_dir, NULL, &fops_tlbflush);
717 	return 0;
718 }
719 late_initcall(create_tlb_single_page_flush_ceiling);
720