1 #include <linux/init.h> 2 3 #include <linux/mm.h> 4 #include <linux/spinlock.h> 5 #include <linux/smp.h> 6 #include <linux/interrupt.h> 7 #include <linux/export.h> 8 #include <linux/cpu.h> 9 10 #include <asm/tlbflush.h> 11 #include <asm/mmu_context.h> 12 #include <asm/cache.h> 13 #include <asm/apic.h> 14 #include <asm/uv/uv.h> 15 #include <linux/debugfs.h> 16 17 /* 18 * TLB flushing, formerly SMP-only 19 * c/o Linus Torvalds. 20 * 21 * These mean you can really definitely utterly forget about 22 * writing to user space from interrupts. (Its not allowed anyway). 23 * 24 * Optimizations Manfred Spraul <manfred@colorfullife.com> 25 * 26 * More scalable flush, from Andi Kleen 27 * 28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 29 */ 30 31 /* 32 * We get here when we do something requiring a TLB invalidation 33 * but could not go invalidate all of the contexts. We do the 34 * necessary invalidation by clearing out the 'ctx_id' which 35 * forces a TLB flush when the context is loaded. 36 */ 37 void clear_asid_other(void) 38 { 39 u16 asid; 40 41 /* 42 * This is only expected to be set if we have disabled 43 * kernel _PAGE_GLOBAL pages. 44 */ 45 if (!static_cpu_has(X86_FEATURE_PTI)) { 46 WARN_ON_ONCE(1); 47 return; 48 } 49 50 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 51 /* Do not need to flush the current asid */ 52 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 53 continue; 54 /* 55 * Make sure the next time we go to switch to 56 * this asid, we do a flush: 57 */ 58 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 59 } 60 this_cpu_write(cpu_tlbstate.invalidate_other, false); 61 } 62 63 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 64 65 66 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 67 u16 *new_asid, bool *need_flush) 68 { 69 u16 asid; 70 71 if (!static_cpu_has(X86_FEATURE_PCID)) { 72 *new_asid = 0; 73 *need_flush = true; 74 return; 75 } 76 77 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 78 clear_asid_other(); 79 80 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 81 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 82 next->context.ctx_id) 83 continue; 84 85 *new_asid = asid; 86 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 87 next_tlb_gen); 88 return; 89 } 90 91 /* 92 * We don't currently own an ASID slot on this CPU. 93 * Allocate a slot. 94 */ 95 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 96 if (*new_asid >= TLB_NR_DYN_ASIDS) { 97 *new_asid = 0; 98 this_cpu_write(cpu_tlbstate.next_asid, 1); 99 } 100 *need_flush = true; 101 } 102 103 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 104 { 105 unsigned long new_mm_cr3; 106 107 if (need_flush) { 108 invalidate_user_asid(new_asid); 109 new_mm_cr3 = build_cr3(pgdir, new_asid); 110 } else { 111 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 112 } 113 114 /* 115 * Caution: many callers of this function expect 116 * that load_cr3() is serializing and orders TLB 117 * fills with respect to the mm_cpumask writes. 118 */ 119 write_cr3(new_mm_cr3); 120 } 121 122 void leave_mm(int cpu) 123 { 124 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 125 126 /* 127 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 128 * If so, our callers still expect us to flush the TLB, but there 129 * aren't any user TLB entries in init_mm to worry about. 130 * 131 * This needs to happen before any other sanity checks due to 132 * intel_idle's shenanigans. 133 */ 134 if (loaded_mm == &init_mm) 135 return; 136 137 /* Warn if we're not lazy. */ 138 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy)); 139 140 switch_mm(NULL, &init_mm, NULL); 141 } 142 EXPORT_SYMBOL_GPL(leave_mm); 143 144 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 145 struct task_struct *tsk) 146 { 147 unsigned long flags; 148 149 local_irq_save(flags); 150 switch_mm_irqs_off(prev, next, tsk); 151 local_irq_restore(flags); 152 } 153 154 static void sync_current_stack_to_mm(struct mm_struct *mm) 155 { 156 unsigned long sp = current_stack_pointer; 157 pgd_t *pgd = pgd_offset(mm, sp); 158 159 if (CONFIG_PGTABLE_LEVELS > 4) { 160 if (unlikely(pgd_none(*pgd))) { 161 pgd_t *pgd_ref = pgd_offset_k(sp); 162 163 set_pgd(pgd, *pgd_ref); 164 } 165 } else { 166 /* 167 * "pgd" is faked. The top level entries are "p4d"s, so sync 168 * the p4d. This compiles to approximately the same code as 169 * the 5-level case. 170 */ 171 p4d_t *p4d = p4d_offset(pgd, sp); 172 173 if (unlikely(p4d_none(*p4d))) { 174 pgd_t *pgd_ref = pgd_offset_k(sp); 175 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp); 176 177 set_p4d(p4d, *p4d_ref); 178 } 179 } 180 } 181 182 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 183 struct task_struct *tsk) 184 { 185 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 186 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 187 unsigned cpu = smp_processor_id(); 188 u64 next_tlb_gen; 189 190 /* 191 * NB: The scheduler will call us with prev == next when switching 192 * from lazy TLB mode to normal mode if active_mm isn't changing. 193 * When this happens, we don't assume that CR3 (and hence 194 * cpu_tlbstate.loaded_mm) matches next. 195 * 196 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 197 */ 198 199 /* We don't want flush_tlb_func_* to run concurrently with us. */ 200 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 201 WARN_ON_ONCE(!irqs_disabled()); 202 203 /* 204 * Verify that CR3 is what we think it is. This will catch 205 * hypothetical buggy code that directly switches to swapper_pg_dir 206 * without going through leave_mm() / switch_mm_irqs_off() or that 207 * does something like write_cr3(read_cr3_pa()). 208 * 209 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 210 * isn't free. 211 */ 212 #ifdef CONFIG_DEBUG_VM 213 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 214 /* 215 * If we were to BUG here, we'd be very likely to kill 216 * the system so hard that we don't see the call trace. 217 * Try to recover instead by ignoring the error and doing 218 * a global flush to minimize the chance of corruption. 219 * 220 * (This is far from being a fully correct recovery. 221 * Architecturally, the CPU could prefetch something 222 * back into an incorrect ASID slot and leave it there 223 * to cause trouble down the road. It's better than 224 * nothing, though.) 225 */ 226 __flush_tlb_all(); 227 } 228 #endif 229 this_cpu_write(cpu_tlbstate.is_lazy, false); 230 231 if (real_prev == next) { 232 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 233 next->context.ctx_id); 234 235 /* 236 * We don't currently support having a real mm loaded without 237 * our cpu set in mm_cpumask(). We have all the bookkeeping 238 * in place to figure out whether we would need to flush 239 * if our cpu were cleared in mm_cpumask(), but we don't 240 * currently use it. 241 */ 242 if (WARN_ON_ONCE(real_prev != &init_mm && 243 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 244 cpumask_set_cpu(cpu, mm_cpumask(next)); 245 246 return; 247 } else { 248 u16 new_asid; 249 bool need_flush; 250 251 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 252 /* 253 * If our current stack is in vmalloc space and isn't 254 * mapped in the new pgd, we'll double-fault. Forcibly 255 * map it. 256 */ 257 sync_current_stack_to_mm(next); 258 } 259 260 /* Stop remote flushes for the previous mm */ 261 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) && 262 real_prev != &init_mm); 263 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 264 265 /* 266 * Start remote flushes and then read tlb_gen. 267 */ 268 cpumask_set_cpu(cpu, mm_cpumask(next)); 269 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 270 271 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 272 273 if (need_flush) { 274 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 275 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 276 load_new_mm_cr3(next->pgd, new_asid, true); 277 278 /* 279 * NB: This gets called via leave_mm() in the idle path 280 * where RCU functions differently. Tracing normally 281 * uses RCU, so we need to use the _rcuidle variant. 282 * 283 * (There is no good reason for this. The idle code should 284 * be rearranged to call this before rcu_idle_enter().) 285 */ 286 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 287 } else { 288 /* The new ASID is already up to date. */ 289 load_new_mm_cr3(next->pgd, new_asid, false); 290 291 /* See above wrt _rcuidle. */ 292 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0); 293 } 294 295 this_cpu_write(cpu_tlbstate.loaded_mm, next); 296 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 297 } 298 299 load_mm_cr4(next); 300 switch_ldt(real_prev, next); 301 } 302 303 /* 304 * Please ignore the name of this function. It should be called 305 * switch_to_kernel_thread(). 306 * 307 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 308 * kernel thread or other context without an mm. Acceptable implementations 309 * include doing nothing whatsoever, switching to init_mm, or various clever 310 * lazy tricks to try to minimize TLB flushes. 311 * 312 * The scheduler reserves the right to call enter_lazy_tlb() several times 313 * in a row. It will notify us that we're going back to a real mm by 314 * calling switch_mm_irqs_off(). 315 */ 316 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 317 { 318 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 319 return; 320 321 if (tlb_defer_switch_to_init_mm()) { 322 /* 323 * There's a significant optimization that may be possible 324 * here. We have accurate enough TLB flush tracking that we 325 * don't need to maintain coherence of TLB per se when we're 326 * lazy. We do, however, need to maintain coherence of 327 * paging-structure caches. We could, in principle, leave our 328 * old mm loaded and only switch to init_mm when 329 * tlb_remove_page() happens. 330 */ 331 this_cpu_write(cpu_tlbstate.is_lazy, true); 332 } else { 333 switch_mm(NULL, &init_mm, NULL); 334 } 335 } 336 337 /* 338 * Call this when reinitializing a CPU. It fixes the following potential 339 * problems: 340 * 341 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 342 * because the CPU was taken down and came back up with CR3's PCID 343 * bits clear. CPU hotplug can do this. 344 * 345 * - The TLB contains junk in slots corresponding to inactive ASIDs. 346 * 347 * - The CPU went so far out to lunch that it may have missed a TLB 348 * flush. 349 */ 350 void initialize_tlbstate_and_flush(void) 351 { 352 int i; 353 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 354 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 355 unsigned long cr3 = __read_cr3(); 356 357 /* Assert that CR3 already references the right mm. */ 358 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 359 360 /* 361 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 362 * doesn't work like other CR4 bits because it can only be set from 363 * long mode.) 364 */ 365 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 366 !(cr4_read_shadow() & X86_CR4_PCIDE)); 367 368 /* Force ASID 0 and force a TLB flush. */ 369 write_cr3(build_cr3(mm->pgd, 0)); 370 371 /* Reinitialize tlbstate. */ 372 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 373 this_cpu_write(cpu_tlbstate.next_asid, 1); 374 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 375 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 376 377 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 378 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 379 } 380 381 /* 382 * flush_tlb_func_common()'s memory ordering requirement is that any 383 * TLB fills that happen after we flush the TLB are ordered after we 384 * read active_mm's tlb_gen. We don't need any explicit barriers 385 * because all x86 flush operations are serializing and the 386 * atomic64_read operation won't be reordered by the compiler. 387 */ 388 static void flush_tlb_func_common(const struct flush_tlb_info *f, 389 bool local, enum tlb_flush_reason reason) 390 { 391 /* 392 * We have three different tlb_gen values in here. They are: 393 * 394 * - mm_tlb_gen: the latest generation. 395 * - local_tlb_gen: the generation that this CPU has already caught 396 * up to. 397 * - f->new_tlb_gen: the generation that the requester of the flush 398 * wants us to catch up to. 399 */ 400 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 401 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 402 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 403 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 404 405 /* This code cannot presently handle being reentered. */ 406 VM_WARN_ON(!irqs_disabled()); 407 408 if (unlikely(loaded_mm == &init_mm)) 409 return; 410 411 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 412 loaded_mm->context.ctx_id); 413 414 if (this_cpu_read(cpu_tlbstate.is_lazy)) { 415 /* 416 * We're in lazy mode. We need to at least flush our 417 * paging-structure cache to avoid speculatively reading 418 * garbage into our TLB. Since switching to init_mm is barely 419 * slower than a minimal flush, just switch to init_mm. 420 */ 421 switch_mm_irqs_off(NULL, &init_mm, NULL); 422 return; 423 } 424 425 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 426 /* 427 * There's nothing to do: we're already up to date. This can 428 * happen if two concurrent flushes happen -- the first flush to 429 * be handled can catch us all the way up, leaving no work for 430 * the second flush. 431 */ 432 trace_tlb_flush(reason, 0); 433 return; 434 } 435 436 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 437 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 438 439 /* 440 * If we get to this point, we know that our TLB is out of date. 441 * This does not strictly imply that we need to flush (it's 442 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 443 * going to need to flush in the very near future, so we might 444 * as well get it over with. 445 * 446 * The only question is whether to do a full or partial flush. 447 * 448 * We do a partial flush if requested and two extra conditions 449 * are met: 450 * 451 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 452 * we've always done all needed flushes to catch up to 453 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 454 * f->new_tlb_gen == 3, then we know that the flush needed to bring 455 * us up to date for tlb_gen 3 is the partial flush we're 456 * processing. 457 * 458 * As an example of why this check is needed, suppose that there 459 * are two concurrent flushes. The first is a full flush that 460 * changes context.tlb_gen from 1 to 2. The second is a partial 461 * flush that changes context.tlb_gen from 2 to 3. If they get 462 * processed on this CPU in reverse order, we'll see 463 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 464 * If we were to use __flush_tlb_single() and set local_tlb_gen to 465 * 3, we'd be break the invariant: we'd update local_tlb_gen above 466 * 1 without the full flush that's needed for tlb_gen 2. 467 * 468 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation. 469 * Partial TLB flushes are not all that much cheaper than full TLB 470 * flushes, so it seems unlikely that it would be a performance win 471 * to do a partial flush if that won't bring our TLB fully up to 472 * date. By doing a full flush instead, we can increase 473 * local_tlb_gen all the way to mm_tlb_gen and we can probably 474 * avoid another flush in the very near future. 475 */ 476 if (f->end != TLB_FLUSH_ALL && 477 f->new_tlb_gen == local_tlb_gen + 1 && 478 f->new_tlb_gen == mm_tlb_gen) { 479 /* Partial flush */ 480 unsigned long addr; 481 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT; 482 483 addr = f->start; 484 while (addr < f->end) { 485 __flush_tlb_single(addr); 486 addr += PAGE_SIZE; 487 } 488 if (local) 489 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages); 490 trace_tlb_flush(reason, nr_pages); 491 } else { 492 /* Full flush. */ 493 local_flush_tlb(); 494 if (local) 495 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 496 trace_tlb_flush(reason, TLB_FLUSH_ALL); 497 } 498 499 /* Both paths above update our state to mm_tlb_gen. */ 500 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 501 } 502 503 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason) 504 { 505 const struct flush_tlb_info *f = info; 506 507 flush_tlb_func_common(f, true, reason); 508 } 509 510 static void flush_tlb_func_remote(void *info) 511 { 512 const struct flush_tlb_info *f = info; 513 514 inc_irq_stat(irq_tlb_count); 515 516 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) 517 return; 518 519 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 520 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); 521 } 522 523 void native_flush_tlb_others(const struct cpumask *cpumask, 524 const struct flush_tlb_info *info) 525 { 526 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 527 if (info->end == TLB_FLUSH_ALL) 528 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 529 else 530 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 531 (info->end - info->start) >> PAGE_SHIFT); 532 533 if (is_uv_system()) { 534 /* 535 * This whole special case is confused. UV has a "Broadcast 536 * Assist Unit", which seems to be a fancy way to send IPIs. 537 * Back when x86 used an explicit TLB flush IPI, UV was 538 * optimized to use its own mechanism. These days, x86 uses 539 * smp_call_function_many(), but UV still uses a manual IPI, 540 * and that IPI's action is out of date -- it does a manual 541 * flush instead of calling flush_tlb_func_remote(). This 542 * means that the percpu tlb_gen variables won't be updated 543 * and we'll do pointless flushes on future context switches. 544 * 545 * Rather than hooking native_flush_tlb_others() here, I think 546 * that UV should be updated so that smp_call_function_many(), 547 * etc, are optimal on UV. 548 */ 549 unsigned int cpu; 550 551 cpu = smp_processor_id(); 552 cpumask = uv_flush_tlb_others(cpumask, info); 553 if (cpumask) 554 smp_call_function_many(cpumask, flush_tlb_func_remote, 555 (void *)info, 1); 556 return; 557 } 558 smp_call_function_many(cpumask, flush_tlb_func_remote, 559 (void *)info, 1); 560 } 561 562 /* 563 * See Documentation/x86/tlb.txt for details. We choose 33 564 * because it is large enough to cover the vast majority (at 565 * least 95%) of allocations, and is small enough that we are 566 * confident it will not cause too much overhead. Each single 567 * flush is about 100 ns, so this caps the maximum overhead at 568 * _about_ 3,000 ns. 569 * 570 * This is in units of pages. 571 */ 572 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 573 574 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 575 unsigned long end, unsigned long vmflag) 576 { 577 int cpu; 578 579 struct flush_tlb_info info = { 580 .mm = mm, 581 }; 582 583 cpu = get_cpu(); 584 585 /* This is also a barrier that synchronizes with switch_mm(). */ 586 info.new_tlb_gen = inc_mm_tlb_gen(mm); 587 588 /* Should we flush just the requested range? */ 589 if ((end != TLB_FLUSH_ALL) && 590 !(vmflag & VM_HUGETLB) && 591 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) { 592 info.start = start; 593 info.end = end; 594 } else { 595 info.start = 0UL; 596 info.end = TLB_FLUSH_ALL; 597 } 598 599 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 600 VM_WARN_ON(irqs_disabled()); 601 local_irq_disable(); 602 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN); 603 local_irq_enable(); 604 } 605 606 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) 607 flush_tlb_others(mm_cpumask(mm), &info); 608 609 put_cpu(); 610 } 611 612 613 static void do_flush_tlb_all(void *info) 614 { 615 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 616 __flush_tlb_all(); 617 } 618 619 void flush_tlb_all(void) 620 { 621 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 622 on_each_cpu(do_flush_tlb_all, NULL, 1); 623 } 624 625 static void do_kernel_range_flush(void *info) 626 { 627 struct flush_tlb_info *f = info; 628 unsigned long addr; 629 630 /* flush range by one by one 'invlpg' */ 631 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 632 __flush_tlb_one(addr); 633 } 634 635 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 636 { 637 638 /* Balance as user space task's flush, a bit conservative */ 639 if (end == TLB_FLUSH_ALL || 640 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 641 on_each_cpu(do_flush_tlb_all, NULL, 1); 642 } else { 643 struct flush_tlb_info info; 644 info.start = start; 645 info.end = end; 646 on_each_cpu(do_kernel_range_flush, &info, 1); 647 } 648 } 649 650 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 651 { 652 struct flush_tlb_info info = { 653 .mm = NULL, 654 .start = 0UL, 655 .end = TLB_FLUSH_ALL, 656 }; 657 658 int cpu = get_cpu(); 659 660 if (cpumask_test_cpu(cpu, &batch->cpumask)) { 661 VM_WARN_ON(irqs_disabled()); 662 local_irq_disable(); 663 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN); 664 local_irq_enable(); 665 } 666 667 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) 668 flush_tlb_others(&batch->cpumask, &info); 669 670 cpumask_clear(&batch->cpumask); 671 672 put_cpu(); 673 } 674 675 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 676 size_t count, loff_t *ppos) 677 { 678 char buf[32]; 679 unsigned int len; 680 681 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 682 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 683 } 684 685 static ssize_t tlbflush_write_file(struct file *file, 686 const char __user *user_buf, size_t count, loff_t *ppos) 687 { 688 char buf[32]; 689 ssize_t len; 690 int ceiling; 691 692 len = min(count, sizeof(buf) - 1); 693 if (copy_from_user(buf, user_buf, len)) 694 return -EFAULT; 695 696 buf[len] = '\0'; 697 if (kstrtoint(buf, 0, &ceiling)) 698 return -EINVAL; 699 700 if (ceiling < 0) 701 return -EINVAL; 702 703 tlb_single_page_flush_ceiling = ceiling; 704 return count; 705 } 706 707 static const struct file_operations fops_tlbflush = { 708 .read = tlbflush_read_file, 709 .write = tlbflush_write_file, 710 .llseek = default_llseek, 711 }; 712 713 static int __init create_tlb_single_page_flush_ceiling(void) 714 { 715 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 716 arch_debugfs_dir, NULL, &fops_tlbflush); 717 return 0; 718 } 719 late_initcall(create_tlb_single_page_flush_ceiling); 720