xref: /linux/arch/x86/mm/tlb.c (revision 0a98bf52b15dfd66da2cf666495b3f7841c7b5ab)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10 #include <linux/ptrace.h>
11 
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/uv/uv.h>
18 
19 /*
20  *	TLB flushing, formerly SMP-only
21  *		c/o Linus Torvalds.
22  *
23  *	These mean you can really definitely utterly forget about
24  *	writing to user space from interrupts. (Its not allowed anyway).
25  *
26  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
27  *
28  *	More scalable flush, from Andi Kleen
29  *
30  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
31  */
32 
33 /*
34  * We get here when we do something requiring a TLB invalidation
35  * but could not go invalidate all of the contexts.  We do the
36  * necessary invalidation by clearing out the 'ctx_id' which
37  * forces a TLB flush when the context is loaded.
38  */
39 static void clear_asid_other(void)
40 {
41 	u16 asid;
42 
43 	/*
44 	 * This is only expected to be set if we have disabled
45 	 * kernel _PAGE_GLOBAL pages.
46 	 */
47 	if (!static_cpu_has(X86_FEATURE_PTI)) {
48 		WARN_ON_ONCE(1);
49 		return;
50 	}
51 
52 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
53 		/* Do not need to flush the current asid */
54 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
55 			continue;
56 		/*
57 		 * Make sure the next time we go to switch to
58 		 * this asid, we do a flush:
59 		 */
60 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
61 	}
62 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
63 }
64 
65 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
66 
67 
68 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
69 			    u16 *new_asid, bool *need_flush)
70 {
71 	u16 asid;
72 
73 	if (!static_cpu_has(X86_FEATURE_PCID)) {
74 		*new_asid = 0;
75 		*need_flush = true;
76 		return;
77 	}
78 
79 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
80 		clear_asid_other();
81 
82 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
83 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
84 		    next->context.ctx_id)
85 			continue;
86 
87 		*new_asid = asid;
88 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
89 			       next_tlb_gen);
90 		return;
91 	}
92 
93 	/*
94 	 * We don't currently own an ASID slot on this CPU.
95 	 * Allocate a slot.
96 	 */
97 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
98 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
99 		*new_asid = 0;
100 		this_cpu_write(cpu_tlbstate.next_asid, 1);
101 	}
102 	*need_flush = true;
103 }
104 
105 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
106 {
107 	unsigned long new_mm_cr3;
108 
109 	if (need_flush) {
110 		invalidate_user_asid(new_asid);
111 		new_mm_cr3 = build_cr3(pgdir, new_asid);
112 	} else {
113 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
114 	}
115 
116 	/*
117 	 * Caution: many callers of this function expect
118 	 * that load_cr3() is serializing and orders TLB
119 	 * fills with respect to the mm_cpumask writes.
120 	 */
121 	write_cr3(new_mm_cr3);
122 }
123 
124 void leave_mm(int cpu)
125 {
126 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
127 
128 	/*
129 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
130 	 * If so, our callers still expect us to flush the TLB, but there
131 	 * aren't any user TLB entries in init_mm to worry about.
132 	 *
133 	 * This needs to happen before any other sanity checks due to
134 	 * intel_idle's shenanigans.
135 	 */
136 	if (loaded_mm == &init_mm)
137 		return;
138 
139 	/* Warn if we're not lazy. */
140 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
141 
142 	switch_mm(NULL, &init_mm, NULL);
143 }
144 EXPORT_SYMBOL_GPL(leave_mm);
145 
146 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
147 	       struct task_struct *tsk)
148 {
149 	unsigned long flags;
150 
151 	local_irq_save(flags);
152 	switch_mm_irqs_off(prev, next, tsk);
153 	local_irq_restore(flags);
154 }
155 
156 static void sync_current_stack_to_mm(struct mm_struct *mm)
157 {
158 	unsigned long sp = current_stack_pointer;
159 	pgd_t *pgd = pgd_offset(mm, sp);
160 
161 	if (pgtable_l5_enabled()) {
162 		if (unlikely(pgd_none(*pgd))) {
163 			pgd_t *pgd_ref = pgd_offset_k(sp);
164 
165 			set_pgd(pgd, *pgd_ref);
166 		}
167 	} else {
168 		/*
169 		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
170 		 * the p4d.  This compiles to approximately the same code as
171 		 * the 5-level case.
172 		 */
173 		p4d_t *p4d = p4d_offset(pgd, sp);
174 
175 		if (unlikely(p4d_none(*p4d))) {
176 			pgd_t *pgd_ref = pgd_offset_k(sp);
177 			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
178 
179 			set_p4d(p4d, *p4d_ref);
180 		}
181 	}
182 }
183 
184 static bool ibpb_needed(struct task_struct *tsk, u64 last_ctx_id)
185 {
186 	/*
187 	 * Check if the current (previous) task has access to the memory
188 	 * of the @tsk (next) task. If access is denied, make sure to
189 	 * issue a IBPB to stop user->user Spectre-v2 attacks.
190 	 *
191 	 * Note: __ptrace_may_access() returns 0 or -ERRNO.
192 	 */
193 	return (tsk && tsk->mm && tsk->mm->context.ctx_id != last_ctx_id &&
194 		ptrace_may_access_sched(tsk, PTRACE_MODE_SPEC_IBPB));
195 }
196 
197 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
198 			struct task_struct *tsk)
199 {
200 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
201 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
202 	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
203 	unsigned cpu = smp_processor_id();
204 	u64 next_tlb_gen;
205 	bool need_flush;
206 	u16 new_asid;
207 
208 	/*
209 	 * NB: The scheduler will call us with prev == next when switching
210 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
211 	 * When this happens, we don't assume that CR3 (and hence
212 	 * cpu_tlbstate.loaded_mm) matches next.
213 	 *
214 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
215 	 */
216 
217 	/* We don't want flush_tlb_func_* to run concurrently with us. */
218 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
219 		WARN_ON_ONCE(!irqs_disabled());
220 
221 	/*
222 	 * Verify that CR3 is what we think it is.  This will catch
223 	 * hypothetical buggy code that directly switches to swapper_pg_dir
224 	 * without going through leave_mm() / switch_mm_irqs_off() or that
225 	 * does something like write_cr3(read_cr3_pa()).
226 	 *
227 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
228 	 * isn't free.
229 	 */
230 #ifdef CONFIG_DEBUG_VM
231 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
232 		/*
233 		 * If we were to BUG here, we'd be very likely to kill
234 		 * the system so hard that we don't see the call trace.
235 		 * Try to recover instead by ignoring the error and doing
236 		 * a global flush to minimize the chance of corruption.
237 		 *
238 		 * (This is far from being a fully correct recovery.
239 		 *  Architecturally, the CPU could prefetch something
240 		 *  back into an incorrect ASID slot and leave it there
241 		 *  to cause trouble down the road.  It's better than
242 		 *  nothing, though.)
243 		 */
244 		__flush_tlb_all();
245 	}
246 #endif
247 	this_cpu_write(cpu_tlbstate.is_lazy, false);
248 
249 	/*
250 	 * The membarrier system call requires a full memory barrier and
251 	 * core serialization before returning to user-space, after
252 	 * storing to rq->curr. Writing to CR3 provides that full
253 	 * memory barrier and core serializing instruction.
254 	 */
255 	if (real_prev == next) {
256 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
257 			   next->context.ctx_id);
258 
259 		/*
260 		 * Even in lazy TLB mode, the CPU should stay set in the
261 		 * mm_cpumask. The TLB shootdown code can figure out from
262 		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
263 		 */
264 		if (WARN_ON_ONCE(real_prev != &init_mm &&
265 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
266 			cpumask_set_cpu(cpu, mm_cpumask(next));
267 
268 		/*
269 		 * If the CPU is not in lazy TLB mode, we are just switching
270 		 * from one thread in a process to another thread in the same
271 		 * process. No TLB flush required.
272 		 */
273 		if (!was_lazy)
274 			return;
275 
276 		/*
277 		 * Read the tlb_gen to check whether a flush is needed.
278 		 * If the TLB is up to date, just use it.
279 		 * The barrier synchronizes with the tlb_gen increment in
280 		 * the TLB shootdown code.
281 		 */
282 		smp_mb();
283 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
284 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
285 				next_tlb_gen)
286 			return;
287 
288 		/*
289 		 * TLB contents went out of date while we were in lazy
290 		 * mode. Fall through to the TLB switching code below.
291 		 */
292 		new_asid = prev_asid;
293 		need_flush = true;
294 	} else {
295 		u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
296 
297 		/*
298 		 * Avoid user/user BTB poisoning by flushing the branch
299 		 * predictor when switching between processes. This stops
300 		 * one process from doing Spectre-v2 attacks on another.
301 		 *
302 		 * As an optimization, flush indirect branches only when
303 		 * switching into a processes that can't be ptrace by the
304 		 * current one (as in such case, attacker has much more
305 		 * convenient way how to tamper with the next process than
306 		 * branch buffer poisoning).
307 		 */
308 		if (static_cpu_has(X86_FEATURE_USE_IBPB) &&
309 				ibpb_needed(tsk, last_ctx_id))
310 			indirect_branch_prediction_barrier();
311 
312 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
313 			/*
314 			 * If our current stack is in vmalloc space and isn't
315 			 * mapped in the new pgd, we'll double-fault.  Forcibly
316 			 * map it.
317 			 */
318 			sync_current_stack_to_mm(next);
319 		}
320 
321 		/*
322 		 * Stop remote flushes for the previous mm.
323 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
324 		 * but the bitmap manipulation can cause cache line contention.
325 		 */
326 		if (real_prev != &init_mm) {
327 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
328 						mm_cpumask(real_prev)));
329 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
330 		}
331 
332 		/*
333 		 * Start remote flushes and then read tlb_gen.
334 		 */
335 		if (next != &init_mm)
336 			cpumask_set_cpu(cpu, mm_cpumask(next));
337 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
338 
339 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
340 
341 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
342 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
343 		barrier();
344 	}
345 
346 	if (need_flush) {
347 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
348 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
349 		load_new_mm_cr3(next->pgd, new_asid, true);
350 
351 		/*
352 		 * NB: This gets called via leave_mm() in the idle path
353 		 * where RCU functions differently.  Tracing normally
354 		 * uses RCU, so we need to use the _rcuidle variant.
355 		 *
356 		 * (There is no good reason for this.  The idle code should
357 		 *  be rearranged to call this before rcu_idle_enter().)
358 		 */
359 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
360 	} else {
361 		/* The new ASID is already up to date. */
362 		load_new_mm_cr3(next->pgd, new_asid, false);
363 
364 		/* See above wrt _rcuidle. */
365 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
366 	}
367 
368 	/*
369 	 * Record last user mm's context id, so we can avoid
370 	 * flushing branch buffer with IBPB if we switch back
371 	 * to the same user.
372 	 */
373 	if (next != &init_mm)
374 		this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
375 
376 	/* Make sure we write CR3 before loaded_mm. */
377 	barrier();
378 
379 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
380 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
381 
382 	if (next != real_prev) {
383 		load_mm_cr4(next);
384 		switch_ldt(real_prev, next);
385 	}
386 }
387 
388 /*
389  * Please ignore the name of this function.  It should be called
390  * switch_to_kernel_thread().
391  *
392  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
393  * kernel thread or other context without an mm.  Acceptable implementations
394  * include doing nothing whatsoever, switching to init_mm, or various clever
395  * lazy tricks to try to minimize TLB flushes.
396  *
397  * The scheduler reserves the right to call enter_lazy_tlb() several times
398  * in a row.  It will notify us that we're going back to a real mm by
399  * calling switch_mm_irqs_off().
400  */
401 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
402 {
403 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
404 		return;
405 
406 	this_cpu_write(cpu_tlbstate.is_lazy, true);
407 }
408 
409 /*
410  * Call this when reinitializing a CPU.  It fixes the following potential
411  * problems:
412  *
413  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
414  *   because the CPU was taken down and came back up with CR3's PCID
415  *   bits clear.  CPU hotplug can do this.
416  *
417  * - The TLB contains junk in slots corresponding to inactive ASIDs.
418  *
419  * - The CPU went so far out to lunch that it may have missed a TLB
420  *   flush.
421  */
422 void initialize_tlbstate_and_flush(void)
423 {
424 	int i;
425 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
426 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
427 	unsigned long cr3 = __read_cr3();
428 
429 	/* Assert that CR3 already references the right mm. */
430 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
431 
432 	/*
433 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
434 	 * doesn't work like other CR4 bits because it can only be set from
435 	 * long mode.)
436 	 */
437 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
438 		!(cr4_read_shadow() & X86_CR4_PCIDE));
439 
440 	/* Force ASID 0 and force a TLB flush. */
441 	write_cr3(build_cr3(mm->pgd, 0));
442 
443 	/* Reinitialize tlbstate. */
444 	this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
445 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
446 	this_cpu_write(cpu_tlbstate.next_asid, 1);
447 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
448 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
449 
450 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
451 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
452 }
453 
454 /*
455  * flush_tlb_func_common()'s memory ordering requirement is that any
456  * TLB fills that happen after we flush the TLB are ordered after we
457  * read active_mm's tlb_gen.  We don't need any explicit barriers
458  * because all x86 flush operations are serializing and the
459  * atomic64_read operation won't be reordered by the compiler.
460  */
461 static void flush_tlb_func_common(const struct flush_tlb_info *f,
462 				  bool local, enum tlb_flush_reason reason)
463 {
464 	/*
465 	 * We have three different tlb_gen values in here.  They are:
466 	 *
467 	 * - mm_tlb_gen:     the latest generation.
468 	 * - local_tlb_gen:  the generation that this CPU has already caught
469 	 *                   up to.
470 	 * - f->new_tlb_gen: the generation that the requester of the flush
471 	 *                   wants us to catch up to.
472 	 */
473 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
474 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
475 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
476 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
477 
478 	/* This code cannot presently handle being reentered. */
479 	VM_WARN_ON(!irqs_disabled());
480 
481 	if (unlikely(loaded_mm == &init_mm))
482 		return;
483 
484 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
485 		   loaded_mm->context.ctx_id);
486 
487 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
488 		/*
489 		 * We're in lazy mode.  We need to at least flush our
490 		 * paging-structure cache to avoid speculatively reading
491 		 * garbage into our TLB.  Since switching to init_mm is barely
492 		 * slower than a minimal flush, just switch to init_mm.
493 		 *
494 		 * This should be rare, with native_flush_tlb_others skipping
495 		 * IPIs to lazy TLB mode CPUs.
496 		 */
497 		switch_mm_irqs_off(NULL, &init_mm, NULL);
498 		return;
499 	}
500 
501 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
502 		/*
503 		 * There's nothing to do: we're already up to date.  This can
504 		 * happen if two concurrent flushes happen -- the first flush to
505 		 * be handled can catch us all the way up, leaving no work for
506 		 * the second flush.
507 		 */
508 		trace_tlb_flush(reason, 0);
509 		return;
510 	}
511 
512 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
513 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
514 
515 	/*
516 	 * If we get to this point, we know that our TLB is out of date.
517 	 * This does not strictly imply that we need to flush (it's
518 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
519 	 * going to need to flush in the very near future, so we might
520 	 * as well get it over with.
521 	 *
522 	 * The only question is whether to do a full or partial flush.
523 	 *
524 	 * We do a partial flush if requested and two extra conditions
525 	 * are met:
526 	 *
527 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
528 	 *    we've always done all needed flushes to catch up to
529 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
530 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
531 	 *    us up to date for tlb_gen 3 is the partial flush we're
532 	 *    processing.
533 	 *
534 	 *    As an example of why this check is needed, suppose that there
535 	 *    are two concurrent flushes.  The first is a full flush that
536 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
537 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
538 	 *    processed on this CPU in reverse order, we'll see
539 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
540 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
541 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
542 	 *    1 without the full flush that's needed for tlb_gen 2.
543 	 *
544 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
545 	 *    Partial TLB flushes are not all that much cheaper than full TLB
546 	 *    flushes, so it seems unlikely that it would be a performance win
547 	 *    to do a partial flush if that won't bring our TLB fully up to
548 	 *    date.  By doing a full flush instead, we can increase
549 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
550 	 *    avoid another flush in the very near future.
551 	 */
552 	if (f->end != TLB_FLUSH_ALL &&
553 	    f->new_tlb_gen == local_tlb_gen + 1 &&
554 	    f->new_tlb_gen == mm_tlb_gen) {
555 		/* Partial flush */
556 		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
557 		unsigned long addr = f->start;
558 
559 		while (addr < f->end) {
560 			__flush_tlb_one_user(addr);
561 			addr += 1UL << f->stride_shift;
562 		}
563 		if (local)
564 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
565 		trace_tlb_flush(reason, nr_invalidate);
566 	} else {
567 		/* Full flush. */
568 		local_flush_tlb();
569 		if (local)
570 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
571 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
572 	}
573 
574 	/* Both paths above update our state to mm_tlb_gen. */
575 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
576 }
577 
578 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
579 {
580 	const struct flush_tlb_info *f = info;
581 
582 	flush_tlb_func_common(f, true, reason);
583 }
584 
585 static void flush_tlb_func_remote(void *info)
586 {
587 	const struct flush_tlb_info *f = info;
588 
589 	inc_irq_stat(irq_tlb_count);
590 
591 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
592 		return;
593 
594 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
595 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
596 }
597 
598 static bool tlb_is_not_lazy(int cpu, void *data)
599 {
600 	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
601 }
602 
603 void native_flush_tlb_others(const struct cpumask *cpumask,
604 			     const struct flush_tlb_info *info)
605 {
606 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
607 	if (info->end == TLB_FLUSH_ALL)
608 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
609 	else
610 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
611 				(info->end - info->start) >> PAGE_SHIFT);
612 
613 	if (is_uv_system()) {
614 		/*
615 		 * This whole special case is confused.  UV has a "Broadcast
616 		 * Assist Unit", which seems to be a fancy way to send IPIs.
617 		 * Back when x86 used an explicit TLB flush IPI, UV was
618 		 * optimized to use its own mechanism.  These days, x86 uses
619 		 * smp_call_function_many(), but UV still uses a manual IPI,
620 		 * and that IPI's action is out of date -- it does a manual
621 		 * flush instead of calling flush_tlb_func_remote().  This
622 		 * means that the percpu tlb_gen variables won't be updated
623 		 * and we'll do pointless flushes on future context switches.
624 		 *
625 		 * Rather than hooking native_flush_tlb_others() here, I think
626 		 * that UV should be updated so that smp_call_function_many(),
627 		 * etc, are optimal on UV.
628 		 */
629 		unsigned int cpu;
630 
631 		cpu = smp_processor_id();
632 		cpumask = uv_flush_tlb_others(cpumask, info);
633 		if (cpumask)
634 			smp_call_function_many(cpumask, flush_tlb_func_remote,
635 					       (void *)info, 1);
636 		return;
637 	}
638 
639 	/*
640 	 * If no page tables were freed, we can skip sending IPIs to
641 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
642 	 * at the next context switch.
643 	 *
644 	 * However, if page tables are getting freed, we need to send the
645 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
646 	 * up on the new contents of what used to be page tables, while
647 	 * doing a speculative memory access.
648 	 */
649 	if (info->freed_tables)
650 		smp_call_function_many(cpumask, flush_tlb_func_remote,
651 			       (void *)info, 1);
652 	else
653 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
654 				(void *)info, 1, GFP_ATOMIC, cpumask);
655 }
656 
657 /*
658  * See Documentation/x86/tlb.txt for details.  We choose 33
659  * because it is large enough to cover the vast majority (at
660  * least 95%) of allocations, and is small enough that we are
661  * confident it will not cause too much overhead.  Each single
662  * flush is about 100 ns, so this caps the maximum overhead at
663  * _about_ 3,000 ns.
664  *
665  * This is in units of pages.
666  */
667 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
668 
669 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
670 				unsigned long end, unsigned int stride_shift,
671 				bool freed_tables)
672 {
673 	int cpu;
674 
675 	struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
676 		.mm = mm,
677 		.stride_shift = stride_shift,
678 		.freed_tables = freed_tables,
679 	};
680 
681 	cpu = get_cpu();
682 
683 	/* This is also a barrier that synchronizes with switch_mm(). */
684 	info.new_tlb_gen = inc_mm_tlb_gen(mm);
685 
686 	/* Should we flush just the requested range? */
687 	if ((end != TLB_FLUSH_ALL) &&
688 	    ((end - start) >> stride_shift) <= tlb_single_page_flush_ceiling) {
689 		info.start = start;
690 		info.end = end;
691 	} else {
692 		info.start = 0UL;
693 		info.end = TLB_FLUSH_ALL;
694 	}
695 
696 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
697 		VM_WARN_ON(irqs_disabled());
698 		local_irq_disable();
699 		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
700 		local_irq_enable();
701 	}
702 
703 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
704 		flush_tlb_others(mm_cpumask(mm), &info);
705 
706 	put_cpu();
707 }
708 
709 
710 static void do_flush_tlb_all(void *info)
711 {
712 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
713 	__flush_tlb_all();
714 }
715 
716 void flush_tlb_all(void)
717 {
718 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
719 	on_each_cpu(do_flush_tlb_all, NULL, 1);
720 }
721 
722 static void do_kernel_range_flush(void *info)
723 {
724 	struct flush_tlb_info *f = info;
725 	unsigned long addr;
726 
727 	/* flush range by one by one 'invlpg' */
728 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
729 		__flush_tlb_one_kernel(addr);
730 }
731 
732 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
733 {
734 
735 	/* Balance as user space task's flush, a bit conservative */
736 	if (end == TLB_FLUSH_ALL ||
737 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
738 		on_each_cpu(do_flush_tlb_all, NULL, 1);
739 	} else {
740 		struct flush_tlb_info info;
741 		info.start = start;
742 		info.end = end;
743 		on_each_cpu(do_kernel_range_flush, &info, 1);
744 	}
745 }
746 
747 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
748 {
749 	struct flush_tlb_info info = {
750 		.mm = NULL,
751 		.start = 0UL,
752 		.end = TLB_FLUSH_ALL,
753 	};
754 
755 	int cpu = get_cpu();
756 
757 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
758 		VM_WARN_ON(irqs_disabled());
759 		local_irq_disable();
760 		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
761 		local_irq_enable();
762 	}
763 
764 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
765 		flush_tlb_others(&batch->cpumask, &info);
766 
767 	cpumask_clear(&batch->cpumask);
768 
769 	put_cpu();
770 }
771 
772 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
773 			     size_t count, loff_t *ppos)
774 {
775 	char buf[32];
776 	unsigned int len;
777 
778 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
779 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
780 }
781 
782 static ssize_t tlbflush_write_file(struct file *file,
783 		 const char __user *user_buf, size_t count, loff_t *ppos)
784 {
785 	char buf[32];
786 	ssize_t len;
787 	int ceiling;
788 
789 	len = min(count, sizeof(buf) - 1);
790 	if (copy_from_user(buf, user_buf, len))
791 		return -EFAULT;
792 
793 	buf[len] = '\0';
794 	if (kstrtoint(buf, 0, &ceiling))
795 		return -EINVAL;
796 
797 	if (ceiling < 0)
798 		return -EINVAL;
799 
800 	tlb_single_page_flush_ceiling = ceiling;
801 	return count;
802 }
803 
804 static const struct file_operations fops_tlbflush = {
805 	.read = tlbflush_read_file,
806 	.write = tlbflush_write_file,
807 	.llseek = default_llseek,
808 };
809 
810 static int __init create_tlb_single_page_flush_ceiling(void)
811 {
812 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
813 			    arch_debugfs_dir, NULL, &fops_tlbflush);
814 	return 0;
815 }
816 late_initcall(create_tlb_single_page_flush_ceiling);
817