1 #include <linux/init.h> 2 3 #include <linux/mm.h> 4 #include <linux/spinlock.h> 5 #include <linux/smp.h> 6 #include <linux/interrupt.h> 7 #include <linux/export.h> 8 #include <linux/cpu.h> 9 #include <linux/debugfs.h> 10 #include <linux/ptrace.h> 11 12 #include <asm/tlbflush.h> 13 #include <asm/mmu_context.h> 14 #include <asm/nospec-branch.h> 15 #include <asm/cache.h> 16 #include <asm/apic.h> 17 #include <asm/uv/uv.h> 18 19 /* 20 * TLB flushing, formerly SMP-only 21 * c/o Linus Torvalds. 22 * 23 * These mean you can really definitely utterly forget about 24 * writing to user space from interrupts. (Its not allowed anyway). 25 * 26 * Optimizations Manfred Spraul <manfred@colorfullife.com> 27 * 28 * More scalable flush, from Andi Kleen 29 * 30 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 31 */ 32 33 /* 34 * We get here when we do something requiring a TLB invalidation 35 * but could not go invalidate all of the contexts. We do the 36 * necessary invalidation by clearing out the 'ctx_id' which 37 * forces a TLB flush when the context is loaded. 38 */ 39 static void clear_asid_other(void) 40 { 41 u16 asid; 42 43 /* 44 * This is only expected to be set if we have disabled 45 * kernel _PAGE_GLOBAL pages. 46 */ 47 if (!static_cpu_has(X86_FEATURE_PTI)) { 48 WARN_ON_ONCE(1); 49 return; 50 } 51 52 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 53 /* Do not need to flush the current asid */ 54 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 55 continue; 56 /* 57 * Make sure the next time we go to switch to 58 * this asid, we do a flush: 59 */ 60 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 61 } 62 this_cpu_write(cpu_tlbstate.invalidate_other, false); 63 } 64 65 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 66 67 68 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 69 u16 *new_asid, bool *need_flush) 70 { 71 u16 asid; 72 73 if (!static_cpu_has(X86_FEATURE_PCID)) { 74 *new_asid = 0; 75 *need_flush = true; 76 return; 77 } 78 79 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 80 clear_asid_other(); 81 82 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 83 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 84 next->context.ctx_id) 85 continue; 86 87 *new_asid = asid; 88 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 89 next_tlb_gen); 90 return; 91 } 92 93 /* 94 * We don't currently own an ASID slot on this CPU. 95 * Allocate a slot. 96 */ 97 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 98 if (*new_asid >= TLB_NR_DYN_ASIDS) { 99 *new_asid = 0; 100 this_cpu_write(cpu_tlbstate.next_asid, 1); 101 } 102 *need_flush = true; 103 } 104 105 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 106 { 107 unsigned long new_mm_cr3; 108 109 if (need_flush) { 110 invalidate_user_asid(new_asid); 111 new_mm_cr3 = build_cr3(pgdir, new_asid); 112 } else { 113 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 114 } 115 116 /* 117 * Caution: many callers of this function expect 118 * that load_cr3() is serializing and orders TLB 119 * fills with respect to the mm_cpumask writes. 120 */ 121 write_cr3(new_mm_cr3); 122 } 123 124 void leave_mm(int cpu) 125 { 126 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 127 128 /* 129 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 130 * If so, our callers still expect us to flush the TLB, but there 131 * aren't any user TLB entries in init_mm to worry about. 132 * 133 * This needs to happen before any other sanity checks due to 134 * intel_idle's shenanigans. 135 */ 136 if (loaded_mm == &init_mm) 137 return; 138 139 /* Warn if we're not lazy. */ 140 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy)); 141 142 switch_mm(NULL, &init_mm, NULL); 143 } 144 EXPORT_SYMBOL_GPL(leave_mm); 145 146 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 147 struct task_struct *tsk) 148 { 149 unsigned long flags; 150 151 local_irq_save(flags); 152 switch_mm_irqs_off(prev, next, tsk); 153 local_irq_restore(flags); 154 } 155 156 static void sync_current_stack_to_mm(struct mm_struct *mm) 157 { 158 unsigned long sp = current_stack_pointer; 159 pgd_t *pgd = pgd_offset(mm, sp); 160 161 if (pgtable_l5_enabled()) { 162 if (unlikely(pgd_none(*pgd))) { 163 pgd_t *pgd_ref = pgd_offset_k(sp); 164 165 set_pgd(pgd, *pgd_ref); 166 } 167 } else { 168 /* 169 * "pgd" is faked. The top level entries are "p4d"s, so sync 170 * the p4d. This compiles to approximately the same code as 171 * the 5-level case. 172 */ 173 p4d_t *p4d = p4d_offset(pgd, sp); 174 175 if (unlikely(p4d_none(*p4d))) { 176 pgd_t *pgd_ref = pgd_offset_k(sp); 177 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp); 178 179 set_p4d(p4d, *p4d_ref); 180 } 181 } 182 } 183 184 static bool ibpb_needed(struct task_struct *tsk, u64 last_ctx_id) 185 { 186 /* 187 * Check if the current (previous) task has access to the memory 188 * of the @tsk (next) task. If access is denied, make sure to 189 * issue a IBPB to stop user->user Spectre-v2 attacks. 190 * 191 * Note: __ptrace_may_access() returns 0 or -ERRNO. 192 */ 193 return (tsk && tsk->mm && tsk->mm->context.ctx_id != last_ctx_id && 194 ptrace_may_access_sched(tsk, PTRACE_MODE_SPEC_IBPB)); 195 } 196 197 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 198 struct task_struct *tsk) 199 { 200 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 201 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 202 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy); 203 unsigned cpu = smp_processor_id(); 204 u64 next_tlb_gen; 205 bool need_flush; 206 u16 new_asid; 207 208 /* 209 * NB: The scheduler will call us with prev == next when switching 210 * from lazy TLB mode to normal mode if active_mm isn't changing. 211 * When this happens, we don't assume that CR3 (and hence 212 * cpu_tlbstate.loaded_mm) matches next. 213 * 214 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 215 */ 216 217 /* We don't want flush_tlb_func_* to run concurrently with us. */ 218 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 219 WARN_ON_ONCE(!irqs_disabled()); 220 221 /* 222 * Verify that CR3 is what we think it is. This will catch 223 * hypothetical buggy code that directly switches to swapper_pg_dir 224 * without going through leave_mm() / switch_mm_irqs_off() or that 225 * does something like write_cr3(read_cr3_pa()). 226 * 227 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 228 * isn't free. 229 */ 230 #ifdef CONFIG_DEBUG_VM 231 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 232 /* 233 * If we were to BUG here, we'd be very likely to kill 234 * the system so hard that we don't see the call trace. 235 * Try to recover instead by ignoring the error and doing 236 * a global flush to minimize the chance of corruption. 237 * 238 * (This is far from being a fully correct recovery. 239 * Architecturally, the CPU could prefetch something 240 * back into an incorrect ASID slot and leave it there 241 * to cause trouble down the road. It's better than 242 * nothing, though.) 243 */ 244 __flush_tlb_all(); 245 } 246 #endif 247 this_cpu_write(cpu_tlbstate.is_lazy, false); 248 249 /* 250 * The membarrier system call requires a full memory barrier and 251 * core serialization before returning to user-space, after 252 * storing to rq->curr. Writing to CR3 provides that full 253 * memory barrier and core serializing instruction. 254 */ 255 if (real_prev == next) { 256 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 257 next->context.ctx_id); 258 259 /* 260 * Even in lazy TLB mode, the CPU should stay set in the 261 * mm_cpumask. The TLB shootdown code can figure out from 262 * from cpu_tlbstate.is_lazy whether or not to send an IPI. 263 */ 264 if (WARN_ON_ONCE(real_prev != &init_mm && 265 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 266 cpumask_set_cpu(cpu, mm_cpumask(next)); 267 268 /* 269 * If the CPU is not in lazy TLB mode, we are just switching 270 * from one thread in a process to another thread in the same 271 * process. No TLB flush required. 272 */ 273 if (!was_lazy) 274 return; 275 276 /* 277 * Read the tlb_gen to check whether a flush is needed. 278 * If the TLB is up to date, just use it. 279 * The barrier synchronizes with the tlb_gen increment in 280 * the TLB shootdown code. 281 */ 282 smp_mb(); 283 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 284 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 285 next_tlb_gen) 286 return; 287 288 /* 289 * TLB contents went out of date while we were in lazy 290 * mode. Fall through to the TLB switching code below. 291 */ 292 new_asid = prev_asid; 293 need_flush = true; 294 } else { 295 u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id); 296 297 /* 298 * Avoid user/user BTB poisoning by flushing the branch 299 * predictor when switching between processes. This stops 300 * one process from doing Spectre-v2 attacks on another. 301 * 302 * As an optimization, flush indirect branches only when 303 * switching into a processes that can't be ptrace by the 304 * current one (as in such case, attacker has much more 305 * convenient way how to tamper with the next process than 306 * branch buffer poisoning). 307 */ 308 if (static_cpu_has(X86_FEATURE_USE_IBPB) && 309 ibpb_needed(tsk, last_ctx_id)) 310 indirect_branch_prediction_barrier(); 311 312 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 313 /* 314 * If our current stack is in vmalloc space and isn't 315 * mapped in the new pgd, we'll double-fault. Forcibly 316 * map it. 317 */ 318 sync_current_stack_to_mm(next); 319 } 320 321 /* 322 * Stop remote flushes for the previous mm. 323 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 324 * but the bitmap manipulation can cause cache line contention. 325 */ 326 if (real_prev != &init_mm) { 327 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 328 mm_cpumask(real_prev))); 329 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 330 } 331 332 /* 333 * Start remote flushes and then read tlb_gen. 334 */ 335 if (next != &init_mm) 336 cpumask_set_cpu(cpu, mm_cpumask(next)); 337 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 338 339 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 340 341 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 342 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 343 barrier(); 344 } 345 346 if (need_flush) { 347 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 348 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 349 load_new_mm_cr3(next->pgd, new_asid, true); 350 351 /* 352 * NB: This gets called via leave_mm() in the idle path 353 * where RCU functions differently. Tracing normally 354 * uses RCU, so we need to use the _rcuidle variant. 355 * 356 * (There is no good reason for this. The idle code should 357 * be rearranged to call this before rcu_idle_enter().) 358 */ 359 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 360 } else { 361 /* The new ASID is already up to date. */ 362 load_new_mm_cr3(next->pgd, new_asid, false); 363 364 /* See above wrt _rcuidle. */ 365 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0); 366 } 367 368 /* 369 * Record last user mm's context id, so we can avoid 370 * flushing branch buffer with IBPB if we switch back 371 * to the same user. 372 */ 373 if (next != &init_mm) 374 this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id); 375 376 /* Make sure we write CR3 before loaded_mm. */ 377 barrier(); 378 379 this_cpu_write(cpu_tlbstate.loaded_mm, next); 380 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 381 382 if (next != real_prev) { 383 load_mm_cr4(next); 384 switch_ldt(real_prev, next); 385 } 386 } 387 388 /* 389 * Please ignore the name of this function. It should be called 390 * switch_to_kernel_thread(). 391 * 392 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 393 * kernel thread or other context without an mm. Acceptable implementations 394 * include doing nothing whatsoever, switching to init_mm, or various clever 395 * lazy tricks to try to minimize TLB flushes. 396 * 397 * The scheduler reserves the right to call enter_lazy_tlb() several times 398 * in a row. It will notify us that we're going back to a real mm by 399 * calling switch_mm_irqs_off(). 400 */ 401 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 402 { 403 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 404 return; 405 406 this_cpu_write(cpu_tlbstate.is_lazy, true); 407 } 408 409 /* 410 * Call this when reinitializing a CPU. It fixes the following potential 411 * problems: 412 * 413 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 414 * because the CPU was taken down and came back up with CR3's PCID 415 * bits clear. CPU hotplug can do this. 416 * 417 * - The TLB contains junk in slots corresponding to inactive ASIDs. 418 * 419 * - The CPU went so far out to lunch that it may have missed a TLB 420 * flush. 421 */ 422 void initialize_tlbstate_and_flush(void) 423 { 424 int i; 425 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 426 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 427 unsigned long cr3 = __read_cr3(); 428 429 /* Assert that CR3 already references the right mm. */ 430 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 431 432 /* 433 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 434 * doesn't work like other CR4 bits because it can only be set from 435 * long mode.) 436 */ 437 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 438 !(cr4_read_shadow() & X86_CR4_PCIDE)); 439 440 /* Force ASID 0 and force a TLB flush. */ 441 write_cr3(build_cr3(mm->pgd, 0)); 442 443 /* Reinitialize tlbstate. */ 444 this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id); 445 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 446 this_cpu_write(cpu_tlbstate.next_asid, 1); 447 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 448 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 449 450 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 451 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 452 } 453 454 /* 455 * flush_tlb_func_common()'s memory ordering requirement is that any 456 * TLB fills that happen after we flush the TLB are ordered after we 457 * read active_mm's tlb_gen. We don't need any explicit barriers 458 * because all x86 flush operations are serializing and the 459 * atomic64_read operation won't be reordered by the compiler. 460 */ 461 static void flush_tlb_func_common(const struct flush_tlb_info *f, 462 bool local, enum tlb_flush_reason reason) 463 { 464 /* 465 * We have three different tlb_gen values in here. They are: 466 * 467 * - mm_tlb_gen: the latest generation. 468 * - local_tlb_gen: the generation that this CPU has already caught 469 * up to. 470 * - f->new_tlb_gen: the generation that the requester of the flush 471 * wants us to catch up to. 472 */ 473 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 474 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 475 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 476 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 477 478 /* This code cannot presently handle being reentered. */ 479 VM_WARN_ON(!irqs_disabled()); 480 481 if (unlikely(loaded_mm == &init_mm)) 482 return; 483 484 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 485 loaded_mm->context.ctx_id); 486 487 if (this_cpu_read(cpu_tlbstate.is_lazy)) { 488 /* 489 * We're in lazy mode. We need to at least flush our 490 * paging-structure cache to avoid speculatively reading 491 * garbage into our TLB. Since switching to init_mm is barely 492 * slower than a minimal flush, just switch to init_mm. 493 * 494 * This should be rare, with native_flush_tlb_others skipping 495 * IPIs to lazy TLB mode CPUs. 496 */ 497 switch_mm_irqs_off(NULL, &init_mm, NULL); 498 return; 499 } 500 501 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 502 /* 503 * There's nothing to do: we're already up to date. This can 504 * happen if two concurrent flushes happen -- the first flush to 505 * be handled can catch us all the way up, leaving no work for 506 * the second flush. 507 */ 508 trace_tlb_flush(reason, 0); 509 return; 510 } 511 512 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 513 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 514 515 /* 516 * If we get to this point, we know that our TLB is out of date. 517 * This does not strictly imply that we need to flush (it's 518 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 519 * going to need to flush in the very near future, so we might 520 * as well get it over with. 521 * 522 * The only question is whether to do a full or partial flush. 523 * 524 * We do a partial flush if requested and two extra conditions 525 * are met: 526 * 527 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 528 * we've always done all needed flushes to catch up to 529 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 530 * f->new_tlb_gen == 3, then we know that the flush needed to bring 531 * us up to date for tlb_gen 3 is the partial flush we're 532 * processing. 533 * 534 * As an example of why this check is needed, suppose that there 535 * are two concurrent flushes. The first is a full flush that 536 * changes context.tlb_gen from 1 to 2. The second is a partial 537 * flush that changes context.tlb_gen from 2 to 3. If they get 538 * processed on this CPU in reverse order, we'll see 539 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 540 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 541 * 3, we'd be break the invariant: we'd update local_tlb_gen above 542 * 1 without the full flush that's needed for tlb_gen 2. 543 * 544 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation. 545 * Partial TLB flushes are not all that much cheaper than full TLB 546 * flushes, so it seems unlikely that it would be a performance win 547 * to do a partial flush if that won't bring our TLB fully up to 548 * date. By doing a full flush instead, we can increase 549 * local_tlb_gen all the way to mm_tlb_gen and we can probably 550 * avoid another flush in the very near future. 551 */ 552 if (f->end != TLB_FLUSH_ALL && 553 f->new_tlb_gen == local_tlb_gen + 1 && 554 f->new_tlb_gen == mm_tlb_gen) { 555 /* Partial flush */ 556 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift; 557 unsigned long addr = f->start; 558 559 while (addr < f->end) { 560 __flush_tlb_one_user(addr); 561 addr += 1UL << f->stride_shift; 562 } 563 if (local) 564 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 565 trace_tlb_flush(reason, nr_invalidate); 566 } else { 567 /* Full flush. */ 568 local_flush_tlb(); 569 if (local) 570 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 571 trace_tlb_flush(reason, TLB_FLUSH_ALL); 572 } 573 574 /* Both paths above update our state to mm_tlb_gen. */ 575 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 576 } 577 578 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason) 579 { 580 const struct flush_tlb_info *f = info; 581 582 flush_tlb_func_common(f, true, reason); 583 } 584 585 static void flush_tlb_func_remote(void *info) 586 { 587 const struct flush_tlb_info *f = info; 588 589 inc_irq_stat(irq_tlb_count); 590 591 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) 592 return; 593 594 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 595 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); 596 } 597 598 static bool tlb_is_not_lazy(int cpu, void *data) 599 { 600 return !per_cpu(cpu_tlbstate.is_lazy, cpu); 601 } 602 603 void native_flush_tlb_others(const struct cpumask *cpumask, 604 const struct flush_tlb_info *info) 605 { 606 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 607 if (info->end == TLB_FLUSH_ALL) 608 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 609 else 610 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 611 (info->end - info->start) >> PAGE_SHIFT); 612 613 if (is_uv_system()) { 614 /* 615 * This whole special case is confused. UV has a "Broadcast 616 * Assist Unit", which seems to be a fancy way to send IPIs. 617 * Back when x86 used an explicit TLB flush IPI, UV was 618 * optimized to use its own mechanism. These days, x86 uses 619 * smp_call_function_many(), but UV still uses a manual IPI, 620 * and that IPI's action is out of date -- it does a manual 621 * flush instead of calling flush_tlb_func_remote(). This 622 * means that the percpu tlb_gen variables won't be updated 623 * and we'll do pointless flushes on future context switches. 624 * 625 * Rather than hooking native_flush_tlb_others() here, I think 626 * that UV should be updated so that smp_call_function_many(), 627 * etc, are optimal on UV. 628 */ 629 unsigned int cpu; 630 631 cpu = smp_processor_id(); 632 cpumask = uv_flush_tlb_others(cpumask, info); 633 if (cpumask) 634 smp_call_function_many(cpumask, flush_tlb_func_remote, 635 (void *)info, 1); 636 return; 637 } 638 639 /* 640 * If no page tables were freed, we can skip sending IPIs to 641 * CPUs in lazy TLB mode. They will flush the CPU themselves 642 * at the next context switch. 643 * 644 * However, if page tables are getting freed, we need to send the 645 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 646 * up on the new contents of what used to be page tables, while 647 * doing a speculative memory access. 648 */ 649 if (info->freed_tables) 650 smp_call_function_many(cpumask, flush_tlb_func_remote, 651 (void *)info, 1); 652 else 653 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote, 654 (void *)info, 1, GFP_ATOMIC, cpumask); 655 } 656 657 /* 658 * See Documentation/x86/tlb.txt for details. We choose 33 659 * because it is large enough to cover the vast majority (at 660 * least 95%) of allocations, and is small enough that we are 661 * confident it will not cause too much overhead. Each single 662 * flush is about 100 ns, so this caps the maximum overhead at 663 * _about_ 3,000 ns. 664 * 665 * This is in units of pages. 666 */ 667 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 668 669 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 670 unsigned long end, unsigned int stride_shift, 671 bool freed_tables) 672 { 673 int cpu; 674 675 struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = { 676 .mm = mm, 677 .stride_shift = stride_shift, 678 .freed_tables = freed_tables, 679 }; 680 681 cpu = get_cpu(); 682 683 /* This is also a barrier that synchronizes with switch_mm(). */ 684 info.new_tlb_gen = inc_mm_tlb_gen(mm); 685 686 /* Should we flush just the requested range? */ 687 if ((end != TLB_FLUSH_ALL) && 688 ((end - start) >> stride_shift) <= tlb_single_page_flush_ceiling) { 689 info.start = start; 690 info.end = end; 691 } else { 692 info.start = 0UL; 693 info.end = TLB_FLUSH_ALL; 694 } 695 696 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 697 VM_WARN_ON(irqs_disabled()); 698 local_irq_disable(); 699 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN); 700 local_irq_enable(); 701 } 702 703 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) 704 flush_tlb_others(mm_cpumask(mm), &info); 705 706 put_cpu(); 707 } 708 709 710 static void do_flush_tlb_all(void *info) 711 { 712 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 713 __flush_tlb_all(); 714 } 715 716 void flush_tlb_all(void) 717 { 718 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 719 on_each_cpu(do_flush_tlb_all, NULL, 1); 720 } 721 722 static void do_kernel_range_flush(void *info) 723 { 724 struct flush_tlb_info *f = info; 725 unsigned long addr; 726 727 /* flush range by one by one 'invlpg' */ 728 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 729 __flush_tlb_one_kernel(addr); 730 } 731 732 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 733 { 734 735 /* Balance as user space task's flush, a bit conservative */ 736 if (end == TLB_FLUSH_ALL || 737 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 738 on_each_cpu(do_flush_tlb_all, NULL, 1); 739 } else { 740 struct flush_tlb_info info; 741 info.start = start; 742 info.end = end; 743 on_each_cpu(do_kernel_range_flush, &info, 1); 744 } 745 } 746 747 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 748 { 749 struct flush_tlb_info info = { 750 .mm = NULL, 751 .start = 0UL, 752 .end = TLB_FLUSH_ALL, 753 }; 754 755 int cpu = get_cpu(); 756 757 if (cpumask_test_cpu(cpu, &batch->cpumask)) { 758 VM_WARN_ON(irqs_disabled()); 759 local_irq_disable(); 760 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN); 761 local_irq_enable(); 762 } 763 764 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) 765 flush_tlb_others(&batch->cpumask, &info); 766 767 cpumask_clear(&batch->cpumask); 768 769 put_cpu(); 770 } 771 772 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 773 size_t count, loff_t *ppos) 774 { 775 char buf[32]; 776 unsigned int len; 777 778 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 779 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 780 } 781 782 static ssize_t tlbflush_write_file(struct file *file, 783 const char __user *user_buf, size_t count, loff_t *ppos) 784 { 785 char buf[32]; 786 ssize_t len; 787 int ceiling; 788 789 len = min(count, sizeof(buf) - 1); 790 if (copy_from_user(buf, user_buf, len)) 791 return -EFAULT; 792 793 buf[len] = '\0'; 794 if (kstrtoint(buf, 0, &ceiling)) 795 return -EINVAL; 796 797 if (ceiling < 0) 798 return -EINVAL; 799 800 tlb_single_page_flush_ceiling = ceiling; 801 return count; 802 } 803 804 static const struct file_operations fops_tlbflush = { 805 .read = tlbflush_read_file, 806 .write = tlbflush_write_file, 807 .llseek = default_llseek, 808 }; 809 810 static int __init create_tlb_single_page_flush_ceiling(void) 811 { 812 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 813 arch_debugfs_dir, NULL, &fops_tlbflush); 814 return 0; 815 } 816 late_initcall(create_tlb_single_page_flush_ceiling); 817