1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 #include <linux/sched/smt.h> 12 #include <linux/task_work.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/mmu_context.h> 15 16 #include <asm/tlbflush.h> 17 #include <asm/mmu_context.h> 18 #include <asm/nospec-branch.h> 19 #include <asm/cache.h> 20 #include <asm/cacheflush.h> 21 #include <asm/apic.h> 22 #include <asm/msr.h> 23 #include <asm/perf_event.h> 24 #include <asm/tlb.h> 25 26 #include "mm_internal.h" 27 28 #ifdef CONFIG_PARAVIRT 29 # define STATIC_NOPV 30 #else 31 # define STATIC_NOPV static 32 # define __flush_tlb_local native_flush_tlb_local 33 # define __flush_tlb_global native_flush_tlb_global 34 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 35 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) 36 #endif 37 38 /* 39 * TLB flushing, formerly SMP-only 40 * c/o Linus Torvalds. 41 * 42 * These mean you can really definitely utterly forget about 43 * writing to user space from interrupts. (Its not allowed anyway). 44 * 45 * Optimizations Manfred Spraul <manfred@colorfullife.com> 46 * 47 * More scalable flush, from Andi Kleen 48 * 49 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 50 */ 51 52 /* 53 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is 54 * stored in cpu_tlb_state.last_user_mm_spec. 55 */ 56 #define LAST_USER_MM_IBPB 0x1UL 57 #define LAST_USER_MM_L1D_FLUSH 0x2UL 58 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH) 59 60 /* Bits to set when tlbstate and flush is (re)initialized */ 61 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB 62 63 /* 64 * The x86 feature is called PCID (Process Context IDentifier). It is similar 65 * to what is traditionally called ASID on the RISC processors. 66 * 67 * We don't use the traditional ASID implementation, where each process/mm gets 68 * its own ASID and flush/restart when we run out of ASID space. 69 * 70 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 71 * that came by on this CPU, allowing cheaper switch_mm between processes on 72 * this CPU. 73 * 74 * We end up with different spaces for different things. To avoid confusion we 75 * use different names for each of them: 76 * 77 * ASID - [0, TLB_NR_DYN_ASIDS-1] 78 * the canonical identifier for an mm, dynamically allocated on each CPU 79 * [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1] 80 * the canonical, global identifier for an mm, identical across all CPUs 81 * 82 * kPCID - [1, MAX_ASID_AVAILABLE] 83 * the value we write into the PCID part of CR3; corresponds to the 84 * ASID+1, because PCID 0 is special. 85 * 86 * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE] 87 * for KPTI each mm has two address spaces and thus needs two 88 * PCID values, but we can still do with a single ASID denomination 89 * for each mm. Corresponds to kPCID + 2048. 90 * 91 */ 92 93 /* 94 * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for 95 * user/kernel switches 96 */ 97 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 98 # define PTI_CONSUMED_PCID_BITS 1 99 #else 100 # define PTI_CONSUMED_PCID_BITS 0 101 #endif 102 103 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 104 105 /* 106 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 107 * for them being zero-based. Another -1 is because PCID 0 is reserved for 108 * use by non-PCID-aware users. 109 */ 110 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 111 112 /* 113 * Given @asid, compute kPCID 114 */ 115 static inline u16 kern_pcid(u16 asid) 116 { 117 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 118 119 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 120 /* 121 * Make sure that the dynamic ASID space does not conflict with the 122 * bit we are using to switch between user and kernel ASIDs. 123 */ 124 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 125 126 /* 127 * The ASID being passed in here should have respected the 128 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 129 */ 130 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 131 #endif 132 /* 133 * The dynamically-assigned ASIDs that get passed in are small 134 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 135 * so do not bother to clear it. 136 * 137 * If PCID is on, ASID-aware code paths put the ASID+1 into the 138 * PCID bits. This serves two purposes. It prevents a nasty 139 * situation in which PCID-unaware code saves CR3, loads some other 140 * value (with PCID == 0), and then restores CR3, thus corrupting 141 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 142 * that any bugs involving loading a PCID-enabled CR3 with 143 * CR4.PCIDE off will trigger deterministically. 144 */ 145 return asid + 1; 146 } 147 148 /* 149 * Given @asid, compute uPCID 150 */ 151 static inline u16 user_pcid(u16 asid) 152 { 153 u16 ret = kern_pcid(asid); 154 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 155 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 156 #endif 157 return ret; 158 } 159 160 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam) 161 { 162 unsigned long cr3 = __sme_pa(pgd) | lam; 163 164 if (static_cpu_has(X86_FEATURE_PCID)) { 165 cr3 |= kern_pcid(asid); 166 } else { 167 VM_WARN_ON_ONCE(asid != 0); 168 } 169 170 return cr3; 171 } 172 173 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid, 174 unsigned long lam) 175 { 176 /* 177 * Use boot_cpu_has() instead of this_cpu_has() as this function 178 * might be called during early boot. This should work even after 179 * boot because all CPU's the have same capabilities: 180 */ 181 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 182 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH; 183 } 184 185 /* 186 * We get here when we do something requiring a TLB invalidation 187 * but could not go invalidate all of the contexts. We do the 188 * necessary invalidation by clearing out the 'ctx_id' which 189 * forces a TLB flush when the context is loaded. 190 */ 191 static void clear_asid_other(void) 192 { 193 u16 asid; 194 195 /* 196 * This is only expected to be set if we have disabled 197 * kernel _PAGE_GLOBAL pages. 198 */ 199 if (!static_cpu_has(X86_FEATURE_PTI)) { 200 WARN_ON_ONCE(1); 201 return; 202 } 203 204 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 205 /* Do not need to flush the current asid */ 206 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 207 continue; 208 /* 209 * Make sure the next time we go to switch to 210 * this asid, we do a flush: 211 */ 212 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 213 } 214 this_cpu_write(cpu_tlbstate.invalidate_other, false); 215 } 216 217 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 218 219 struct new_asid { 220 unsigned int asid : 16; 221 unsigned int need_flush : 1; 222 }; 223 224 static struct new_asid choose_new_asid(struct mm_struct *next, u64 next_tlb_gen) 225 { 226 struct new_asid ns; 227 u16 asid; 228 229 if (!static_cpu_has(X86_FEATURE_PCID)) { 230 ns.asid = 0; 231 ns.need_flush = 1; 232 return ns; 233 } 234 235 /* 236 * TLB consistency for global ASIDs is maintained with hardware assisted 237 * remote TLB flushing. Global ASIDs are always up to date. 238 */ 239 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) { 240 u16 global_asid = mm_global_asid(next); 241 242 if (global_asid) { 243 ns.asid = global_asid; 244 ns.need_flush = 0; 245 return ns; 246 } 247 } 248 249 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 250 clear_asid_other(); 251 252 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 253 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 254 next->context.ctx_id) 255 continue; 256 257 ns.asid = asid; 258 ns.need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < next_tlb_gen); 259 return ns; 260 } 261 262 /* 263 * We don't currently own an ASID slot on this CPU. 264 * Allocate a slot. 265 */ 266 ns.asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 267 if (ns.asid >= TLB_NR_DYN_ASIDS) { 268 ns.asid = 0; 269 this_cpu_write(cpu_tlbstate.next_asid, 1); 270 } 271 ns.need_flush = true; 272 273 return ns; 274 } 275 276 /* 277 * Global ASIDs are allocated for multi-threaded processes that are 278 * active on multiple CPUs simultaneously, giving each of those 279 * processes the same PCID on every CPU, for use with hardware-assisted 280 * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR. 281 * 282 * These global ASIDs are held for the lifetime of the process. 283 */ 284 static DEFINE_RAW_SPINLOCK(global_asid_lock); 285 static u16 last_global_asid = MAX_ASID_AVAILABLE; 286 static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE); 287 static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE); 288 static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1; 289 290 /* 291 * When the search for a free ASID in the global ASID space reaches 292 * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously 293 * freed global ASIDs are safe to re-use. 294 * 295 * This way the global flush only needs to happen at ASID rollover 296 * time, and not at ASID allocation time. 297 */ 298 static void reset_global_asid_space(void) 299 { 300 lockdep_assert_held(&global_asid_lock); 301 302 invlpgb_flush_all_nonglobals(); 303 304 /* 305 * The TLB flush above makes it safe to re-use the previously 306 * freed global ASIDs. 307 */ 308 bitmap_andnot(global_asid_used, global_asid_used, 309 global_asid_freed, MAX_ASID_AVAILABLE); 310 bitmap_clear(global_asid_freed, 0, MAX_ASID_AVAILABLE); 311 312 /* Restart the search from the start of global ASID space. */ 313 last_global_asid = TLB_NR_DYN_ASIDS; 314 } 315 316 static u16 allocate_global_asid(void) 317 { 318 u16 asid; 319 320 lockdep_assert_held(&global_asid_lock); 321 322 /* The previous allocation hit the edge of available address space */ 323 if (last_global_asid >= MAX_ASID_AVAILABLE - 1) 324 reset_global_asid_space(); 325 326 asid = find_next_zero_bit(global_asid_used, MAX_ASID_AVAILABLE, last_global_asid); 327 328 if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) { 329 /* This should never happen. */ 330 VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n", 331 global_asid_available); 332 return 0; 333 } 334 335 /* Claim this global ASID. */ 336 __set_bit(asid, global_asid_used); 337 last_global_asid = asid; 338 global_asid_available--; 339 return asid; 340 } 341 342 /* 343 * Check whether a process is currently active on more than @threshold CPUs. 344 * This is a cheap estimation on whether or not it may make sense to assign 345 * a global ASID to this process, and use broadcast TLB invalidation. 346 */ 347 static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold) 348 { 349 int count = 0; 350 int cpu; 351 352 /* This quick check should eliminate most single threaded programs. */ 353 if (cpumask_weight(mm_cpumask(mm)) <= threshold) 354 return false; 355 356 /* Slower check to make sure. */ 357 for_each_cpu(cpu, mm_cpumask(mm)) { 358 /* Skip the CPUs that aren't really running this process. */ 359 if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm) 360 continue; 361 362 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu)) 363 continue; 364 365 if (++count > threshold) 366 return true; 367 } 368 return false; 369 } 370 371 /* 372 * Assign a global ASID to the current process, protecting against 373 * races between multiple threads in the process. 374 */ 375 static void use_global_asid(struct mm_struct *mm) 376 { 377 u16 asid; 378 379 guard(raw_spinlock_irqsave)(&global_asid_lock); 380 381 /* This process is already using broadcast TLB invalidation. */ 382 if (mm_global_asid(mm)) 383 return; 384 385 /* 386 * The last global ASID was consumed while waiting for the lock. 387 * 388 * If this fires, a more aggressive ASID reuse scheme might be 389 * needed. 390 */ 391 if (!global_asid_available) { 392 VM_WARN_ONCE(1, "Ran out of global ASIDs\n"); 393 return; 394 } 395 396 asid = allocate_global_asid(); 397 if (!asid) 398 return; 399 400 mm_assign_global_asid(mm, asid); 401 } 402 403 void mm_free_global_asid(struct mm_struct *mm) 404 { 405 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) 406 return; 407 408 if (!mm_global_asid(mm)) 409 return; 410 411 guard(raw_spinlock_irqsave)(&global_asid_lock); 412 413 /* The global ASID can be re-used only after flush at wrap-around. */ 414 #ifdef CONFIG_BROADCAST_TLB_FLUSH 415 __set_bit(mm->context.global_asid, global_asid_freed); 416 417 mm->context.global_asid = 0; 418 global_asid_available++; 419 #endif 420 } 421 422 /* 423 * Is the mm transitioning from a CPU-local ASID to a global ASID? 424 */ 425 static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid) 426 { 427 u16 global_asid = mm_global_asid(mm); 428 429 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) 430 return false; 431 432 /* Process is transitioning to a global ASID */ 433 if (global_asid && asid != global_asid) 434 return true; 435 436 return false; 437 } 438 439 /* 440 * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86 441 * systems have over 8k CPUs. Because of this potential ASID shortage, 442 * global ASIDs are handed out to processes that have frequent TLB 443 * flushes and are active on 4 or more CPUs simultaneously. 444 */ 445 static void consider_global_asid(struct mm_struct *mm) 446 { 447 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) 448 return; 449 450 /* Check every once in a while. */ 451 if ((current->pid & 0x1f) != (jiffies & 0x1f)) 452 return; 453 454 /* 455 * Assign a global ASID if the process is active on 456 * 4 or more CPUs simultaneously. 457 */ 458 if (mm_active_cpus_exceeds(mm, 3)) 459 use_global_asid(mm); 460 } 461 462 static void finish_asid_transition(struct flush_tlb_info *info) 463 { 464 struct mm_struct *mm = info->mm; 465 int bc_asid = mm_global_asid(mm); 466 int cpu; 467 468 if (!mm_in_asid_transition(mm)) 469 return; 470 471 for_each_cpu(cpu, mm_cpumask(mm)) { 472 /* 473 * The remote CPU is context switching. Wait for that to 474 * finish, to catch the unlikely case of it switching to 475 * the target mm with an out of date ASID. 476 */ 477 while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING) 478 cpu_relax(); 479 480 if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm) 481 continue; 482 483 /* 484 * If at least one CPU is not using the global ASID yet, 485 * send a TLB flush IPI. The IPI should cause stragglers 486 * to transition soon. 487 * 488 * This can race with the CPU switching to another task; 489 * that results in a (harmless) extra IPI. 490 */ 491 if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) { 492 flush_tlb_multi(mm_cpumask(info->mm), info); 493 return; 494 } 495 } 496 497 /* All the CPUs running this process are using the global ASID. */ 498 mm_clear_asid_transition(mm); 499 } 500 501 static void broadcast_tlb_flush(struct flush_tlb_info *info) 502 { 503 bool pmd = info->stride_shift == PMD_SHIFT; 504 unsigned long asid = mm_global_asid(info->mm); 505 unsigned long addr = info->start; 506 507 /* 508 * TLB flushes with INVLPGB are kicked off asynchronously. 509 * The inc_mm_tlb_gen() guarantees page table updates are done 510 * before these TLB flushes happen. 511 */ 512 if (info->end == TLB_FLUSH_ALL) { 513 invlpgb_flush_single_pcid_nosync(kern_pcid(asid)); 514 /* Do any CPUs supporting INVLPGB need PTI? */ 515 if (cpu_feature_enabled(X86_FEATURE_PTI)) 516 invlpgb_flush_single_pcid_nosync(user_pcid(asid)); 517 } else do { 518 unsigned long nr = 1; 519 520 if (info->stride_shift <= PMD_SHIFT) { 521 nr = (info->end - addr) >> info->stride_shift; 522 nr = clamp_val(nr, 1, invlpgb_count_max); 523 } 524 525 invlpgb_flush_user_nr_nosync(kern_pcid(asid), addr, nr, pmd); 526 if (cpu_feature_enabled(X86_FEATURE_PTI)) 527 invlpgb_flush_user_nr_nosync(user_pcid(asid), addr, nr, pmd); 528 529 addr += nr << info->stride_shift; 530 } while (addr < info->end); 531 532 finish_asid_transition(info); 533 534 /* Wait for the INVLPGBs kicked off above to finish. */ 535 __tlbsync(); 536 } 537 538 /* 539 * Given an ASID, flush the corresponding user ASID. We can delay this 540 * until the next time we switch to it. 541 * 542 * See SWITCH_TO_USER_CR3. 543 */ 544 static inline void invalidate_user_asid(u16 asid) 545 { 546 /* There is no user ASID if address space separation is off */ 547 if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) 548 return; 549 550 /* 551 * We only have a single ASID if PCID is off and the CR3 552 * write will have flushed it. 553 */ 554 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 555 return; 556 557 if (!static_cpu_has(X86_FEATURE_PTI)) 558 return; 559 560 __set_bit(kern_pcid(asid), 561 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 562 } 563 564 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam, 565 bool need_flush) 566 { 567 unsigned long new_mm_cr3; 568 569 if (need_flush) { 570 invalidate_user_asid(new_asid); 571 new_mm_cr3 = build_cr3(pgdir, new_asid, lam); 572 } else { 573 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam); 574 } 575 576 /* 577 * Caution: many callers of this function expect 578 * that load_cr3() is serializing and orders TLB 579 * fills with respect to the mm_cpumask writes. 580 */ 581 write_cr3(new_mm_cr3); 582 } 583 584 void leave_mm(void) 585 { 586 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 587 588 /* 589 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 590 * If so, our callers still expect us to flush the TLB, but there 591 * aren't any user TLB entries in init_mm to worry about. 592 * 593 * This needs to happen before any other sanity checks due to 594 * intel_idle's shenanigans. 595 */ 596 if (loaded_mm == &init_mm) 597 return; 598 599 /* Warn if we're not lazy. */ 600 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); 601 602 switch_mm(NULL, &init_mm, NULL); 603 } 604 EXPORT_SYMBOL_GPL(leave_mm); 605 606 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 607 struct task_struct *tsk) 608 { 609 unsigned long flags; 610 611 local_irq_save(flags); 612 switch_mm_irqs_off(NULL, next, tsk); 613 local_irq_restore(flags); 614 } 615 616 /* 617 * Invoked from return to user/guest by a task that opted-in to L1D 618 * flushing but ended up running on an SMT enabled core due to wrong 619 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush 620 * contract which this task requested. 621 */ 622 static void l1d_flush_force_sigbus(struct callback_head *ch) 623 { 624 force_sig(SIGBUS); 625 } 626 627 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm, 628 struct task_struct *next) 629 { 630 /* Flush L1D if the outgoing task requests it */ 631 if (prev_mm & LAST_USER_MM_L1D_FLUSH) 632 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 633 634 /* Check whether the incoming task opted in for L1D flush */ 635 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH))) 636 return; 637 638 /* 639 * Validate that it is not running on an SMT sibling as this would 640 * make the exercise pointless because the siblings share L1D. If 641 * it runs on a SMT sibling, notify it with SIGBUS on return to 642 * user/guest 643 */ 644 if (this_cpu_read(cpu_info.smt_active)) { 645 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH); 646 next->l1d_flush_kill.func = l1d_flush_force_sigbus; 647 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME); 648 } 649 } 650 651 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next) 652 { 653 unsigned long next_tif = read_task_thread_flags(next); 654 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK; 655 656 /* 657 * Ensure that the bit shift above works as expected and the two flags 658 * end up in bit 0 and 1. 659 */ 660 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1); 661 662 return (unsigned long)next->mm | spec_bits; 663 } 664 665 static void cond_mitigation(struct task_struct *next) 666 { 667 unsigned long prev_mm, next_mm; 668 669 if (!next || !next->mm) 670 return; 671 672 next_mm = mm_mangle_tif_spec_bits(next); 673 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec); 674 675 /* 676 * Avoid user->user BTB/RSB poisoning by flushing them when switching 677 * between processes. This stops one process from doing Spectre-v2 678 * attacks on another. 679 * 680 * Both, the conditional and the always IBPB mode use the mm 681 * pointer to avoid the IBPB when switching between tasks of the 682 * same process. Using the mm pointer instead of mm->context.ctx_id 683 * opens a hypothetical hole vs. mm_struct reuse, which is more or 684 * less impossible to control by an attacker. Aside of that it 685 * would only affect the first schedule so the theoretically 686 * exposed data is not really interesting. 687 */ 688 if (static_branch_likely(&switch_mm_cond_ibpb)) { 689 /* 690 * This is a bit more complex than the always mode because 691 * it has to handle two cases: 692 * 693 * 1) Switch from a user space task (potential attacker) 694 * which has TIF_SPEC_IB set to a user space task 695 * (potential victim) which has TIF_SPEC_IB not set. 696 * 697 * 2) Switch from a user space task (potential attacker) 698 * which has TIF_SPEC_IB not set to a user space task 699 * (potential victim) which has TIF_SPEC_IB set. 700 * 701 * This could be done by unconditionally issuing IBPB when 702 * a task which has TIF_SPEC_IB set is either scheduled in 703 * or out. Though that results in two flushes when: 704 * 705 * - the same user space task is scheduled out and later 706 * scheduled in again and only a kernel thread ran in 707 * between. 708 * 709 * - a user space task belonging to the same process is 710 * scheduled in after a kernel thread ran in between 711 * 712 * - a user space task belonging to the same process is 713 * scheduled in immediately. 714 * 715 * Optimize this with reasonably small overhead for the 716 * above cases. Mangle the TIF_SPEC_IB bit into the mm 717 * pointer of the incoming task which is stored in 718 * cpu_tlbstate.last_user_mm_spec for comparison. 719 * 720 * Issue IBPB only if the mm's are different and one or 721 * both have the IBPB bit set. 722 */ 723 if (next_mm != prev_mm && 724 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 725 indirect_branch_prediction_barrier(); 726 } 727 728 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 729 /* 730 * Only flush when switching to a user space task with a 731 * different context than the user space task which ran 732 * last on this CPU. 733 */ 734 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm) 735 indirect_branch_prediction_barrier(); 736 } 737 738 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) { 739 /* 740 * Flush L1D when the outgoing task requested it and/or 741 * check whether the incoming task requested L1D flushing 742 * and ended up on an SMT sibling. 743 */ 744 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH)) 745 l1d_flush_evaluate(prev_mm, next_mm, next); 746 } 747 748 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm); 749 } 750 751 #ifdef CONFIG_PERF_EVENTS 752 static inline void cr4_update_pce_mm(struct mm_struct *mm) 753 { 754 if (static_branch_unlikely(&rdpmc_always_available_key) || 755 (!static_branch_unlikely(&rdpmc_never_available_key) && 756 atomic_read(&mm->context.perf_rdpmc_allowed))) { 757 /* 758 * Clear the existing dirty counters to 759 * prevent the leak for an RDPMC task. 760 */ 761 perf_clear_dirty_counters(); 762 cr4_set_bits_irqsoff(X86_CR4_PCE); 763 } else 764 cr4_clear_bits_irqsoff(X86_CR4_PCE); 765 } 766 767 void cr4_update_pce(void *ignored) 768 { 769 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 770 } 771 772 #else 773 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 774 #endif 775 776 /* 777 * This optimizes when not actually switching mm's. Some architectures use the 778 * 'unused' argument for this optimization, but x86 must use 779 * 'cpu_tlbstate.loaded_mm' instead because it does not always keep 780 * 'current->active_mm' up to date. 781 */ 782 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next, 783 struct task_struct *tsk) 784 { 785 struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm); 786 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 787 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); 788 unsigned cpu = smp_processor_id(); 789 unsigned long new_lam; 790 struct new_asid ns; 791 u64 next_tlb_gen; 792 793 794 /* We don't want flush_tlb_func() to run concurrently with us. */ 795 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 796 WARN_ON_ONCE(!irqs_disabled()); 797 798 /* 799 * Verify that CR3 is what we think it is. This will catch 800 * hypothetical buggy code that directly switches to swapper_pg_dir 801 * without going through leave_mm() / switch_mm_irqs_off() or that 802 * does something like write_cr3(read_cr3_pa()). 803 * 804 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 805 * isn't free. 806 */ 807 #ifdef CONFIG_DEBUG_VM 808 if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid, 809 tlbstate_lam_cr3_mask()))) { 810 /* 811 * If we were to BUG here, we'd be very likely to kill 812 * the system so hard that we don't see the call trace. 813 * Try to recover instead by ignoring the error and doing 814 * a global flush to minimize the chance of corruption. 815 * 816 * (This is far from being a fully correct recovery. 817 * Architecturally, the CPU could prefetch something 818 * back into an incorrect ASID slot and leave it there 819 * to cause trouble down the road. It's better than 820 * nothing, though.) 821 */ 822 __flush_tlb_all(); 823 } 824 #endif 825 if (was_lazy) 826 this_cpu_write(cpu_tlbstate_shared.is_lazy, false); 827 828 /* 829 * The membarrier system call requires a full memory barrier and 830 * core serialization before returning to user-space, after 831 * storing to rq->curr, when changing mm. This is because 832 * membarrier() sends IPIs to all CPUs that are in the target mm 833 * to make them issue memory barriers. However, if another CPU 834 * switches to/from the target mm concurrently with 835 * membarrier(), it can cause that CPU not to receive an IPI 836 * when it really should issue a memory barrier. Writing to CR3 837 * provides that full memory barrier and core serializing 838 * instruction. 839 */ 840 if (prev == next) { 841 /* Not actually switching mm's */ 842 VM_WARN_ON(is_dyn_asid(prev_asid) && 843 this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 844 next->context.ctx_id); 845 846 /* 847 * If this races with another thread that enables lam, 'new_lam' 848 * might not match tlbstate_lam_cr3_mask(). 849 */ 850 851 /* 852 * Even in lazy TLB mode, the CPU should stay set in the 853 * mm_cpumask. The TLB shootdown code can figure out from 854 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. 855 */ 856 if (IS_ENABLED(CONFIG_DEBUG_VM) && 857 WARN_ON_ONCE(prev != &init_mm && !is_notrack_mm(prev) && 858 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 859 cpumask_set_cpu(cpu, mm_cpumask(next)); 860 861 /* Check if the current mm is transitioning to a global ASID */ 862 if (mm_needs_global_asid(next, prev_asid)) { 863 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 864 ns = choose_new_asid(next, next_tlb_gen); 865 goto reload_tlb; 866 } 867 868 /* 869 * Broadcast TLB invalidation keeps this ASID up to date 870 * all the time. 871 */ 872 if (is_global_asid(prev_asid)) 873 return; 874 875 /* 876 * If the CPU is not in lazy TLB mode, we are just switching 877 * from one thread in a process to another thread in the same 878 * process. No TLB flush required. 879 */ 880 if (!was_lazy) 881 return; 882 883 /* 884 * Read the tlb_gen to check whether a flush is needed. 885 * If the TLB is up to date, just use it. 886 * The barrier synchronizes with the tlb_gen increment in 887 * the TLB shootdown code. 888 */ 889 smp_mb(); 890 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 891 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 892 next_tlb_gen) 893 return; 894 895 /* 896 * TLB contents went out of date while we were in lazy 897 * mode. Fall through to the TLB switching code below. 898 */ 899 ns.asid = prev_asid; 900 ns.need_flush = true; 901 } else { 902 /* 903 * Apply process to process speculation vulnerability 904 * mitigations if applicable. 905 */ 906 cond_mitigation(tsk); 907 908 /* 909 * Indicate that CR3 is about to change. nmi_uaccess_okay() 910 * and others are sensitive to the window where mm_cpumask(), 911 * CR3 and cpu_tlbstate.loaded_mm are not all in sync. 912 */ 913 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 914 915 /* 916 * Make sure this CPU is set in mm_cpumask() such that we'll 917 * receive invalidation IPIs. 918 * 919 * Rely on the smp_mb() implied by cpumask_set_cpu()'s atomic 920 * operation, or explicitly provide one. Such that: 921 * 922 * switch_mm_irqs_off() flush_tlb_mm_range() 923 * smp_store_release(loaded_mm, SWITCHING); atomic64_inc_return(tlb_gen) 924 * smp_mb(); // here // smp_mb() implied 925 * atomic64_read(tlb_gen); this_cpu_read(loaded_mm); 926 * 927 * we properly order against flush_tlb_mm_range(), where the 928 * loaded_mm load can happen in mative_flush_tlb_multi() -> 929 * should_flush_tlb(). 930 * 931 * This way switch_mm() must see the new tlb_gen or 932 * flush_tlb_mm_range() must see the new loaded_mm, or both. 933 */ 934 if (next != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next))) 935 cpumask_set_cpu(cpu, mm_cpumask(next)); 936 else 937 smp_mb(); 938 939 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 940 941 ns = choose_new_asid(next, next_tlb_gen); 942 } 943 944 reload_tlb: 945 new_lam = mm_lam_cr3_mask(next); 946 if (ns.need_flush) { 947 VM_WARN_ON_ONCE(is_global_asid(ns.asid)); 948 this_cpu_write(cpu_tlbstate.ctxs[ns.asid].ctx_id, next->context.ctx_id); 949 this_cpu_write(cpu_tlbstate.ctxs[ns.asid].tlb_gen, next_tlb_gen); 950 load_new_mm_cr3(next->pgd, ns.asid, new_lam, true); 951 952 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 953 } else { 954 /* The new ASID is already up to date. */ 955 load_new_mm_cr3(next->pgd, ns.asid, new_lam, false); 956 957 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 958 } 959 960 /* Make sure we write CR3 before loaded_mm. */ 961 barrier(); 962 963 this_cpu_write(cpu_tlbstate.loaded_mm, next); 964 this_cpu_write(cpu_tlbstate.loaded_mm_asid, ns.asid); 965 cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next)); 966 967 if (next != prev) { 968 cr4_update_pce_mm(next); 969 switch_ldt(prev, next); 970 } 971 } 972 973 /* 974 * Please ignore the name of this function. It should be called 975 * switch_to_kernel_thread(). 976 * 977 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 978 * kernel thread or other context without an mm. Acceptable implementations 979 * include doing nothing whatsoever, switching to init_mm, or various clever 980 * lazy tricks to try to minimize TLB flushes. 981 * 982 * The scheduler reserves the right to call enter_lazy_tlb() several times 983 * in a row. It will notify us that we're going back to a real mm by 984 * calling switch_mm_irqs_off(). 985 */ 986 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 987 { 988 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 989 return; 990 991 this_cpu_write(cpu_tlbstate_shared.is_lazy, true); 992 } 993 994 /* 995 * Using a temporary mm allows to set temporary mappings that are not accessible 996 * by other CPUs. Such mappings are needed to perform sensitive memory writes 997 * that override the kernel memory protections (e.g., W^X), without exposing the 998 * temporary page-table mappings that are required for these write operations to 999 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the 1000 * mapping is torn down. Temporary mms can also be used for EFI runtime service 1001 * calls or similar functionality. 1002 * 1003 * It is illegal to schedule while using a temporary mm -- the context switch 1004 * code is unaware of the temporary mm and does not know how to context switch. 1005 * Use a real (non-temporary) mm in a kernel thread if you need to sleep. 1006 * 1007 * Note: For sensitive memory writes, the temporary mm needs to be used 1008 * exclusively by a single core, and IRQs should be disabled while the 1009 * temporary mm is loaded, thereby preventing interrupt handler bugs from 1010 * overriding the kernel memory protection. 1011 */ 1012 struct mm_struct *use_temporary_mm(struct mm_struct *temp_mm) 1013 { 1014 struct mm_struct *prev_mm; 1015 1016 lockdep_assert_preemption_disabled(); 1017 guard(irqsave)(); 1018 1019 /* 1020 * Make sure not to be in TLB lazy mode, as otherwise we'll end up 1021 * with a stale address space WITHOUT being in lazy mode after 1022 * restoring the previous mm. 1023 */ 1024 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) 1025 leave_mm(); 1026 1027 prev_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1028 switch_mm_irqs_off(NULL, temp_mm, current); 1029 1030 /* 1031 * If breakpoints are enabled, disable them while the temporary mm is 1032 * used. Userspace might set up watchpoints on addresses that are used 1033 * in the temporary mm, which would lead to wrong signals being sent or 1034 * crashes. 1035 * 1036 * Note that breakpoints are not disabled selectively, which also causes 1037 * kernel breakpoints (e.g., perf's) to be disabled. This might be 1038 * undesirable, but still seems reasonable as the code that runs in the 1039 * temporary mm should be short. 1040 */ 1041 if (hw_breakpoint_active()) 1042 hw_breakpoint_disable(); 1043 1044 return prev_mm; 1045 } 1046 1047 void unuse_temporary_mm(struct mm_struct *prev_mm) 1048 { 1049 lockdep_assert_preemption_disabled(); 1050 guard(irqsave)(); 1051 1052 /* Clear the cpumask, to indicate no TLB flushing is needed anywhere */ 1053 cpumask_clear_cpu(smp_processor_id(), mm_cpumask(this_cpu_read(cpu_tlbstate.loaded_mm))); 1054 1055 switch_mm_irqs_off(NULL, prev_mm, current); 1056 1057 /* 1058 * Restore the breakpoints if they were disabled before the temporary mm 1059 * was loaded. 1060 */ 1061 if (hw_breakpoint_active()) 1062 hw_breakpoint_restore(); 1063 } 1064 1065 /* 1066 * Call this when reinitializing a CPU. It fixes the following potential 1067 * problems: 1068 * 1069 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 1070 * because the CPU was taken down and came back up with CR3's PCID 1071 * bits clear. CPU hotplug can do this. 1072 * 1073 * - The TLB contains junk in slots corresponding to inactive ASIDs. 1074 * 1075 * - The CPU went so far out to lunch that it may have missed a TLB 1076 * flush. 1077 */ 1078 void initialize_tlbstate_and_flush(void) 1079 { 1080 int i; 1081 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1082 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 1083 unsigned long lam = mm_lam_cr3_mask(mm); 1084 unsigned long cr3 = __read_cr3(); 1085 1086 /* Assert that CR3 already references the right mm. */ 1087 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 1088 1089 /* LAM expected to be disabled */ 1090 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57)); 1091 WARN_ON(lam); 1092 1093 /* 1094 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 1095 * doesn't work like other CR4 bits because it can only be set from 1096 * long mode.) 1097 */ 1098 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 1099 !(cr4_read_shadow() & X86_CR4_PCIDE)); 1100 1101 /* Disable LAM, force ASID 0 and force a TLB flush. */ 1102 write_cr3(build_cr3(mm->pgd, 0, 0)); 1103 1104 /* Reinitialize tlbstate. */ 1105 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT); 1106 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 1107 this_cpu_write(cpu_tlbstate.next_asid, 1); 1108 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 1109 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 1110 cpu_tlbstate_update_lam(lam, mm_untag_mask(mm)); 1111 1112 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 1113 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 1114 } 1115 1116 /* 1117 * flush_tlb_func()'s memory ordering requirement is that any 1118 * TLB fills that happen after we flush the TLB are ordered after we 1119 * read active_mm's tlb_gen. We don't need any explicit barriers 1120 * because all x86 flush operations are serializing and the 1121 * atomic64_read operation won't be reordered by the compiler. 1122 */ 1123 static void flush_tlb_func(void *info) 1124 { 1125 /* 1126 * We have three different tlb_gen values in here. They are: 1127 * 1128 * - mm_tlb_gen: the latest generation. 1129 * - local_tlb_gen: the generation that this CPU has already caught 1130 * up to. 1131 * - f->new_tlb_gen: the generation that the requester of the flush 1132 * wants us to catch up to. 1133 */ 1134 const struct flush_tlb_info *f = info; 1135 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1136 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1137 u64 local_tlb_gen; 1138 bool local = smp_processor_id() == f->initiating_cpu; 1139 unsigned long nr_invalidate = 0; 1140 u64 mm_tlb_gen; 1141 1142 /* This code cannot presently handle being reentered. */ 1143 VM_WARN_ON(!irqs_disabled()); 1144 1145 if (!local) { 1146 inc_irq_stat(irq_tlb_count); 1147 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 1148 } 1149 1150 /* The CPU was left in the mm_cpumask of the target mm. Clear it. */ 1151 if (f->mm && f->mm != loaded_mm) { 1152 cpumask_clear_cpu(raw_smp_processor_id(), mm_cpumask(f->mm)); 1153 trace_tlb_flush(TLB_REMOTE_WRONG_CPU, 0); 1154 return; 1155 } 1156 1157 if (unlikely(loaded_mm == &init_mm)) 1158 return; 1159 1160 /* Reload the ASID if transitioning into or out of a global ASID */ 1161 if (mm_needs_global_asid(loaded_mm, loaded_mm_asid)) { 1162 switch_mm_irqs_off(NULL, loaded_mm, NULL); 1163 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1164 } 1165 1166 /* Broadcast ASIDs are always kept up to date with INVLPGB. */ 1167 if (is_global_asid(loaded_mm_asid)) 1168 return; 1169 1170 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 1171 loaded_mm->context.ctx_id); 1172 1173 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { 1174 /* 1175 * We're in lazy mode. We need to at least flush our 1176 * paging-structure cache to avoid speculatively reading 1177 * garbage into our TLB. Since switching to init_mm is barely 1178 * slower than a minimal flush, just switch to init_mm. 1179 * 1180 * This should be rare, with native_flush_tlb_multi() skipping 1181 * IPIs to lazy TLB mode CPUs. 1182 */ 1183 switch_mm_irqs_off(NULL, &init_mm, NULL); 1184 return; 1185 } 1186 1187 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 1188 1189 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID && 1190 f->new_tlb_gen <= local_tlb_gen)) { 1191 /* 1192 * The TLB is already up to date in respect to f->new_tlb_gen. 1193 * While the core might be still behind mm_tlb_gen, checking 1194 * mm_tlb_gen unnecessarily would have negative caching effects 1195 * so avoid it. 1196 */ 1197 return; 1198 } 1199 1200 /* 1201 * Defer mm_tlb_gen reading as long as possible to avoid cache 1202 * contention. 1203 */ 1204 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 1205 1206 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 1207 /* 1208 * There's nothing to do: we're already up to date. This can 1209 * happen if two concurrent flushes happen -- the first flush to 1210 * be handled can catch us all the way up, leaving no work for 1211 * the second flush. 1212 */ 1213 goto done; 1214 } 1215 1216 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 1217 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 1218 1219 /* 1220 * If we get to this point, we know that our TLB is out of date. 1221 * This does not strictly imply that we need to flush (it's 1222 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 1223 * going to need to flush in the very near future, so we might 1224 * as well get it over with. 1225 * 1226 * The only question is whether to do a full or partial flush. 1227 * 1228 * We do a partial flush if requested and two extra conditions 1229 * are met: 1230 * 1231 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 1232 * we've always done all needed flushes to catch up to 1233 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 1234 * f->new_tlb_gen == 3, then we know that the flush needed to bring 1235 * us up to date for tlb_gen 3 is the partial flush we're 1236 * processing. 1237 * 1238 * As an example of why this check is needed, suppose that there 1239 * are two concurrent flushes. The first is a full flush that 1240 * changes context.tlb_gen from 1 to 2. The second is a partial 1241 * flush that changes context.tlb_gen from 2 to 3. If they get 1242 * processed on this CPU in reverse order, we'll see 1243 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 1244 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 1245 * 3, we'd be break the invariant: we'd update local_tlb_gen above 1246 * 1 without the full flush that's needed for tlb_gen 2. 1247 * 1248 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. 1249 * Partial TLB flushes are not all that much cheaper than full TLB 1250 * flushes, so it seems unlikely that it would be a performance win 1251 * to do a partial flush if that won't bring our TLB fully up to 1252 * date. By doing a full flush instead, we can increase 1253 * local_tlb_gen all the way to mm_tlb_gen and we can probably 1254 * avoid another flush in the very near future. 1255 */ 1256 if (f->end != TLB_FLUSH_ALL && 1257 f->new_tlb_gen == local_tlb_gen + 1 && 1258 f->new_tlb_gen == mm_tlb_gen) { 1259 /* Partial flush */ 1260 unsigned long addr = f->start; 1261 1262 /* Partial flush cannot have invalid generations */ 1263 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID); 1264 1265 /* Partial flush must have valid mm */ 1266 VM_WARN_ON(f->mm == NULL); 1267 1268 nr_invalidate = (f->end - f->start) >> f->stride_shift; 1269 1270 while (addr < f->end) { 1271 flush_tlb_one_user(addr); 1272 addr += 1UL << f->stride_shift; 1273 } 1274 if (local) 1275 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 1276 } else { 1277 /* Full flush. */ 1278 nr_invalidate = TLB_FLUSH_ALL; 1279 1280 flush_tlb_local(); 1281 if (local) 1282 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 1283 } 1284 1285 /* Both paths above update our state to mm_tlb_gen. */ 1286 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 1287 1288 /* Tracing is done in a unified manner to reduce the code size */ 1289 done: 1290 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : 1291 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : 1292 TLB_LOCAL_MM_SHOOTDOWN, 1293 nr_invalidate); 1294 } 1295 1296 static bool should_flush_tlb(int cpu, void *data) 1297 { 1298 struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu); 1299 struct flush_tlb_info *info = data; 1300 1301 /* 1302 * Order the 'loaded_mm' and 'is_lazy' against their 1303 * write ordering in switch_mm_irqs_off(). Ensure 1304 * 'is_lazy' is at least as new as 'loaded_mm'. 1305 */ 1306 smp_rmb(); 1307 1308 /* Lazy TLB will get flushed at the next context switch. */ 1309 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu)) 1310 return false; 1311 1312 /* No mm means kernel memory flush. */ 1313 if (!info->mm) 1314 return true; 1315 1316 /* 1317 * While switching, the remote CPU could have state from 1318 * either the prev or next mm. Assume the worst and flush. 1319 */ 1320 if (loaded_mm == LOADED_MM_SWITCHING) 1321 return true; 1322 1323 /* The target mm is loaded, and the CPU is not lazy. */ 1324 if (loaded_mm == info->mm) 1325 return true; 1326 1327 /* In cpumask, but not the loaded mm? Periodically remove by flushing. */ 1328 if (info->trim_cpumask) 1329 return true; 1330 1331 return false; 1332 } 1333 1334 static bool should_trim_cpumask(struct mm_struct *mm) 1335 { 1336 if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) { 1337 WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ); 1338 return true; 1339 } 1340 return false; 1341 } 1342 1343 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); 1344 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); 1345 1346 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, 1347 const struct flush_tlb_info *info) 1348 { 1349 /* 1350 * Do accounting and tracing. Note that there are (and have always been) 1351 * cases in which a remote TLB flush will be traced, but eventually 1352 * would not happen. 1353 */ 1354 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 1355 if (info->end == TLB_FLUSH_ALL) 1356 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 1357 else 1358 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 1359 (info->end - info->start) >> PAGE_SHIFT); 1360 1361 /* 1362 * If no page tables were freed, we can skip sending IPIs to 1363 * CPUs in lazy TLB mode. They will flush the CPU themselves 1364 * at the next context switch. 1365 * 1366 * However, if page tables are getting freed, we need to send the 1367 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 1368 * up on the new contents of what used to be page tables, while 1369 * doing a speculative memory access. 1370 */ 1371 if (info->freed_tables || mm_in_asid_transition(info->mm)) 1372 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); 1373 else 1374 on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func, 1375 (void *)info, 1, cpumask); 1376 } 1377 1378 void flush_tlb_multi(const struct cpumask *cpumask, 1379 const struct flush_tlb_info *info) 1380 { 1381 __flush_tlb_multi(cpumask, info); 1382 } 1383 1384 /* 1385 * See Documentation/arch/x86/tlb.rst for details. We choose 33 1386 * because it is large enough to cover the vast majority (at 1387 * least 95%) of allocations, and is small enough that we are 1388 * confident it will not cause too much overhead. Each single 1389 * flush is about 100 ns, so this caps the maximum overhead at 1390 * _about_ 3,000 ns. 1391 * 1392 * This is in units of pages. 1393 */ 1394 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 1395 1396 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 1397 1398 #ifdef CONFIG_DEBUG_VM 1399 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 1400 #endif 1401 1402 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 1403 unsigned long start, unsigned long end, 1404 unsigned int stride_shift, bool freed_tables, 1405 u64 new_tlb_gen) 1406 { 1407 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 1408 1409 #ifdef CONFIG_DEBUG_VM 1410 /* 1411 * Ensure that the following code is non-reentrant and flush_tlb_info 1412 * is not overwritten. This means no TLB flushing is initiated by 1413 * interrupt handlers and machine-check exception handlers. 1414 */ 1415 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 1416 #endif 1417 1418 /* 1419 * If the number of flushes is so large that a full flush 1420 * would be faster, do a full flush. 1421 */ 1422 if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) { 1423 start = 0; 1424 end = TLB_FLUSH_ALL; 1425 } 1426 1427 info->start = start; 1428 info->end = end; 1429 info->mm = mm; 1430 info->stride_shift = stride_shift; 1431 info->freed_tables = freed_tables; 1432 info->new_tlb_gen = new_tlb_gen; 1433 info->initiating_cpu = smp_processor_id(); 1434 info->trim_cpumask = 0; 1435 1436 return info; 1437 } 1438 1439 static void put_flush_tlb_info(void) 1440 { 1441 #ifdef CONFIG_DEBUG_VM 1442 /* Complete reentrancy prevention checks */ 1443 barrier(); 1444 this_cpu_dec(flush_tlb_info_idx); 1445 #endif 1446 } 1447 1448 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 1449 unsigned long end, unsigned int stride_shift, 1450 bool freed_tables) 1451 { 1452 struct flush_tlb_info *info; 1453 int cpu = get_cpu(); 1454 u64 new_tlb_gen; 1455 1456 /* This is also a barrier that synchronizes with switch_mm(). */ 1457 new_tlb_gen = inc_mm_tlb_gen(mm); 1458 1459 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 1460 new_tlb_gen); 1461 1462 /* 1463 * flush_tlb_multi() is not optimized for the common case in which only 1464 * a local TLB flush is needed. Optimize this use-case by calling 1465 * flush_tlb_func_local() directly in this case. 1466 */ 1467 if (mm_global_asid(mm)) { 1468 broadcast_tlb_flush(info); 1469 } else if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { 1470 info->trim_cpumask = should_trim_cpumask(mm); 1471 flush_tlb_multi(mm_cpumask(mm), info); 1472 consider_global_asid(mm); 1473 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 1474 lockdep_assert_irqs_enabled(); 1475 local_irq_disable(); 1476 flush_tlb_func(info); 1477 local_irq_enable(); 1478 } 1479 1480 put_flush_tlb_info(); 1481 put_cpu(); 1482 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end); 1483 } 1484 1485 static void do_flush_tlb_all(void *info) 1486 { 1487 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 1488 __flush_tlb_all(); 1489 } 1490 1491 void flush_tlb_all(void) 1492 { 1493 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 1494 1495 /* First try (faster) hardware-assisted TLB invalidation. */ 1496 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) 1497 invlpgb_flush_all(); 1498 else 1499 /* Fall back to the IPI-based invalidation. */ 1500 on_each_cpu(do_flush_tlb_all, NULL, 1); 1501 } 1502 1503 /* Flush an arbitrarily large range of memory with INVLPGB. */ 1504 static void invlpgb_kernel_range_flush(struct flush_tlb_info *info) 1505 { 1506 unsigned long addr, nr; 1507 1508 for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) { 1509 nr = (info->end - addr) >> PAGE_SHIFT; 1510 1511 /* 1512 * INVLPGB has a limit on the size of ranges it can 1513 * flush. Break up large flushes. 1514 */ 1515 nr = clamp_val(nr, 1, invlpgb_count_max); 1516 1517 invlpgb_flush_addr_nosync(addr, nr); 1518 } 1519 __tlbsync(); 1520 } 1521 1522 static void do_kernel_range_flush(void *info) 1523 { 1524 struct flush_tlb_info *f = info; 1525 unsigned long addr; 1526 1527 /* flush range by one by one 'invlpg' */ 1528 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 1529 flush_tlb_one_kernel(addr); 1530 } 1531 1532 static void kernel_tlb_flush_all(struct flush_tlb_info *info) 1533 { 1534 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) 1535 invlpgb_flush_all(); 1536 else 1537 on_each_cpu(do_flush_tlb_all, NULL, 1); 1538 } 1539 1540 static void kernel_tlb_flush_range(struct flush_tlb_info *info) 1541 { 1542 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) 1543 invlpgb_kernel_range_flush(info); 1544 else 1545 on_each_cpu(do_kernel_range_flush, info, 1); 1546 } 1547 1548 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 1549 { 1550 struct flush_tlb_info *info; 1551 1552 guard(preempt)(); 1553 1554 info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, false, 1555 TLB_GENERATION_INVALID); 1556 1557 if (info->end == TLB_FLUSH_ALL) 1558 kernel_tlb_flush_all(info); 1559 else 1560 kernel_tlb_flush_range(info); 1561 1562 put_flush_tlb_info(); 1563 } 1564 1565 /* 1566 * This can be used from process context to figure out what the value of 1567 * CR3 is without needing to do a (slow) __read_cr3(). 1568 * 1569 * It's intended to be used for code like KVM that sneakily changes CR3 1570 * and needs to restore it. It needs to be used very carefully. 1571 */ 1572 unsigned long __get_current_cr3_fast(void) 1573 { 1574 unsigned long cr3 = 1575 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 1576 this_cpu_read(cpu_tlbstate.loaded_mm_asid), 1577 tlbstate_lam_cr3_mask()); 1578 1579 /* For now, be very restrictive about when this can be called. */ 1580 VM_WARN_ON(in_nmi() || preemptible()); 1581 1582 VM_BUG_ON(cr3 != __read_cr3()); 1583 return cr3; 1584 } 1585 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1586 1587 /* 1588 * Flush one page in the kernel mapping 1589 */ 1590 void flush_tlb_one_kernel(unsigned long addr) 1591 { 1592 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1593 1594 /* 1595 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1596 * paravirt equivalent. Even with PCID, this is sufficient: we only 1597 * use PCID if we also use global PTEs for the kernel mapping, and 1598 * INVLPG flushes global translations across all address spaces. 1599 * 1600 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1601 * __flush_tlb_one_user() will flush the given address for the current 1602 * kernel address space and for its usermode counterpart, but it does 1603 * not flush it for other address spaces. 1604 */ 1605 flush_tlb_one_user(addr); 1606 1607 if (!static_cpu_has(X86_FEATURE_PTI)) 1608 return; 1609 1610 /* 1611 * See above. We need to propagate the flush to all other address 1612 * spaces. In principle, we only need to propagate it to kernelmode 1613 * address spaces, but the extra bookkeeping we would need is not 1614 * worth it. 1615 */ 1616 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1617 } 1618 1619 /* 1620 * Flush one page in the user mapping 1621 */ 1622 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1623 { 1624 u32 loaded_mm_asid; 1625 bool cpu_pcide; 1626 1627 /* Flush 'addr' from the kernel PCID: */ 1628 invlpg(addr); 1629 1630 /* If PTI is off there is no user PCID and nothing to flush. */ 1631 if (!static_cpu_has(X86_FEATURE_PTI)) 1632 return; 1633 1634 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1635 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE; 1636 1637 /* 1638 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check 1639 * 'cpu_pcide' to ensure that *this* CPU will not trigger those 1640 * #GP's even if called before CR4.PCIDE has been initialized. 1641 */ 1642 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide) 1643 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1644 else 1645 invalidate_user_asid(loaded_mm_asid); 1646 } 1647 1648 void flush_tlb_one_user(unsigned long addr) 1649 { 1650 __flush_tlb_one_user(addr); 1651 } 1652 1653 /* 1654 * Flush everything 1655 */ 1656 STATIC_NOPV void native_flush_tlb_global(void) 1657 { 1658 unsigned long flags; 1659 1660 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1661 /* 1662 * Using INVPCID is considerably faster than a pair of writes 1663 * to CR4 sandwiched inside an IRQ flag save/restore. 1664 * 1665 * Note, this works with CR4.PCIDE=0 or 1. 1666 */ 1667 invpcid_flush_all(); 1668 return; 1669 } 1670 1671 /* 1672 * Read-modify-write to CR4 - protect it from preemption and 1673 * from interrupts. (Use the raw variant because this code can 1674 * be called from deep inside debugging code.) 1675 */ 1676 raw_local_irq_save(flags); 1677 1678 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); 1679 1680 raw_local_irq_restore(flags); 1681 } 1682 1683 /* 1684 * Flush the entire current user mapping 1685 */ 1686 STATIC_NOPV void native_flush_tlb_local(void) 1687 { 1688 /* 1689 * Preemption or interrupts must be disabled to protect the access 1690 * to the per CPU variable and to prevent being preempted between 1691 * read_cr3() and write_cr3(). 1692 */ 1693 WARN_ON_ONCE(preemptible()); 1694 1695 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1696 1697 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1698 native_write_cr3(__native_read_cr3()); 1699 } 1700 1701 void flush_tlb_local(void) 1702 { 1703 __flush_tlb_local(); 1704 } 1705 1706 /* 1707 * Flush everything 1708 */ 1709 void __flush_tlb_all(void) 1710 { 1711 /* 1712 * This is to catch users with enabled preemption and the PGE feature 1713 * and don't trigger the warning in __native_flush_tlb(). 1714 */ 1715 VM_WARN_ON_ONCE(preemptible()); 1716 1717 if (cpu_feature_enabled(X86_FEATURE_PGE)) { 1718 __flush_tlb_global(); 1719 } else { 1720 /* 1721 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1722 */ 1723 flush_tlb_local(); 1724 } 1725 } 1726 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1727 1728 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1729 { 1730 struct flush_tlb_info *info; 1731 1732 int cpu = get_cpu(); 1733 1734 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 1735 TLB_GENERATION_INVALID); 1736 /* 1737 * flush_tlb_multi() is not optimized for the common case in which only 1738 * a local TLB flush is needed. Optimize this use-case by calling 1739 * flush_tlb_func_local() directly in this case. 1740 */ 1741 if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) { 1742 invlpgb_flush_all_nonglobals(); 1743 batch->unmapped_pages = false; 1744 } else if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { 1745 flush_tlb_multi(&batch->cpumask, info); 1746 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1747 lockdep_assert_irqs_enabled(); 1748 local_irq_disable(); 1749 flush_tlb_func(info); 1750 local_irq_enable(); 1751 } 1752 1753 cpumask_clear(&batch->cpumask); 1754 1755 put_flush_tlb_info(); 1756 put_cpu(); 1757 } 1758 1759 /* 1760 * Blindly accessing user memory from NMI context can be dangerous 1761 * if we're in the middle of switching the current user task or 1762 * switching the loaded mm. It can also be dangerous if we 1763 * interrupted some kernel code that was temporarily using a 1764 * different mm. 1765 */ 1766 bool nmi_uaccess_okay(void) 1767 { 1768 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1769 struct mm_struct *current_mm = current->mm; 1770 1771 VM_WARN_ON_ONCE(!loaded_mm); 1772 1773 /* 1774 * The condition we want to check is 1775 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1776 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1777 * is supposed to be reasonably fast. 1778 * 1779 * Instead, we check the almost equivalent but somewhat conservative 1780 * condition below, and we rely on the fact that switch_mm_irqs_off() 1781 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1782 */ 1783 if (loaded_mm != current_mm) 1784 return false; 1785 1786 VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa()); 1787 1788 return true; 1789 } 1790 1791 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1792 size_t count, loff_t *ppos) 1793 { 1794 char buf[32]; 1795 unsigned int len; 1796 1797 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1798 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1799 } 1800 1801 static ssize_t tlbflush_write_file(struct file *file, 1802 const char __user *user_buf, size_t count, loff_t *ppos) 1803 { 1804 char buf[32]; 1805 ssize_t len; 1806 int ceiling; 1807 1808 len = min(count, sizeof(buf) - 1); 1809 if (copy_from_user(buf, user_buf, len)) 1810 return -EFAULT; 1811 1812 buf[len] = '\0'; 1813 if (kstrtoint(buf, 0, &ceiling)) 1814 return -EINVAL; 1815 1816 if (ceiling < 0) 1817 return -EINVAL; 1818 1819 tlb_single_page_flush_ceiling = ceiling; 1820 return count; 1821 } 1822 1823 static const struct file_operations fops_tlbflush = { 1824 .read = tlbflush_read_file, 1825 .write = tlbflush_write_file, 1826 .llseek = default_llseek, 1827 }; 1828 1829 static int __init create_tlb_single_page_flush_ceiling(void) 1830 { 1831 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1832 arch_debugfs_dir, NULL, &fops_tlbflush); 1833 return 0; 1834 } 1835 late_initcall(create_tlb_single_page_flush_ceiling); 1836