xref: /linux/arch/x86/mm/tlb.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8 #include <linux/cpu.h>
9 
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16 
17 /*
18  *	Smarter SMP flushing macros.
19  *		c/o Linus Torvalds.
20  *
21  *	These mean you can really definitely utterly forget about
22  *	writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *	More scalable flush, from Andi Kleen
27  *
28  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30 
31 #ifdef CONFIG_SMP
32 
33 struct flush_tlb_info {
34 	struct mm_struct *flush_mm;
35 	unsigned long flush_start;
36 	unsigned long flush_end;
37 };
38 
39 /*
40  * We cannot call mmdrop() because we are in interrupt context,
41  * instead update mm->cpu_vm_mask.
42  */
43 void leave_mm(int cpu)
44 {
45 	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
46 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47 		BUG();
48 	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
49 		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
50 		load_cr3(swapper_pg_dir);
51 		/*
52 		 * This gets called in the idle path where RCU
53 		 * functions differently.  Tracing normally
54 		 * uses RCU, so we have to call the tracepoint
55 		 * specially here.
56 		 */
57 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
58 	}
59 }
60 EXPORT_SYMBOL_GPL(leave_mm);
61 
62 #endif /* CONFIG_SMP */
63 
64 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
65 	       struct task_struct *tsk)
66 {
67 	unsigned long flags;
68 
69 	local_irq_save(flags);
70 	switch_mm_irqs_off(prev, next, tsk);
71 	local_irq_restore(flags);
72 }
73 
74 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
75 			struct task_struct *tsk)
76 {
77 	unsigned cpu = smp_processor_id();
78 
79 	if (likely(prev != next)) {
80 #ifdef CONFIG_SMP
81 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
82 		this_cpu_write(cpu_tlbstate.active_mm, next);
83 #endif
84 		cpumask_set_cpu(cpu, mm_cpumask(next));
85 
86 		/*
87 		 * Re-load page tables.
88 		 *
89 		 * This logic has an ordering constraint:
90 		 *
91 		 *  CPU 0: Write to a PTE for 'next'
92 		 *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
93 		 *  CPU 1: set bit 1 in next's mm_cpumask
94 		 *  CPU 1: load from the PTE that CPU 0 writes (implicit)
95 		 *
96 		 * We need to prevent an outcome in which CPU 1 observes
97 		 * the new PTE value and CPU 0 observes bit 1 clear in
98 		 * mm_cpumask.  (If that occurs, then the IPI will never
99 		 * be sent, and CPU 0's TLB will contain a stale entry.)
100 		 *
101 		 * The bad outcome can occur if either CPU's load is
102 		 * reordered before that CPU's store, so both CPUs must
103 		 * execute full barriers to prevent this from happening.
104 		 *
105 		 * Thus, switch_mm needs a full barrier between the
106 		 * store to mm_cpumask and any operation that could load
107 		 * from next->pgd.  TLB fills are special and can happen
108 		 * due to instruction fetches or for no reason at all,
109 		 * and neither LOCK nor MFENCE orders them.
110 		 * Fortunately, load_cr3() is serializing and gives the
111 		 * ordering guarantee we need.
112 		 *
113 		 */
114 		load_cr3(next->pgd);
115 
116 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
117 
118 		/* Stop flush ipis for the previous mm */
119 		cpumask_clear_cpu(cpu, mm_cpumask(prev));
120 
121 		/* Load per-mm CR4 state */
122 		load_mm_cr4(next);
123 
124 #ifdef CONFIG_MODIFY_LDT_SYSCALL
125 		/*
126 		 * Load the LDT, if the LDT is different.
127 		 *
128 		 * It's possible that prev->context.ldt doesn't match
129 		 * the LDT register.  This can happen if leave_mm(prev)
130 		 * was called and then modify_ldt changed
131 		 * prev->context.ldt but suppressed an IPI to this CPU.
132 		 * In this case, prev->context.ldt != NULL, because we
133 		 * never set context.ldt to NULL while the mm still
134 		 * exists.  That means that next->context.ldt !=
135 		 * prev->context.ldt, because mms never share an LDT.
136 		 */
137 		if (unlikely(prev->context.ldt != next->context.ldt))
138 			load_mm_ldt(next);
139 #endif
140 	}
141 #ifdef CONFIG_SMP
142 	  else {
143 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
144 		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
145 
146 		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
147 			/*
148 			 * On established mms, the mm_cpumask is only changed
149 			 * from irq context, from ptep_clear_flush() while in
150 			 * lazy tlb mode, and here. Irqs are blocked during
151 			 * schedule, protecting us from simultaneous changes.
152 			 */
153 			cpumask_set_cpu(cpu, mm_cpumask(next));
154 
155 			/*
156 			 * We were in lazy tlb mode and leave_mm disabled
157 			 * tlb flush IPI delivery. We must reload CR3
158 			 * to make sure to use no freed page tables.
159 			 *
160 			 * As above, load_cr3() is serializing and orders TLB
161 			 * fills with respect to the mm_cpumask write.
162 			 */
163 			load_cr3(next->pgd);
164 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
165 			load_mm_cr4(next);
166 			load_mm_ldt(next);
167 		}
168 	}
169 #endif
170 }
171 
172 #ifdef CONFIG_SMP
173 
174 /*
175  * The flush IPI assumes that a thread switch happens in this order:
176  * [cpu0: the cpu that switches]
177  * 1) switch_mm() either 1a) or 1b)
178  * 1a) thread switch to a different mm
179  * 1a1) set cpu_tlbstate to TLBSTATE_OK
180  *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
181  *	if cpu0 was in lazy tlb mode.
182  * 1a2) update cpu active_mm
183  *	Now cpu0 accepts tlb flushes for the new mm.
184  * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
185  *	Now the other cpus will send tlb flush ipis.
186  * 1a4) change cr3.
187  * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
188  *	Stop ipi delivery for the old mm. This is not synchronized with
189  *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
190  *	mm, and in the worst case we perform a superfluous tlb flush.
191  * 1b) thread switch without mm change
192  *	cpu active_mm is correct, cpu0 already handles flush ipis.
193  * 1b1) set cpu_tlbstate to TLBSTATE_OK
194  * 1b2) test_and_set the cpu bit in cpu_vm_mask.
195  *	Atomically set the bit [other cpus will start sending flush ipis],
196  *	and test the bit.
197  * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
198  * 2) switch %%esp, ie current
199  *
200  * The interrupt must handle 2 special cases:
201  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
202  * - the cpu performs speculative tlb reads, i.e. even if the cpu only
203  *   runs in kernel space, the cpu could load tlb entries for user space
204  *   pages.
205  *
206  * The good news is that cpu_tlbstate is local to each cpu, no
207  * write/read ordering problems.
208  */
209 
210 /*
211  * TLB flush funcation:
212  * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
213  * 2) Leave the mm if we are in the lazy tlb mode.
214  */
215 static void flush_tlb_func(void *info)
216 {
217 	struct flush_tlb_info *f = info;
218 
219 	inc_irq_stat(irq_tlb_count);
220 
221 	if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
222 		return;
223 
224 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
225 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
226 		if (f->flush_end == TLB_FLUSH_ALL) {
227 			local_flush_tlb();
228 			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
229 		} else {
230 			unsigned long addr;
231 			unsigned long nr_pages =
232 				(f->flush_end - f->flush_start) / PAGE_SIZE;
233 			addr = f->flush_start;
234 			while (addr < f->flush_end) {
235 				__flush_tlb_single(addr);
236 				addr += PAGE_SIZE;
237 			}
238 			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
239 		}
240 	} else
241 		leave_mm(smp_processor_id());
242 
243 }
244 
245 void native_flush_tlb_others(const struct cpumask *cpumask,
246 				 struct mm_struct *mm, unsigned long start,
247 				 unsigned long end)
248 {
249 	struct flush_tlb_info info;
250 
251 	if (end == 0)
252 		end = start + PAGE_SIZE;
253 	info.flush_mm = mm;
254 	info.flush_start = start;
255 	info.flush_end = end;
256 
257 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
258 	if (end == TLB_FLUSH_ALL)
259 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
260 	else
261 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
262 				(end - start) >> PAGE_SHIFT);
263 
264 	if (is_uv_system()) {
265 		unsigned int cpu;
266 
267 		cpu = smp_processor_id();
268 		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
269 		if (cpumask)
270 			smp_call_function_many(cpumask, flush_tlb_func,
271 								&info, 1);
272 		return;
273 	}
274 	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
275 }
276 
277 void flush_tlb_current_task(void)
278 {
279 	struct mm_struct *mm = current->mm;
280 
281 	preempt_disable();
282 
283 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
284 
285 	/* This is an implicit full barrier that synchronizes with switch_mm. */
286 	local_flush_tlb();
287 
288 	trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
289 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
290 		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
291 	preempt_enable();
292 }
293 
294 /*
295  * See Documentation/x86/tlb.txt for details.  We choose 33
296  * because it is large enough to cover the vast majority (at
297  * least 95%) of allocations, and is small enough that we are
298  * confident it will not cause too much overhead.  Each single
299  * flush is about 100 ns, so this caps the maximum overhead at
300  * _about_ 3,000 ns.
301  *
302  * This is in units of pages.
303  */
304 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
305 
306 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
307 				unsigned long end, unsigned long vmflag)
308 {
309 	unsigned long addr;
310 	/* do a global flush by default */
311 	unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
312 
313 	preempt_disable();
314 	if (current->active_mm != mm) {
315 		/* Synchronize with switch_mm. */
316 		smp_mb();
317 
318 		goto out;
319 	}
320 
321 	if (!current->mm) {
322 		leave_mm(smp_processor_id());
323 
324 		/* Synchronize with switch_mm. */
325 		smp_mb();
326 
327 		goto out;
328 	}
329 
330 	if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
331 		base_pages_to_flush = (end - start) >> PAGE_SHIFT;
332 
333 	/*
334 	 * Both branches below are implicit full barriers (MOV to CR or
335 	 * INVLPG) that synchronize with switch_mm.
336 	 */
337 	if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
338 		base_pages_to_flush = TLB_FLUSH_ALL;
339 		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
340 		local_flush_tlb();
341 	} else {
342 		/* flush range by one by one 'invlpg' */
343 		for (addr = start; addr < end;	addr += PAGE_SIZE) {
344 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
345 			__flush_tlb_single(addr);
346 		}
347 	}
348 	trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
349 out:
350 	if (base_pages_to_flush == TLB_FLUSH_ALL) {
351 		start = 0UL;
352 		end = TLB_FLUSH_ALL;
353 	}
354 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
355 		flush_tlb_others(mm_cpumask(mm), mm, start, end);
356 	preempt_enable();
357 }
358 
359 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
360 {
361 	struct mm_struct *mm = vma->vm_mm;
362 
363 	preempt_disable();
364 
365 	if (current->active_mm == mm) {
366 		if (current->mm) {
367 			/*
368 			 * Implicit full barrier (INVLPG) that synchronizes
369 			 * with switch_mm.
370 			 */
371 			__flush_tlb_one(start);
372 		} else {
373 			leave_mm(smp_processor_id());
374 
375 			/* Synchronize with switch_mm. */
376 			smp_mb();
377 		}
378 	}
379 
380 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
381 		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
382 
383 	preempt_enable();
384 }
385 
386 static void do_flush_tlb_all(void *info)
387 {
388 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
389 	__flush_tlb_all();
390 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
391 		leave_mm(smp_processor_id());
392 }
393 
394 void flush_tlb_all(void)
395 {
396 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
397 	on_each_cpu(do_flush_tlb_all, NULL, 1);
398 }
399 
400 static void do_kernel_range_flush(void *info)
401 {
402 	struct flush_tlb_info *f = info;
403 	unsigned long addr;
404 
405 	/* flush range by one by one 'invlpg' */
406 	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
407 		__flush_tlb_single(addr);
408 }
409 
410 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
411 {
412 
413 	/* Balance as user space task's flush, a bit conservative */
414 	if (end == TLB_FLUSH_ALL ||
415 	    (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
416 		on_each_cpu(do_flush_tlb_all, NULL, 1);
417 	} else {
418 		struct flush_tlb_info info;
419 		info.flush_start = start;
420 		info.flush_end = end;
421 		on_each_cpu(do_kernel_range_flush, &info, 1);
422 	}
423 }
424 
425 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
426 			     size_t count, loff_t *ppos)
427 {
428 	char buf[32];
429 	unsigned int len;
430 
431 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
432 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
433 }
434 
435 static ssize_t tlbflush_write_file(struct file *file,
436 		 const char __user *user_buf, size_t count, loff_t *ppos)
437 {
438 	char buf[32];
439 	ssize_t len;
440 	int ceiling;
441 
442 	len = min(count, sizeof(buf) - 1);
443 	if (copy_from_user(buf, user_buf, len))
444 		return -EFAULT;
445 
446 	buf[len] = '\0';
447 	if (kstrtoint(buf, 0, &ceiling))
448 		return -EINVAL;
449 
450 	if (ceiling < 0)
451 		return -EINVAL;
452 
453 	tlb_single_page_flush_ceiling = ceiling;
454 	return count;
455 }
456 
457 static const struct file_operations fops_tlbflush = {
458 	.read = tlbflush_read_file,
459 	.write = tlbflush_write_file,
460 	.llseek = default_llseek,
461 };
462 
463 static int __init create_tlb_single_page_flush_ceiling(void)
464 {
465 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
466 			    arch_debugfs_dir, NULL, &fops_tlbflush);
467 	return 0;
468 }
469 late_initcall(create_tlb_single_page_flush_ceiling);
470 
471 #endif /* CONFIG_SMP */
472