1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/mmu_context.h>
15
16 #include <asm/tlbflush.h>
17 #include <asm/mmu_context.h>
18 #include <asm/nospec-branch.h>
19 #include <asm/cache.h>
20 #include <asm/cacheflush.h>
21 #include <asm/apic.h>
22 #include <asm/msr.h>
23 #include <asm/perf_event.h>
24 #include <asm/tlb.h>
25
26 #include "mm_internal.h"
27
28 #ifdef CONFIG_PARAVIRT
29 # define STATIC_NOPV
30 #else
31 # define STATIC_NOPV static
32 # define __flush_tlb_local native_flush_tlb_local
33 # define __flush_tlb_global native_flush_tlb_global
34 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
35 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
36 #endif
37
38 /*
39 * TLB flushing, formerly SMP-only
40 * c/o Linus Torvalds.
41 *
42 * These mean you can really definitely utterly forget about
43 * writing to user space from interrupts. (Its not allowed anyway).
44 *
45 * Optimizations Manfred Spraul <manfred@colorfullife.com>
46 *
47 * More scalable flush, from Andi Kleen
48 *
49 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
50 */
51
52 /*
53 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
54 * stored in cpu_tlb_state.last_user_mm_spec.
55 */
56 #define LAST_USER_MM_IBPB 0x1UL
57 #define LAST_USER_MM_L1D_FLUSH 0x2UL
58 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
59
60 /* Bits to set when tlbstate and flush is (re)initialized */
61 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB
62
63 /*
64 * The x86 feature is called PCID (Process Context IDentifier). It is similar
65 * to what is traditionally called ASID on the RISC processors.
66 *
67 * We don't use the traditional ASID implementation, where each process/mm gets
68 * its own ASID and flush/restart when we run out of ASID space.
69 *
70 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
71 * that came by on this CPU, allowing cheaper switch_mm between processes on
72 * this CPU.
73 *
74 * We end up with different spaces for different things. To avoid confusion we
75 * use different names for each of them:
76 *
77 * ASID - [0, TLB_NR_DYN_ASIDS-1]
78 * the canonical identifier for an mm, dynamically allocated on each CPU
79 * [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1]
80 * the canonical, global identifier for an mm, identical across all CPUs
81 *
82 * kPCID - [1, MAX_ASID_AVAILABLE]
83 * the value we write into the PCID part of CR3; corresponds to the
84 * ASID+1, because PCID 0 is special.
85 *
86 * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE]
87 * for KPTI each mm has two address spaces and thus needs two
88 * PCID values, but we can still do with a single ASID denomination
89 * for each mm. Corresponds to kPCID + 2048.
90 *
91 */
92
93 /*
94 * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
95 * user/kernel switches
96 */
97 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
98 # define PTI_CONSUMED_PCID_BITS 1
99 #else
100 # define PTI_CONSUMED_PCID_BITS 0
101 #endif
102
103 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
104
105 /*
106 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
107 * for them being zero-based. Another -1 is because PCID 0 is reserved for
108 * use by non-PCID-aware users.
109 */
110 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
111
112 /*
113 * Given @asid, compute kPCID
114 */
kern_pcid(u16 asid)115 static inline u16 kern_pcid(u16 asid)
116 {
117 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
118
119 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
120 /*
121 * Make sure that the dynamic ASID space does not conflict with the
122 * bit we are using to switch between user and kernel ASIDs.
123 */
124 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
125
126 /*
127 * The ASID being passed in here should have respected the
128 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
129 */
130 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
131 #endif
132 /*
133 * The dynamically-assigned ASIDs that get passed in are small
134 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
135 * so do not bother to clear it.
136 *
137 * If PCID is on, ASID-aware code paths put the ASID+1 into the
138 * PCID bits. This serves two purposes. It prevents a nasty
139 * situation in which PCID-unaware code saves CR3, loads some other
140 * value (with PCID == 0), and then restores CR3, thus corrupting
141 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
142 * that any bugs involving loading a PCID-enabled CR3 with
143 * CR4.PCIDE off will trigger deterministically.
144 */
145 return asid + 1;
146 }
147
148 /*
149 * Given @asid, compute uPCID
150 */
user_pcid(u16 asid)151 static inline u16 user_pcid(u16 asid)
152 {
153 u16 ret = kern_pcid(asid);
154 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
155 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
156 #endif
157 return ret;
158 }
159
build_cr3(pgd_t * pgd,u16 asid,unsigned long lam)160 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
161 {
162 unsigned long cr3 = __sme_pa(pgd) | lam;
163
164 if (static_cpu_has(X86_FEATURE_PCID)) {
165 cr3 |= kern_pcid(asid);
166 } else {
167 VM_WARN_ON_ONCE(asid != 0);
168 }
169
170 return cr3;
171 }
172
build_cr3_noflush(pgd_t * pgd,u16 asid,unsigned long lam)173 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
174 unsigned long lam)
175 {
176 /*
177 * Use boot_cpu_has() instead of this_cpu_has() as this function
178 * might be called during early boot. This should work even after
179 * boot because all CPU's the have same capabilities:
180 */
181 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
182 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
183 }
184
185 /*
186 * We get here when we do something requiring a TLB invalidation
187 * but could not go invalidate all of the contexts. We do the
188 * necessary invalidation by clearing out the 'ctx_id' which
189 * forces a TLB flush when the context is loaded.
190 */
clear_asid_other(void)191 static void clear_asid_other(void)
192 {
193 u16 asid;
194
195 /*
196 * This is only expected to be set if we have disabled
197 * kernel _PAGE_GLOBAL pages.
198 */
199 if (!static_cpu_has(X86_FEATURE_PTI)) {
200 WARN_ON_ONCE(1);
201 return;
202 }
203
204 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
205 /* Do not need to flush the current asid */
206 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
207 continue;
208 /*
209 * Make sure the next time we go to switch to
210 * this asid, we do a flush:
211 */
212 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
213 }
214 this_cpu_write(cpu_tlbstate.invalidate_other, false);
215 }
216
217 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
218
219 struct new_asid {
220 unsigned int asid : 16;
221 unsigned int need_flush : 1;
222 };
223
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen)224 static struct new_asid choose_new_asid(struct mm_struct *next, u64 next_tlb_gen)
225 {
226 struct new_asid ns;
227 u16 asid;
228
229 if (!static_cpu_has(X86_FEATURE_PCID)) {
230 ns.asid = 0;
231 ns.need_flush = 1;
232 return ns;
233 }
234
235 /*
236 * TLB consistency for global ASIDs is maintained with hardware assisted
237 * remote TLB flushing. Global ASIDs are always up to date.
238 */
239 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) {
240 u16 global_asid = mm_global_asid(next);
241
242 if (global_asid) {
243 ns.asid = global_asid;
244 ns.need_flush = 0;
245 return ns;
246 }
247 }
248
249 if (this_cpu_read(cpu_tlbstate.invalidate_other))
250 clear_asid_other();
251
252 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
253 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
254 next->context.ctx_id)
255 continue;
256
257 ns.asid = asid;
258 ns.need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < next_tlb_gen);
259 return ns;
260 }
261
262 /*
263 * We don't currently own an ASID slot on this CPU.
264 * Allocate a slot.
265 */
266 ns.asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
267 if (ns.asid >= TLB_NR_DYN_ASIDS) {
268 ns.asid = 0;
269 this_cpu_write(cpu_tlbstate.next_asid, 1);
270 }
271 ns.need_flush = true;
272
273 return ns;
274 }
275
276 /*
277 * Global ASIDs are allocated for multi-threaded processes that are
278 * active on multiple CPUs simultaneously, giving each of those
279 * processes the same PCID on every CPU, for use with hardware-assisted
280 * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR.
281 *
282 * These global ASIDs are held for the lifetime of the process.
283 */
284 static DEFINE_RAW_SPINLOCK(global_asid_lock);
285 static u16 last_global_asid = MAX_ASID_AVAILABLE;
286 static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE);
287 static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE);
288 static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1;
289
290 /*
291 * When the search for a free ASID in the global ASID space reaches
292 * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously
293 * freed global ASIDs are safe to re-use.
294 *
295 * This way the global flush only needs to happen at ASID rollover
296 * time, and not at ASID allocation time.
297 */
reset_global_asid_space(void)298 static void reset_global_asid_space(void)
299 {
300 lockdep_assert_held(&global_asid_lock);
301
302 invlpgb_flush_all_nonglobals();
303
304 /*
305 * The TLB flush above makes it safe to re-use the previously
306 * freed global ASIDs.
307 */
308 bitmap_andnot(global_asid_used, global_asid_used,
309 global_asid_freed, MAX_ASID_AVAILABLE);
310 bitmap_clear(global_asid_freed, 0, MAX_ASID_AVAILABLE);
311
312 /* Restart the search from the start of global ASID space. */
313 last_global_asid = TLB_NR_DYN_ASIDS;
314 }
315
allocate_global_asid(void)316 static u16 allocate_global_asid(void)
317 {
318 u16 asid;
319
320 lockdep_assert_held(&global_asid_lock);
321
322 /* The previous allocation hit the edge of available address space */
323 if (last_global_asid >= MAX_ASID_AVAILABLE - 1)
324 reset_global_asid_space();
325
326 asid = find_next_zero_bit(global_asid_used, MAX_ASID_AVAILABLE, last_global_asid);
327
328 if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) {
329 /* This should never happen. */
330 VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n",
331 global_asid_available);
332 return 0;
333 }
334
335 /* Claim this global ASID. */
336 __set_bit(asid, global_asid_used);
337 last_global_asid = asid;
338 global_asid_available--;
339 return asid;
340 }
341
342 /*
343 * Check whether a process is currently active on more than @threshold CPUs.
344 * This is a cheap estimation on whether or not it may make sense to assign
345 * a global ASID to this process, and use broadcast TLB invalidation.
346 */
mm_active_cpus_exceeds(struct mm_struct * mm,int threshold)347 static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold)
348 {
349 int count = 0;
350 int cpu;
351
352 /* This quick check should eliminate most single threaded programs. */
353 if (cpumask_weight(mm_cpumask(mm)) <= threshold)
354 return false;
355
356 /* Slower check to make sure. */
357 for_each_cpu(cpu, mm_cpumask(mm)) {
358 /* Skip the CPUs that aren't really running this process. */
359 if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm)
360 continue;
361
362 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
363 continue;
364
365 if (++count > threshold)
366 return true;
367 }
368 return false;
369 }
370
371 /*
372 * Assign a global ASID to the current process, protecting against
373 * races between multiple threads in the process.
374 */
use_global_asid(struct mm_struct * mm)375 static void use_global_asid(struct mm_struct *mm)
376 {
377 u16 asid;
378
379 guard(raw_spinlock_irqsave)(&global_asid_lock);
380
381 /* This process is already using broadcast TLB invalidation. */
382 if (mm_global_asid(mm))
383 return;
384
385 /*
386 * The last global ASID was consumed while waiting for the lock.
387 *
388 * If this fires, a more aggressive ASID reuse scheme might be
389 * needed.
390 */
391 if (!global_asid_available) {
392 VM_WARN_ONCE(1, "Ran out of global ASIDs\n");
393 return;
394 }
395
396 asid = allocate_global_asid();
397 if (!asid)
398 return;
399
400 mm_assign_global_asid(mm, asid);
401 }
402
mm_free_global_asid(struct mm_struct * mm)403 void mm_free_global_asid(struct mm_struct *mm)
404 {
405 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
406 return;
407
408 if (!mm_global_asid(mm))
409 return;
410
411 guard(raw_spinlock_irqsave)(&global_asid_lock);
412
413 /* The global ASID can be re-used only after flush at wrap-around. */
414 #ifdef CONFIG_BROADCAST_TLB_FLUSH
415 __set_bit(mm->context.global_asid, global_asid_freed);
416
417 mm->context.global_asid = 0;
418 global_asid_available++;
419 #endif
420 }
421
422 /*
423 * Is the mm transitioning from a CPU-local ASID to a global ASID?
424 */
mm_needs_global_asid(struct mm_struct * mm,u16 asid)425 static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid)
426 {
427 u16 global_asid = mm_global_asid(mm);
428
429 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
430 return false;
431
432 /* Process is transitioning to a global ASID */
433 if (global_asid && asid != global_asid)
434 return true;
435
436 return false;
437 }
438
439 /*
440 * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86
441 * systems have over 8k CPUs. Because of this potential ASID shortage,
442 * global ASIDs are handed out to processes that have frequent TLB
443 * flushes and are active on 4 or more CPUs simultaneously.
444 */
consider_global_asid(struct mm_struct * mm)445 static void consider_global_asid(struct mm_struct *mm)
446 {
447 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
448 return;
449
450 /* Check every once in a while. */
451 if ((current->pid & 0x1f) != (jiffies & 0x1f))
452 return;
453
454 /*
455 * Assign a global ASID if the process is active on
456 * 4 or more CPUs simultaneously.
457 */
458 if (mm_active_cpus_exceeds(mm, 3))
459 use_global_asid(mm);
460 }
461
finish_asid_transition(struct flush_tlb_info * info)462 static void finish_asid_transition(struct flush_tlb_info *info)
463 {
464 struct mm_struct *mm = info->mm;
465 int bc_asid = mm_global_asid(mm);
466 int cpu;
467
468 if (!mm_in_asid_transition(mm))
469 return;
470
471 for_each_cpu(cpu, mm_cpumask(mm)) {
472 /*
473 * The remote CPU is context switching. Wait for that to
474 * finish, to catch the unlikely case of it switching to
475 * the target mm with an out of date ASID.
476 */
477 while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING)
478 cpu_relax();
479
480 if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm)
481 continue;
482
483 /*
484 * If at least one CPU is not using the global ASID yet,
485 * send a TLB flush IPI. The IPI should cause stragglers
486 * to transition soon.
487 *
488 * This can race with the CPU switching to another task;
489 * that results in a (harmless) extra IPI.
490 */
491 if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) {
492 flush_tlb_multi(mm_cpumask(info->mm), info);
493 return;
494 }
495 }
496
497 /* All the CPUs running this process are using the global ASID. */
498 mm_clear_asid_transition(mm);
499 }
500
broadcast_tlb_flush(struct flush_tlb_info * info)501 static void broadcast_tlb_flush(struct flush_tlb_info *info)
502 {
503 bool pmd = info->stride_shift == PMD_SHIFT;
504 unsigned long asid = mm_global_asid(info->mm);
505 unsigned long addr = info->start;
506
507 /*
508 * TLB flushes with INVLPGB are kicked off asynchronously.
509 * The inc_mm_tlb_gen() guarantees page table updates are done
510 * before these TLB flushes happen.
511 */
512 if (info->end == TLB_FLUSH_ALL) {
513 invlpgb_flush_single_pcid_nosync(kern_pcid(asid));
514 /* Do any CPUs supporting INVLPGB need PTI? */
515 if (cpu_feature_enabled(X86_FEATURE_PTI))
516 invlpgb_flush_single_pcid_nosync(user_pcid(asid));
517 } else do {
518 unsigned long nr = 1;
519
520 if (info->stride_shift <= PMD_SHIFT) {
521 nr = (info->end - addr) >> info->stride_shift;
522 nr = clamp_val(nr, 1, invlpgb_count_max);
523 }
524
525 invlpgb_flush_user_nr_nosync(kern_pcid(asid), addr, nr, pmd);
526 if (cpu_feature_enabled(X86_FEATURE_PTI))
527 invlpgb_flush_user_nr_nosync(user_pcid(asid), addr, nr, pmd);
528
529 addr += nr << info->stride_shift;
530 } while (addr < info->end);
531
532 finish_asid_transition(info);
533
534 /* Wait for the INVLPGBs kicked off above to finish. */
535 __tlbsync();
536 }
537
538 /*
539 * Given an ASID, flush the corresponding user ASID. We can delay this
540 * until the next time we switch to it.
541 *
542 * See SWITCH_TO_USER_CR3.
543 */
invalidate_user_asid(u16 asid)544 static inline void invalidate_user_asid(u16 asid)
545 {
546 /* There is no user ASID if address space separation is off */
547 if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
548 return;
549
550 /*
551 * We only have a single ASID if PCID is off and the CR3
552 * write will have flushed it.
553 */
554 if (!cpu_feature_enabled(X86_FEATURE_PCID))
555 return;
556
557 if (!static_cpu_has(X86_FEATURE_PTI))
558 return;
559
560 __set_bit(kern_pcid(asid),
561 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
562 }
563
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,unsigned long lam,bool need_flush)564 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
565 bool need_flush)
566 {
567 unsigned long new_mm_cr3;
568
569 if (need_flush) {
570 invalidate_user_asid(new_asid);
571 new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
572 } else {
573 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
574 }
575
576 /*
577 * Caution: many callers of this function expect
578 * that load_cr3() is serializing and orders TLB
579 * fills with respect to the mm_cpumask writes.
580 */
581 write_cr3(new_mm_cr3);
582 }
583
leave_mm(void)584 void leave_mm(void)
585 {
586 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
587
588 /*
589 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
590 * If so, our callers still expect us to flush the TLB, but there
591 * aren't any user TLB entries in init_mm to worry about.
592 *
593 * This needs to happen before any other sanity checks due to
594 * intel_idle's shenanigans.
595 */
596 if (loaded_mm == &init_mm)
597 return;
598
599 /* Warn if we're not lazy. */
600 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
601
602 switch_mm(NULL, &init_mm, NULL);
603 }
604 EXPORT_SYMBOL_GPL(leave_mm);
605
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)606 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
607 struct task_struct *tsk)
608 {
609 unsigned long flags;
610
611 local_irq_save(flags);
612 switch_mm_irqs_off(NULL, next, tsk);
613 local_irq_restore(flags);
614 }
615
616 /*
617 * Invoked from return to user/guest by a task that opted-in to L1D
618 * flushing but ended up running on an SMT enabled core due to wrong
619 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
620 * contract which this task requested.
621 */
l1d_flush_force_sigbus(struct callback_head * ch)622 static void l1d_flush_force_sigbus(struct callback_head *ch)
623 {
624 force_sig(SIGBUS);
625 }
626
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)627 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
628 struct task_struct *next)
629 {
630 /* Flush L1D if the outgoing task requests it */
631 if (prev_mm & LAST_USER_MM_L1D_FLUSH)
632 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
633
634 /* Check whether the incoming task opted in for L1D flush */
635 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
636 return;
637
638 /*
639 * Validate that it is not running on an SMT sibling as this would
640 * make the exercise pointless because the siblings share L1D. If
641 * it runs on a SMT sibling, notify it with SIGBUS on return to
642 * user/guest
643 */
644 if (this_cpu_read(cpu_info.smt_active)) {
645 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
646 next->l1d_flush_kill.func = l1d_flush_force_sigbus;
647 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
648 }
649 }
650
mm_mangle_tif_spec_bits(struct task_struct * next)651 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
652 {
653 unsigned long next_tif = read_task_thread_flags(next);
654 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
655
656 /*
657 * Ensure that the bit shift above works as expected and the two flags
658 * end up in bit 0 and 1.
659 */
660 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
661
662 return (unsigned long)next->mm | spec_bits;
663 }
664
cond_mitigation(struct task_struct * next)665 static void cond_mitigation(struct task_struct *next)
666 {
667 unsigned long prev_mm, next_mm;
668
669 if (!next || !next->mm)
670 return;
671
672 next_mm = mm_mangle_tif_spec_bits(next);
673 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
674
675 /*
676 * Avoid user->user BTB/RSB poisoning by flushing them when switching
677 * between processes. This stops one process from doing Spectre-v2
678 * attacks on another.
679 *
680 * Both, the conditional and the always IBPB mode use the mm
681 * pointer to avoid the IBPB when switching between tasks of the
682 * same process. Using the mm pointer instead of mm->context.ctx_id
683 * opens a hypothetical hole vs. mm_struct reuse, which is more or
684 * less impossible to control by an attacker. Aside of that it
685 * would only affect the first schedule so the theoretically
686 * exposed data is not really interesting.
687 */
688 if (static_branch_likely(&switch_mm_cond_ibpb)) {
689 /*
690 * This is a bit more complex than the always mode because
691 * it has to handle two cases:
692 *
693 * 1) Switch from a user space task (potential attacker)
694 * which has TIF_SPEC_IB set to a user space task
695 * (potential victim) which has TIF_SPEC_IB not set.
696 *
697 * 2) Switch from a user space task (potential attacker)
698 * which has TIF_SPEC_IB not set to a user space task
699 * (potential victim) which has TIF_SPEC_IB set.
700 *
701 * This could be done by unconditionally issuing IBPB when
702 * a task which has TIF_SPEC_IB set is either scheduled in
703 * or out. Though that results in two flushes when:
704 *
705 * - the same user space task is scheduled out and later
706 * scheduled in again and only a kernel thread ran in
707 * between.
708 *
709 * - a user space task belonging to the same process is
710 * scheduled in after a kernel thread ran in between
711 *
712 * - a user space task belonging to the same process is
713 * scheduled in immediately.
714 *
715 * Optimize this with reasonably small overhead for the
716 * above cases. Mangle the TIF_SPEC_IB bit into the mm
717 * pointer of the incoming task which is stored in
718 * cpu_tlbstate.last_user_mm_spec for comparison.
719 *
720 * Issue IBPB only if the mm's are different and one or
721 * both have the IBPB bit set.
722 */
723 if (next_mm != prev_mm &&
724 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
725 indirect_branch_prediction_barrier();
726 }
727
728 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
729 /*
730 * Only flush when switching to a user space task with a
731 * different context than the user space task which ran
732 * last on this CPU.
733 */
734 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm)
735 indirect_branch_prediction_barrier();
736 }
737
738 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
739 /*
740 * Flush L1D when the outgoing task requested it and/or
741 * check whether the incoming task requested L1D flushing
742 * and ended up on an SMT sibling.
743 */
744 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
745 l1d_flush_evaluate(prev_mm, next_mm, next);
746 }
747
748 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
749 }
750
751 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)752 static inline void cr4_update_pce_mm(struct mm_struct *mm)
753 {
754 if (static_branch_unlikely(&rdpmc_always_available_key) ||
755 (!static_branch_unlikely(&rdpmc_never_available_key) &&
756 atomic_read(&mm->context.perf_rdpmc_allowed))) {
757 /*
758 * Clear the existing dirty counters to
759 * prevent the leak for an RDPMC task.
760 */
761 perf_clear_dirty_counters();
762 cr4_set_bits_irqsoff(X86_CR4_PCE);
763 } else
764 cr4_clear_bits_irqsoff(X86_CR4_PCE);
765 }
766
cr4_update_pce(void * ignored)767 void cr4_update_pce(void *ignored)
768 {
769 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
770 }
771
772 #else
cr4_update_pce_mm(struct mm_struct * mm)773 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
774 #endif
775
776 /*
777 * This optimizes when not actually switching mm's. Some architectures use the
778 * 'unused' argument for this optimization, but x86 must use
779 * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
780 * 'current->active_mm' up to date.
781 */
switch_mm_irqs_off(struct mm_struct * unused,struct mm_struct * next,struct task_struct * tsk)782 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
783 struct task_struct *tsk)
784 {
785 struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
786 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
787 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
788 unsigned cpu = smp_processor_id();
789 unsigned long new_lam;
790 struct new_asid ns;
791 u64 next_tlb_gen;
792
793
794 /* We don't want flush_tlb_func() to run concurrently with us. */
795 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
796 WARN_ON_ONCE(!irqs_disabled());
797
798 /*
799 * Verify that CR3 is what we think it is. This will catch
800 * hypothetical buggy code that directly switches to swapper_pg_dir
801 * without going through leave_mm() / switch_mm_irqs_off() or that
802 * does something like write_cr3(read_cr3_pa()).
803 *
804 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
805 * isn't free.
806 */
807 #ifdef CONFIG_DEBUG_VM
808 if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
809 tlbstate_lam_cr3_mask()))) {
810 /*
811 * If we were to BUG here, we'd be very likely to kill
812 * the system so hard that we don't see the call trace.
813 * Try to recover instead by ignoring the error and doing
814 * a global flush to minimize the chance of corruption.
815 *
816 * (This is far from being a fully correct recovery.
817 * Architecturally, the CPU could prefetch something
818 * back into an incorrect ASID slot and leave it there
819 * to cause trouble down the road. It's better than
820 * nothing, though.)
821 */
822 __flush_tlb_all();
823 }
824 #endif
825 if (was_lazy)
826 this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
827
828 /*
829 * The membarrier system call requires a full memory barrier and
830 * core serialization before returning to user-space, after
831 * storing to rq->curr, when changing mm. This is because
832 * membarrier() sends IPIs to all CPUs that are in the target mm
833 * to make them issue memory barriers. However, if another CPU
834 * switches to/from the target mm concurrently with
835 * membarrier(), it can cause that CPU not to receive an IPI
836 * when it really should issue a memory barrier. Writing to CR3
837 * provides that full memory barrier and core serializing
838 * instruction.
839 */
840 if (prev == next) {
841 /* Not actually switching mm's */
842 VM_WARN_ON(is_dyn_asid(prev_asid) &&
843 this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
844 next->context.ctx_id);
845
846 /*
847 * If this races with another thread that enables lam, 'new_lam'
848 * might not match tlbstate_lam_cr3_mask().
849 */
850
851 /*
852 * Even in lazy TLB mode, the CPU should stay set in the
853 * mm_cpumask. The TLB shootdown code can figure out from
854 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
855 */
856 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
857 WARN_ON_ONCE(prev != &init_mm && !is_notrack_mm(prev) &&
858 !cpumask_test_cpu(cpu, mm_cpumask(next))))
859 cpumask_set_cpu(cpu, mm_cpumask(next));
860
861 /* Check if the current mm is transitioning to a global ASID */
862 if (mm_needs_global_asid(next, prev_asid)) {
863 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
864 ns = choose_new_asid(next, next_tlb_gen);
865 goto reload_tlb;
866 }
867
868 /*
869 * Broadcast TLB invalidation keeps this ASID up to date
870 * all the time.
871 */
872 if (is_global_asid(prev_asid))
873 return;
874
875 /*
876 * If the CPU is not in lazy TLB mode, we are just switching
877 * from one thread in a process to another thread in the same
878 * process. No TLB flush required.
879 */
880 if (!was_lazy)
881 return;
882
883 /*
884 * Read the tlb_gen to check whether a flush is needed.
885 * If the TLB is up to date, just use it.
886 * The barrier synchronizes with the tlb_gen increment in
887 * the TLB shootdown code.
888 */
889 smp_mb();
890 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
891 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
892 next_tlb_gen)
893 return;
894
895 /*
896 * TLB contents went out of date while we were in lazy
897 * mode. Fall through to the TLB switching code below.
898 */
899 ns.asid = prev_asid;
900 ns.need_flush = true;
901 } else {
902 /*
903 * Apply process to process speculation vulnerability
904 * mitigations if applicable.
905 */
906 cond_mitigation(tsk);
907
908 /*
909 * Indicate that CR3 is about to change. nmi_uaccess_okay()
910 * and others are sensitive to the window where mm_cpumask(),
911 * CR3 and cpu_tlbstate.loaded_mm are not all in sync.
912 */
913 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
914
915 /*
916 * Make sure this CPU is set in mm_cpumask() such that we'll
917 * receive invalidation IPIs.
918 *
919 * Rely on the smp_mb() implied by cpumask_set_cpu()'s atomic
920 * operation, or explicitly provide one. Such that:
921 *
922 * switch_mm_irqs_off() flush_tlb_mm_range()
923 * smp_store_release(loaded_mm, SWITCHING); atomic64_inc_return(tlb_gen)
924 * smp_mb(); // here // smp_mb() implied
925 * atomic64_read(tlb_gen); this_cpu_read(loaded_mm);
926 *
927 * we properly order against flush_tlb_mm_range(), where the
928 * loaded_mm load can happen in mative_flush_tlb_multi() ->
929 * should_flush_tlb().
930 *
931 * This way switch_mm() must see the new tlb_gen or
932 * flush_tlb_mm_range() must see the new loaded_mm, or both.
933 */
934 if (next != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next)))
935 cpumask_set_cpu(cpu, mm_cpumask(next));
936 else
937 smp_mb();
938
939 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
940
941 ns = choose_new_asid(next, next_tlb_gen);
942 }
943
944 reload_tlb:
945 new_lam = mm_lam_cr3_mask(next);
946 if (ns.need_flush) {
947 VM_WARN_ON_ONCE(is_global_asid(ns.asid));
948 this_cpu_write(cpu_tlbstate.ctxs[ns.asid].ctx_id, next->context.ctx_id);
949 this_cpu_write(cpu_tlbstate.ctxs[ns.asid].tlb_gen, next_tlb_gen);
950 load_new_mm_cr3(next->pgd, ns.asid, new_lam, true);
951
952 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
953 } else {
954 /* The new ASID is already up to date. */
955 load_new_mm_cr3(next->pgd, ns.asid, new_lam, false);
956
957 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
958 }
959
960 /* Make sure we write CR3 before loaded_mm. */
961 barrier();
962
963 this_cpu_write(cpu_tlbstate.loaded_mm, next);
964 this_cpu_write(cpu_tlbstate.loaded_mm_asid, ns.asid);
965 cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
966
967 if (next != prev) {
968 cr4_update_pce_mm(next);
969 switch_ldt(prev, next);
970 }
971 }
972
973 /*
974 * Please ignore the name of this function. It should be called
975 * switch_to_kernel_thread().
976 *
977 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
978 * kernel thread or other context without an mm. Acceptable implementations
979 * include doing nothing whatsoever, switching to init_mm, or various clever
980 * lazy tricks to try to minimize TLB flushes.
981 *
982 * The scheduler reserves the right to call enter_lazy_tlb() several times
983 * in a row. It will notify us that we're going back to a real mm by
984 * calling switch_mm_irqs_off().
985 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)986 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
987 {
988 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
989 return;
990
991 this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
992 }
993
994 /*
995 * Using a temporary mm allows to set temporary mappings that are not accessible
996 * by other CPUs. Such mappings are needed to perform sensitive memory writes
997 * that override the kernel memory protections (e.g., W^X), without exposing the
998 * temporary page-table mappings that are required for these write operations to
999 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1000 * mapping is torn down. Temporary mms can also be used for EFI runtime service
1001 * calls or similar functionality.
1002 *
1003 * It is illegal to schedule while using a temporary mm -- the context switch
1004 * code is unaware of the temporary mm and does not know how to context switch.
1005 * Use a real (non-temporary) mm in a kernel thread if you need to sleep.
1006 *
1007 * Note: For sensitive memory writes, the temporary mm needs to be used
1008 * exclusively by a single core, and IRQs should be disabled while the
1009 * temporary mm is loaded, thereby preventing interrupt handler bugs from
1010 * overriding the kernel memory protection.
1011 */
use_temporary_mm(struct mm_struct * temp_mm)1012 struct mm_struct *use_temporary_mm(struct mm_struct *temp_mm)
1013 {
1014 struct mm_struct *prev_mm;
1015
1016 lockdep_assert_preemption_disabled();
1017 guard(irqsave)();
1018
1019 /*
1020 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1021 * with a stale address space WITHOUT being in lazy mode after
1022 * restoring the previous mm.
1023 */
1024 if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1025 leave_mm();
1026
1027 prev_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1028 switch_mm_irqs_off(NULL, temp_mm, current);
1029
1030 /*
1031 * If breakpoints are enabled, disable them while the temporary mm is
1032 * used. Userspace might set up watchpoints on addresses that are used
1033 * in the temporary mm, which would lead to wrong signals being sent or
1034 * crashes.
1035 *
1036 * Note that breakpoints are not disabled selectively, which also causes
1037 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1038 * undesirable, but still seems reasonable as the code that runs in the
1039 * temporary mm should be short.
1040 */
1041 if (hw_breakpoint_active())
1042 hw_breakpoint_disable();
1043
1044 return prev_mm;
1045 }
1046
unuse_temporary_mm(struct mm_struct * prev_mm)1047 void unuse_temporary_mm(struct mm_struct *prev_mm)
1048 {
1049 lockdep_assert_preemption_disabled();
1050 guard(irqsave)();
1051
1052 /* Clear the cpumask, to indicate no TLB flushing is needed anywhere */
1053 cpumask_clear_cpu(smp_processor_id(), mm_cpumask(this_cpu_read(cpu_tlbstate.loaded_mm)));
1054
1055 switch_mm_irqs_off(NULL, prev_mm, current);
1056
1057 /*
1058 * Restore the breakpoints if they were disabled before the temporary mm
1059 * was loaded.
1060 */
1061 if (hw_breakpoint_active())
1062 hw_breakpoint_restore();
1063 }
1064
1065 /*
1066 * Call this when reinitializing a CPU. It fixes the following potential
1067 * problems:
1068 *
1069 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
1070 * because the CPU was taken down and came back up with CR3's PCID
1071 * bits clear. CPU hotplug can do this.
1072 *
1073 * - The TLB contains junk in slots corresponding to inactive ASIDs.
1074 *
1075 * - The CPU went so far out to lunch that it may have missed a TLB
1076 * flush.
1077 */
initialize_tlbstate_and_flush(void)1078 void initialize_tlbstate_and_flush(void)
1079 {
1080 int i;
1081 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1082 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
1083 unsigned long lam = mm_lam_cr3_mask(mm);
1084 unsigned long cr3 = __read_cr3();
1085
1086 /* Assert that CR3 already references the right mm. */
1087 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
1088
1089 /* LAM expected to be disabled */
1090 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
1091 WARN_ON(lam);
1092
1093 /*
1094 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
1095 * doesn't work like other CR4 bits because it can only be set from
1096 * long mode.)
1097 */
1098 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
1099 !(cr4_read_shadow() & X86_CR4_PCIDE));
1100
1101 /* Disable LAM, force ASID 0 and force a TLB flush. */
1102 write_cr3(build_cr3(mm->pgd, 0, 0));
1103
1104 /* Reinitialize tlbstate. */
1105 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
1106 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
1107 this_cpu_write(cpu_tlbstate.next_asid, 1);
1108 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
1109 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
1110 cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
1111
1112 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
1113 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
1114 }
1115
1116 /*
1117 * flush_tlb_func()'s memory ordering requirement is that any
1118 * TLB fills that happen after we flush the TLB are ordered after we
1119 * read active_mm's tlb_gen. We don't need any explicit barriers
1120 * because all x86 flush operations are serializing and the
1121 * atomic64_read operation won't be reordered by the compiler.
1122 */
flush_tlb_func(void * info)1123 static void flush_tlb_func(void *info)
1124 {
1125 /*
1126 * We have three different tlb_gen values in here. They are:
1127 *
1128 * - mm_tlb_gen: the latest generation.
1129 * - local_tlb_gen: the generation that this CPU has already caught
1130 * up to.
1131 * - f->new_tlb_gen: the generation that the requester of the flush
1132 * wants us to catch up to.
1133 */
1134 const struct flush_tlb_info *f = info;
1135 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1136 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1137 u64 local_tlb_gen;
1138 bool local = smp_processor_id() == f->initiating_cpu;
1139 unsigned long nr_invalidate = 0;
1140 u64 mm_tlb_gen;
1141
1142 /* This code cannot presently handle being reentered. */
1143 VM_WARN_ON(!irqs_disabled());
1144
1145 if (!local) {
1146 inc_irq_stat(irq_tlb_count);
1147 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1148 }
1149
1150 /* The CPU was left in the mm_cpumask of the target mm. Clear it. */
1151 if (f->mm && f->mm != loaded_mm) {
1152 cpumask_clear_cpu(raw_smp_processor_id(), mm_cpumask(f->mm));
1153 trace_tlb_flush(TLB_REMOTE_WRONG_CPU, 0);
1154 return;
1155 }
1156
1157 if (unlikely(loaded_mm == &init_mm))
1158 return;
1159
1160 /* Reload the ASID if transitioning into or out of a global ASID */
1161 if (mm_needs_global_asid(loaded_mm, loaded_mm_asid)) {
1162 switch_mm_irqs_off(NULL, loaded_mm, NULL);
1163 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1164 }
1165
1166 /* Broadcast ASIDs are always kept up to date with INVLPGB. */
1167 if (is_global_asid(loaded_mm_asid))
1168 return;
1169
1170 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
1171 loaded_mm->context.ctx_id);
1172
1173 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
1174 /*
1175 * We're in lazy mode. We need to at least flush our
1176 * paging-structure cache to avoid speculatively reading
1177 * garbage into our TLB. Since switching to init_mm is barely
1178 * slower than a minimal flush, just switch to init_mm.
1179 *
1180 * This should be rare, with native_flush_tlb_multi() skipping
1181 * IPIs to lazy TLB mode CPUs.
1182 */
1183 switch_mm_irqs_off(NULL, &init_mm, NULL);
1184 return;
1185 }
1186
1187 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
1188
1189 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
1190 f->new_tlb_gen <= local_tlb_gen)) {
1191 /*
1192 * The TLB is already up to date in respect to f->new_tlb_gen.
1193 * While the core might be still behind mm_tlb_gen, checking
1194 * mm_tlb_gen unnecessarily would have negative caching effects
1195 * so avoid it.
1196 */
1197 return;
1198 }
1199
1200 /*
1201 * Defer mm_tlb_gen reading as long as possible to avoid cache
1202 * contention.
1203 */
1204 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
1205
1206 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
1207 /*
1208 * There's nothing to do: we're already up to date. This can
1209 * happen if two concurrent flushes happen -- the first flush to
1210 * be handled can catch us all the way up, leaving no work for
1211 * the second flush.
1212 */
1213 goto done;
1214 }
1215
1216 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
1217 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
1218
1219 /*
1220 * If we get to this point, we know that our TLB is out of date.
1221 * This does not strictly imply that we need to flush (it's
1222 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
1223 * going to need to flush in the very near future, so we might
1224 * as well get it over with.
1225 *
1226 * The only question is whether to do a full or partial flush.
1227 *
1228 * We do a partial flush if requested and two extra conditions
1229 * are met:
1230 *
1231 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
1232 * we've always done all needed flushes to catch up to
1233 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
1234 * f->new_tlb_gen == 3, then we know that the flush needed to bring
1235 * us up to date for tlb_gen 3 is the partial flush we're
1236 * processing.
1237 *
1238 * As an example of why this check is needed, suppose that there
1239 * are two concurrent flushes. The first is a full flush that
1240 * changes context.tlb_gen from 1 to 2. The second is a partial
1241 * flush that changes context.tlb_gen from 2 to 3. If they get
1242 * processed on this CPU in reverse order, we'll see
1243 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
1244 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
1245 * 3, we'd be break the invariant: we'd update local_tlb_gen above
1246 * 1 without the full flush that's needed for tlb_gen 2.
1247 *
1248 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
1249 * Partial TLB flushes are not all that much cheaper than full TLB
1250 * flushes, so it seems unlikely that it would be a performance win
1251 * to do a partial flush if that won't bring our TLB fully up to
1252 * date. By doing a full flush instead, we can increase
1253 * local_tlb_gen all the way to mm_tlb_gen and we can probably
1254 * avoid another flush in the very near future.
1255 */
1256 if (f->end != TLB_FLUSH_ALL &&
1257 f->new_tlb_gen == local_tlb_gen + 1 &&
1258 f->new_tlb_gen == mm_tlb_gen) {
1259 /* Partial flush */
1260 unsigned long addr = f->start;
1261
1262 /* Partial flush cannot have invalid generations */
1263 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
1264
1265 /* Partial flush must have valid mm */
1266 VM_WARN_ON(f->mm == NULL);
1267
1268 nr_invalidate = (f->end - f->start) >> f->stride_shift;
1269
1270 while (addr < f->end) {
1271 flush_tlb_one_user(addr);
1272 addr += 1UL << f->stride_shift;
1273 }
1274 if (local)
1275 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
1276 } else {
1277 /* Full flush. */
1278 nr_invalidate = TLB_FLUSH_ALL;
1279
1280 flush_tlb_local();
1281 if (local)
1282 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1283 }
1284
1285 /* Both paths above update our state to mm_tlb_gen. */
1286 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
1287
1288 /* Tracing is done in a unified manner to reduce the code size */
1289 done:
1290 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
1291 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
1292 TLB_LOCAL_MM_SHOOTDOWN,
1293 nr_invalidate);
1294 }
1295
should_flush_tlb(int cpu,void * data)1296 static bool should_flush_tlb(int cpu, void *data)
1297 {
1298 struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu);
1299 struct flush_tlb_info *info = data;
1300
1301 /*
1302 * Order the 'loaded_mm' and 'is_lazy' against their
1303 * write ordering in switch_mm_irqs_off(). Ensure
1304 * 'is_lazy' is at least as new as 'loaded_mm'.
1305 */
1306 smp_rmb();
1307
1308 /* Lazy TLB will get flushed at the next context switch. */
1309 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
1310 return false;
1311
1312 /* No mm means kernel memory flush. */
1313 if (!info->mm)
1314 return true;
1315
1316 /*
1317 * While switching, the remote CPU could have state from
1318 * either the prev or next mm. Assume the worst and flush.
1319 */
1320 if (loaded_mm == LOADED_MM_SWITCHING)
1321 return true;
1322
1323 /* The target mm is loaded, and the CPU is not lazy. */
1324 if (loaded_mm == info->mm)
1325 return true;
1326
1327 /* In cpumask, but not the loaded mm? Periodically remove by flushing. */
1328 if (info->trim_cpumask)
1329 return true;
1330
1331 return false;
1332 }
1333
should_trim_cpumask(struct mm_struct * mm)1334 static bool should_trim_cpumask(struct mm_struct *mm)
1335 {
1336 if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) {
1337 WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ);
1338 return true;
1339 }
1340 return false;
1341 }
1342
1343 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
1344 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
1345
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)1346 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
1347 const struct flush_tlb_info *info)
1348 {
1349 /*
1350 * Do accounting and tracing. Note that there are (and have always been)
1351 * cases in which a remote TLB flush will be traced, but eventually
1352 * would not happen.
1353 */
1354 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1355 if (info->end == TLB_FLUSH_ALL)
1356 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
1357 else
1358 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
1359 (info->end - info->start) >> PAGE_SHIFT);
1360
1361 /*
1362 * If no page tables were freed, we can skip sending IPIs to
1363 * CPUs in lazy TLB mode. They will flush the CPU themselves
1364 * at the next context switch.
1365 *
1366 * However, if page tables are getting freed, we need to send the
1367 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
1368 * up on the new contents of what used to be page tables, while
1369 * doing a speculative memory access.
1370 */
1371 if (info->freed_tables || mm_in_asid_transition(info->mm))
1372 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
1373 else
1374 on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
1375 (void *)info, 1, cpumask);
1376 }
1377
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)1378 void flush_tlb_multi(const struct cpumask *cpumask,
1379 const struct flush_tlb_info *info)
1380 {
1381 __flush_tlb_multi(cpumask, info);
1382 }
1383
1384 /*
1385 * See Documentation/arch/x86/tlb.rst for details. We choose 33
1386 * because it is large enough to cover the vast majority (at
1387 * least 95%) of allocations, and is small enough that we are
1388 * confident it will not cause too much overhead. Each single
1389 * flush is about 100 ns, so this caps the maximum overhead at
1390 * _about_ 3,000 ns.
1391 *
1392 * This is in units of pages.
1393 */
1394 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
1395
1396 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
1397
1398 #ifdef CONFIG_DEBUG_VM
1399 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
1400 #endif
1401
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)1402 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
1403 unsigned long start, unsigned long end,
1404 unsigned int stride_shift, bool freed_tables,
1405 u64 new_tlb_gen)
1406 {
1407 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
1408
1409 #ifdef CONFIG_DEBUG_VM
1410 /*
1411 * Ensure that the following code is non-reentrant and flush_tlb_info
1412 * is not overwritten. This means no TLB flushing is initiated by
1413 * interrupt handlers and machine-check exception handlers.
1414 */
1415 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
1416 #endif
1417
1418 /*
1419 * If the number of flushes is so large that a full flush
1420 * would be faster, do a full flush.
1421 */
1422 if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) {
1423 start = 0;
1424 end = TLB_FLUSH_ALL;
1425 }
1426
1427 info->start = start;
1428 info->end = end;
1429 info->mm = mm;
1430 info->stride_shift = stride_shift;
1431 info->freed_tables = freed_tables;
1432 info->new_tlb_gen = new_tlb_gen;
1433 info->initiating_cpu = smp_processor_id();
1434 info->trim_cpumask = 0;
1435
1436 return info;
1437 }
1438
put_flush_tlb_info(void)1439 static void put_flush_tlb_info(void)
1440 {
1441 #ifdef CONFIG_DEBUG_VM
1442 /* Complete reentrancy prevention checks */
1443 barrier();
1444 this_cpu_dec(flush_tlb_info_idx);
1445 #endif
1446 }
1447
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)1448 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
1449 unsigned long end, unsigned int stride_shift,
1450 bool freed_tables)
1451 {
1452 struct flush_tlb_info *info;
1453 int cpu = get_cpu();
1454 u64 new_tlb_gen;
1455
1456 /* This is also a barrier that synchronizes with switch_mm(). */
1457 new_tlb_gen = inc_mm_tlb_gen(mm);
1458
1459 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1460 new_tlb_gen);
1461
1462 /*
1463 * flush_tlb_multi() is not optimized for the common case in which only
1464 * a local TLB flush is needed. Optimize this use-case by calling
1465 * flush_tlb_func_local() directly in this case.
1466 */
1467 if (mm_global_asid(mm)) {
1468 broadcast_tlb_flush(info);
1469 } else if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1470 info->trim_cpumask = should_trim_cpumask(mm);
1471 flush_tlb_multi(mm_cpumask(mm), info);
1472 consider_global_asid(mm);
1473 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1474 lockdep_assert_irqs_enabled();
1475 local_irq_disable();
1476 flush_tlb_func(info);
1477 local_irq_enable();
1478 }
1479
1480 put_flush_tlb_info();
1481 put_cpu();
1482 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1483 }
1484
do_flush_tlb_all(void * info)1485 static void do_flush_tlb_all(void *info)
1486 {
1487 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1488 __flush_tlb_all();
1489 }
1490
flush_tlb_all(void)1491 void flush_tlb_all(void)
1492 {
1493 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1494
1495 /* First try (faster) hardware-assisted TLB invalidation. */
1496 if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1497 invlpgb_flush_all();
1498 else
1499 /* Fall back to the IPI-based invalidation. */
1500 on_each_cpu(do_flush_tlb_all, NULL, 1);
1501 }
1502
1503 /* Flush an arbitrarily large range of memory with INVLPGB. */
invlpgb_kernel_range_flush(struct flush_tlb_info * info)1504 static void invlpgb_kernel_range_flush(struct flush_tlb_info *info)
1505 {
1506 unsigned long addr, nr;
1507
1508 for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) {
1509 nr = (info->end - addr) >> PAGE_SHIFT;
1510
1511 /*
1512 * INVLPGB has a limit on the size of ranges it can
1513 * flush. Break up large flushes.
1514 */
1515 nr = clamp_val(nr, 1, invlpgb_count_max);
1516
1517 invlpgb_flush_addr_nosync(addr, nr);
1518 }
1519 __tlbsync();
1520 }
1521
do_kernel_range_flush(void * info)1522 static void do_kernel_range_flush(void *info)
1523 {
1524 struct flush_tlb_info *f = info;
1525 unsigned long addr;
1526
1527 /* flush range by one by one 'invlpg' */
1528 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1529 flush_tlb_one_kernel(addr);
1530 }
1531
kernel_tlb_flush_all(struct flush_tlb_info * info)1532 static void kernel_tlb_flush_all(struct flush_tlb_info *info)
1533 {
1534 if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1535 invlpgb_flush_all();
1536 else
1537 on_each_cpu(do_flush_tlb_all, NULL, 1);
1538 }
1539
kernel_tlb_flush_range(struct flush_tlb_info * info)1540 static void kernel_tlb_flush_range(struct flush_tlb_info *info)
1541 {
1542 if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1543 invlpgb_kernel_range_flush(info);
1544 else
1545 on_each_cpu(do_kernel_range_flush, info, 1);
1546 }
1547
flush_tlb_kernel_range(unsigned long start,unsigned long end)1548 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1549 {
1550 struct flush_tlb_info *info;
1551
1552 guard(preempt)();
1553
1554 info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, false,
1555 TLB_GENERATION_INVALID);
1556
1557 if (info->end == TLB_FLUSH_ALL)
1558 kernel_tlb_flush_all(info);
1559 else
1560 kernel_tlb_flush_range(info);
1561
1562 put_flush_tlb_info();
1563 }
1564
1565 /*
1566 * This can be used from process context to figure out what the value of
1567 * CR3 is without needing to do a (slow) __read_cr3().
1568 *
1569 * It's intended to be used for code like KVM that sneakily changes CR3
1570 * and needs to restore it. It needs to be used very carefully.
1571 */
__get_current_cr3_fast(void)1572 unsigned long __get_current_cr3_fast(void)
1573 {
1574 unsigned long cr3 =
1575 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1576 this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1577 tlbstate_lam_cr3_mask());
1578
1579 /* For now, be very restrictive about when this can be called. */
1580 VM_WARN_ON(in_nmi() || preemptible());
1581
1582 VM_BUG_ON(cr3 != __read_cr3());
1583 return cr3;
1584 }
1585 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1586
1587 /*
1588 * Flush one page in the kernel mapping
1589 */
flush_tlb_one_kernel(unsigned long addr)1590 void flush_tlb_one_kernel(unsigned long addr)
1591 {
1592 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1593
1594 /*
1595 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1596 * paravirt equivalent. Even with PCID, this is sufficient: we only
1597 * use PCID if we also use global PTEs for the kernel mapping, and
1598 * INVLPG flushes global translations across all address spaces.
1599 *
1600 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1601 * __flush_tlb_one_user() will flush the given address for the current
1602 * kernel address space and for its usermode counterpart, but it does
1603 * not flush it for other address spaces.
1604 */
1605 flush_tlb_one_user(addr);
1606
1607 if (!static_cpu_has(X86_FEATURE_PTI))
1608 return;
1609
1610 /*
1611 * See above. We need to propagate the flush to all other address
1612 * spaces. In principle, we only need to propagate it to kernelmode
1613 * address spaces, but the extra bookkeeping we would need is not
1614 * worth it.
1615 */
1616 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1617 }
1618
1619 /*
1620 * Flush one page in the user mapping
1621 */
native_flush_tlb_one_user(unsigned long addr)1622 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1623 {
1624 u32 loaded_mm_asid;
1625 bool cpu_pcide;
1626
1627 /* Flush 'addr' from the kernel PCID: */
1628 invlpg(addr);
1629
1630 /* If PTI is off there is no user PCID and nothing to flush. */
1631 if (!static_cpu_has(X86_FEATURE_PTI))
1632 return;
1633
1634 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1635 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1636
1637 /*
1638 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check
1639 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1640 * #GP's even if called before CR4.PCIDE has been initialized.
1641 */
1642 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1643 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1644 else
1645 invalidate_user_asid(loaded_mm_asid);
1646 }
1647
flush_tlb_one_user(unsigned long addr)1648 void flush_tlb_one_user(unsigned long addr)
1649 {
1650 __flush_tlb_one_user(addr);
1651 }
1652
1653 /*
1654 * Flush everything
1655 */
native_flush_tlb_global(void)1656 STATIC_NOPV void native_flush_tlb_global(void)
1657 {
1658 unsigned long flags;
1659
1660 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1661 /*
1662 * Using INVPCID is considerably faster than a pair of writes
1663 * to CR4 sandwiched inside an IRQ flag save/restore.
1664 *
1665 * Note, this works with CR4.PCIDE=0 or 1.
1666 */
1667 invpcid_flush_all();
1668 return;
1669 }
1670
1671 /*
1672 * Read-modify-write to CR4 - protect it from preemption and
1673 * from interrupts. (Use the raw variant because this code can
1674 * be called from deep inside debugging code.)
1675 */
1676 raw_local_irq_save(flags);
1677
1678 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1679
1680 raw_local_irq_restore(flags);
1681 }
1682
1683 /*
1684 * Flush the entire current user mapping
1685 */
native_flush_tlb_local(void)1686 STATIC_NOPV void native_flush_tlb_local(void)
1687 {
1688 /*
1689 * Preemption or interrupts must be disabled to protect the access
1690 * to the per CPU variable and to prevent being preempted between
1691 * read_cr3() and write_cr3().
1692 */
1693 WARN_ON_ONCE(preemptible());
1694
1695 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1696
1697 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1698 native_write_cr3(__native_read_cr3());
1699 }
1700
flush_tlb_local(void)1701 void flush_tlb_local(void)
1702 {
1703 __flush_tlb_local();
1704 }
1705
1706 /*
1707 * Flush everything
1708 */
__flush_tlb_all(void)1709 void __flush_tlb_all(void)
1710 {
1711 /*
1712 * This is to catch users with enabled preemption and the PGE feature
1713 * and don't trigger the warning in __native_flush_tlb().
1714 */
1715 VM_WARN_ON_ONCE(preemptible());
1716
1717 if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1718 __flush_tlb_global();
1719 } else {
1720 /*
1721 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1722 */
1723 flush_tlb_local();
1724 }
1725 }
1726 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1727
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1728 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1729 {
1730 struct flush_tlb_info *info;
1731
1732 int cpu = get_cpu();
1733
1734 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1735 TLB_GENERATION_INVALID);
1736 /*
1737 * flush_tlb_multi() is not optimized for the common case in which only
1738 * a local TLB flush is needed. Optimize this use-case by calling
1739 * flush_tlb_func_local() directly in this case.
1740 */
1741 if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) {
1742 invlpgb_flush_all_nonglobals();
1743 batch->unmapped_pages = false;
1744 } else if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1745 flush_tlb_multi(&batch->cpumask, info);
1746 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1747 lockdep_assert_irqs_enabled();
1748 local_irq_disable();
1749 flush_tlb_func(info);
1750 local_irq_enable();
1751 }
1752
1753 cpumask_clear(&batch->cpumask);
1754
1755 put_flush_tlb_info();
1756 put_cpu();
1757 }
1758
1759 /*
1760 * Blindly accessing user memory from NMI context can be dangerous
1761 * if we're in the middle of switching the current user task or
1762 * switching the loaded mm. It can also be dangerous if we
1763 * interrupted some kernel code that was temporarily using a
1764 * different mm.
1765 */
nmi_uaccess_okay(void)1766 bool nmi_uaccess_okay(void)
1767 {
1768 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1769 struct mm_struct *current_mm = current->mm;
1770
1771 VM_WARN_ON_ONCE(!loaded_mm);
1772
1773 /*
1774 * The condition we want to check is
1775 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1776 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1777 * is supposed to be reasonably fast.
1778 *
1779 * Instead, we check the almost equivalent but somewhat conservative
1780 * condition below, and we rely on the fact that switch_mm_irqs_off()
1781 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1782 */
1783 if (loaded_mm != current_mm)
1784 return false;
1785
1786 VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa());
1787
1788 return true;
1789 }
1790
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1791 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1792 size_t count, loff_t *ppos)
1793 {
1794 char buf[32];
1795 unsigned int len;
1796
1797 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1798 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1799 }
1800
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1801 static ssize_t tlbflush_write_file(struct file *file,
1802 const char __user *user_buf, size_t count, loff_t *ppos)
1803 {
1804 char buf[32];
1805 ssize_t len;
1806 int ceiling;
1807
1808 len = min(count, sizeof(buf) - 1);
1809 if (copy_from_user(buf, user_buf, len))
1810 return -EFAULT;
1811
1812 buf[len] = '\0';
1813 if (kstrtoint(buf, 0, &ceiling))
1814 return -EINVAL;
1815
1816 if (ceiling < 0)
1817 return -EINVAL;
1818
1819 tlb_single_page_flush_ceiling = ceiling;
1820 return count;
1821 }
1822
1823 static const struct file_operations fops_tlbflush = {
1824 .read = tlbflush_read_file,
1825 .write = tlbflush_write_file,
1826 .llseek = default_llseek,
1827 };
1828
create_tlb_single_page_flush_ceiling(void)1829 static int __init create_tlb_single_page_flush_ceiling(void)
1830 {
1831 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1832 arch_debugfs_dir, NULL, &fops_tlbflush);
1833 return 0;
1834 }
1835 late_initcall(create_tlb_single_page_flush_ceiling);
1836