1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2017 Intel Corporation. All rights reserved. 4 * 5 * This code is based in part on work published here: 6 * 7 * https://github.com/IAIK/KAISER 8 * 9 * The original work was written by and signed off by for the Linux 10 * kernel by: 11 * 12 * Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> 13 * Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> 14 * Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> 15 * Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> 16 * 17 * Major changes to the original code by: Dave Hansen <dave.hansen@intel.com> 18 * Mostly rewritten by Thomas Gleixner <tglx@linutronix.de> and 19 * Andy Lutomirsky <luto@amacapital.net> 20 */ 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/string.h> 24 #include <linux/types.h> 25 #include <linux/bug.h> 26 #include <linux/init.h> 27 #include <linux/spinlock.h> 28 #include <linux/mm.h> 29 #include <linux/uaccess.h> 30 #include <linux/cpu.h> 31 32 #include <asm/cpufeature.h> 33 #include <asm/hypervisor.h> 34 #include <asm/vsyscall.h> 35 #include <asm/cmdline.h> 36 #include <asm/pti.h> 37 #include <asm/tlbflush.h> 38 #include <asm/desc.h> 39 #include <asm/sections.h> 40 #include <asm/set_memory.h> 41 #include <asm/bugs.h> 42 43 #undef pr_fmt 44 #define pr_fmt(fmt) "Kernel/User page tables isolation: " fmt 45 46 /* Backporting helper */ 47 #ifndef __GFP_NOTRACK 48 #define __GFP_NOTRACK 0 49 #endif 50 51 /* 52 * Define the page-table levels we clone for user-space on 32 53 * and 64 bit. 54 */ 55 #ifdef CONFIG_X86_64 56 #define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PMD 57 #else 58 #define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PTE 59 #endif 60 61 static void __init pti_print_if_insecure(const char *reason) 62 { 63 if (boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 64 pr_info("%s\n", reason); 65 } 66 67 static void __init pti_print_if_secure(const char *reason) 68 { 69 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 70 pr_info("%s\n", reason); 71 } 72 73 /* Assume mode is auto unless overridden via cmdline below. */ 74 static enum pti_mode { 75 PTI_AUTO = 0, 76 PTI_FORCE_OFF, 77 PTI_FORCE_ON 78 } pti_mode; 79 80 void __init pti_check_boottime_disable(void) 81 { 82 if (hypervisor_is_type(X86_HYPER_XEN_PV)) { 83 pti_mode = PTI_FORCE_OFF; 84 pti_print_if_insecure("disabled on XEN PV."); 85 return; 86 } 87 88 if (pti_mode == PTI_AUTO && 89 !cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL)) 90 pti_mode = PTI_FORCE_OFF; 91 if (pti_mode == PTI_FORCE_OFF) { 92 pti_print_if_insecure("disabled on command line."); 93 return; 94 } 95 96 if (pti_mode == PTI_FORCE_ON) 97 pti_print_if_secure("force enabled on command line."); 98 99 if (pti_mode == PTI_AUTO && !boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 100 return; 101 102 setup_force_cpu_cap(X86_FEATURE_PTI); 103 104 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) { 105 pr_debug("PTI enabled, disabling INVLPGB\n"); 106 setup_clear_cpu_cap(X86_FEATURE_INVLPGB); 107 } 108 } 109 110 static int __init pti_parse_cmdline(char *arg) 111 { 112 if (!strcmp(arg, "off")) 113 pti_mode = PTI_FORCE_OFF; 114 else if (!strcmp(arg, "on")) 115 pti_mode = PTI_FORCE_ON; 116 else if (!strcmp(arg, "auto")) 117 pti_mode = PTI_AUTO; 118 else 119 return -EINVAL; 120 return 0; 121 } 122 early_param("pti", pti_parse_cmdline); 123 124 static int __init pti_parse_cmdline_nopti(char *arg) 125 { 126 pti_mode = PTI_FORCE_OFF; 127 return 0; 128 } 129 early_param("nopti", pti_parse_cmdline_nopti); 130 131 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 132 { 133 /* 134 * Changes to the high (kernel) portion of the kernelmode page 135 * tables are not automatically propagated to the usermode tables. 136 * 137 * Users should keep in mind that, unlike the kernelmode tables, 138 * there is no vmalloc_fault equivalent for the usermode tables. 139 * Top-level entries added to init_mm's usermode pgd after boot 140 * will not be automatically propagated to other mms. 141 */ 142 if (!pgdp_maps_userspace(pgdp) || (pgd.pgd & _PAGE_NOPTISHADOW)) 143 return pgd; 144 145 /* 146 * The user page tables get the full PGD, accessible from 147 * userspace: 148 */ 149 kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd; 150 151 /* 152 * If this is normal user memory, make it NX in the kernel 153 * pagetables so that, if we somehow screw up and return to 154 * usermode with the kernel CR3 loaded, we'll get a page fault 155 * instead of allowing user code to execute with the wrong CR3. 156 * 157 * As exceptions, we don't set NX if: 158 * - _PAGE_USER is not set. This could be an executable 159 * EFI runtime mapping or something similar, and the kernel 160 * may execute from it 161 * - we don't have NX support 162 * - we're clearing the PGD (i.e. the new pgd is not present). 163 */ 164 if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) && 165 (__supported_pte_mask & _PAGE_NX)) 166 pgd.pgd |= _PAGE_NX; 167 168 /* return the copy of the PGD we want the kernel to use: */ 169 return pgd; 170 } 171 172 /* 173 * Walk the user copy of the page tables (optionally) trying to allocate 174 * page table pages on the way down. 175 * 176 * Returns a pointer to a P4D on success, or NULL on failure. 177 */ 178 static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address) 179 { 180 pgd_t *pgd = kernel_to_user_pgdp(pgd_offset_k(address)); 181 gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 182 183 if (address < PAGE_OFFSET) { 184 WARN_ONCE(1, "attempt to walk user address\n"); 185 return NULL; 186 } 187 188 if (pgd_none(*pgd)) { 189 unsigned long new_p4d_page = __get_free_page(gfp); 190 if (WARN_ON_ONCE(!new_p4d_page)) 191 return NULL; 192 193 set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page))); 194 } 195 BUILD_BUG_ON(pgd_leaf(*pgd)); 196 197 return p4d_offset(pgd, address); 198 } 199 200 /* 201 * Walk the user copy of the page tables (optionally) trying to allocate 202 * page table pages on the way down. 203 * 204 * Returns a pointer to a PMD on success, or NULL on failure. 205 */ 206 static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address) 207 { 208 gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 209 p4d_t *p4d; 210 pud_t *pud; 211 212 p4d = pti_user_pagetable_walk_p4d(address); 213 if (!p4d) 214 return NULL; 215 216 BUILD_BUG_ON(p4d_leaf(*p4d)); 217 if (p4d_none(*p4d)) { 218 unsigned long new_pud_page = __get_free_page(gfp); 219 if (WARN_ON_ONCE(!new_pud_page)) 220 return NULL; 221 222 set_p4d(p4d, __p4d(_KERNPG_TABLE | __pa(new_pud_page))); 223 } 224 225 pud = pud_offset(p4d, address); 226 /* The user page tables do not use large mappings: */ 227 if (pud_leaf(*pud)) { 228 WARN_ON(1); 229 return NULL; 230 } 231 if (pud_none(*pud)) { 232 unsigned long new_pmd_page = __get_free_page(gfp); 233 if (WARN_ON_ONCE(!new_pmd_page)) 234 return NULL; 235 236 set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page))); 237 } 238 239 return pmd_offset(pud, address); 240 } 241 242 /* 243 * Walk the shadow copy of the page tables (optionally) trying to allocate 244 * page table pages on the way down. Does not support large pages. 245 * 246 * Note: this is only used when mapping *new* kernel data into the 247 * user/shadow page tables. It is never used for userspace data. 248 * 249 * Returns a pointer to a PTE on success, or NULL on failure. 250 */ 251 static pte_t *pti_user_pagetable_walk_pte(unsigned long address, bool late_text) 252 { 253 gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 254 pmd_t *pmd; 255 pte_t *pte; 256 257 pmd = pti_user_pagetable_walk_pmd(address); 258 if (!pmd) 259 return NULL; 260 261 /* Large PMD mapping found */ 262 if (pmd_leaf(*pmd)) { 263 /* Clear the PMD if we hit a large mapping from the first round */ 264 if (late_text) { 265 set_pmd(pmd, __pmd(0)); 266 } else { 267 WARN_ON_ONCE(1); 268 return NULL; 269 } 270 } 271 272 if (pmd_none(*pmd)) { 273 unsigned long new_pte_page = __get_free_page(gfp); 274 if (!new_pte_page) 275 return NULL; 276 277 set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page))); 278 } 279 280 pte = pte_offset_kernel(pmd, address); 281 if (pte_flags(*pte) & _PAGE_USER) { 282 WARN_ONCE(1, "attempt to walk to user pte\n"); 283 return NULL; 284 } 285 return pte; 286 } 287 288 #ifdef CONFIG_X86_VSYSCALL_EMULATION 289 static void __init pti_setup_vsyscall(void) 290 { 291 pte_t *pte, *target_pte; 292 unsigned int level; 293 294 pte = lookup_address(VSYSCALL_ADDR, &level); 295 if (!pte || WARN_ON(level != PG_LEVEL_4K) || pte_none(*pte)) 296 return; 297 298 target_pte = pti_user_pagetable_walk_pte(VSYSCALL_ADDR, false); 299 if (WARN_ON(!target_pte)) 300 return; 301 302 *target_pte = *pte; 303 set_vsyscall_pgtable_user_bits(kernel_to_user_pgdp(swapper_pg_dir)); 304 } 305 #else 306 static void __init pti_setup_vsyscall(void) { } 307 #endif 308 309 enum pti_clone_level { 310 PTI_CLONE_PMD, 311 PTI_CLONE_PTE, 312 }; 313 314 static void 315 pti_clone_pgtable(unsigned long start, unsigned long end, 316 enum pti_clone_level level, bool late_text) 317 { 318 unsigned long addr; 319 320 /* 321 * Clone the populated PMDs which cover start to end. These PMD areas 322 * can have holes. 323 */ 324 for (addr = start; addr < end;) { 325 pte_t *pte, *target_pte; 326 pmd_t *pmd, *target_pmd; 327 pgd_t *pgd; 328 p4d_t *p4d; 329 pud_t *pud; 330 331 /* Overflow check */ 332 if (addr < start) 333 break; 334 335 pgd = pgd_offset_k(addr); 336 if (WARN_ON(pgd_none(*pgd))) 337 return; 338 p4d = p4d_offset(pgd, addr); 339 if (WARN_ON(p4d_none(*p4d))) 340 return; 341 342 pud = pud_offset(p4d, addr); 343 if (pud_none(*pud)) { 344 WARN_ON_ONCE(addr & ~PUD_MASK); 345 addr = round_up(addr + 1, PUD_SIZE); 346 continue; 347 } 348 349 pmd = pmd_offset(pud, addr); 350 if (pmd_none(*pmd)) { 351 WARN_ON_ONCE(addr & ~PMD_MASK); 352 addr = round_up(addr + 1, PMD_SIZE); 353 continue; 354 } 355 356 if (pmd_leaf(*pmd) || level == PTI_CLONE_PMD) { 357 target_pmd = pti_user_pagetable_walk_pmd(addr); 358 if (WARN_ON(!target_pmd)) 359 return; 360 361 /* 362 * Only clone present PMDs. This ensures only setting 363 * _PAGE_GLOBAL on present PMDs. This should only be 364 * called on well-known addresses anyway, so a non- 365 * present PMD would be a surprise. 366 */ 367 if (WARN_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT))) 368 return; 369 370 /* 371 * Setting 'target_pmd' below creates a mapping in both 372 * the user and kernel page tables. It is effectively 373 * global, so set it as global in both copies. Note: 374 * the X86_FEATURE_PGE check is not _required_ because 375 * the CPU ignores _PAGE_GLOBAL when PGE is not 376 * supported. The check keeps consistency with 377 * code that only set this bit when supported. 378 */ 379 if (boot_cpu_has(X86_FEATURE_PGE)) 380 *pmd = pmd_set_flags(*pmd, _PAGE_GLOBAL); 381 382 /* 383 * Copy the PMD. That is, the kernelmode and usermode 384 * tables will share the last-level page tables of this 385 * address range 386 */ 387 *target_pmd = *pmd; 388 389 addr = round_up(addr + 1, PMD_SIZE); 390 391 } else if (level == PTI_CLONE_PTE) { 392 393 /* Walk the page-table down to the pte level */ 394 pte = pte_offset_kernel(pmd, addr); 395 if (pte_none(*pte)) { 396 addr = round_up(addr + 1, PAGE_SIZE); 397 continue; 398 } 399 400 /* Only clone present PTEs */ 401 if (WARN_ON(!(pte_flags(*pte) & _PAGE_PRESENT))) 402 return; 403 404 /* Allocate PTE in the user page-table */ 405 target_pte = pti_user_pagetable_walk_pte(addr, late_text); 406 if (WARN_ON(!target_pte)) 407 return; 408 409 /* Set GLOBAL bit in both PTEs */ 410 if (boot_cpu_has(X86_FEATURE_PGE)) 411 *pte = pte_set_flags(*pte, _PAGE_GLOBAL); 412 413 /* Clone the PTE */ 414 *target_pte = *pte; 415 416 addr = round_up(addr + 1, PAGE_SIZE); 417 418 } else { 419 BUG(); 420 } 421 } 422 } 423 424 #ifdef CONFIG_X86_64 425 /* 426 * Clone a single p4d (i.e. a top-level entry on 4-level systems and a 427 * next-level entry on 5-level systems. 428 */ 429 static void __init pti_clone_p4d(unsigned long addr) 430 { 431 p4d_t *kernel_p4d, *user_p4d; 432 pgd_t *kernel_pgd; 433 434 user_p4d = pti_user_pagetable_walk_p4d(addr); 435 if (!user_p4d) 436 return; 437 438 kernel_pgd = pgd_offset_k(addr); 439 kernel_p4d = p4d_offset(kernel_pgd, addr); 440 *user_p4d = *kernel_p4d; 441 } 442 443 /* 444 * Clone the CPU_ENTRY_AREA and associated data into the user space visible 445 * page table. 446 */ 447 static void __init pti_clone_user_shared(void) 448 { 449 unsigned int cpu; 450 451 pti_clone_p4d(CPU_ENTRY_AREA_BASE); 452 453 for_each_possible_cpu(cpu) { 454 /* 455 * The SYSCALL64 entry code needs one word of scratch space 456 * in which to spill a register. It lives in the sp2 slot 457 * of the CPU's TSS. 458 * 459 * This is done for all possible CPUs during boot to ensure 460 * that it's propagated to all mms. 461 */ 462 463 unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu); 464 phys_addr_t pa = per_cpu_ptr_to_phys((void *)va); 465 pte_t *target_pte; 466 467 target_pte = pti_user_pagetable_walk_pte(va, false); 468 if (WARN_ON(!target_pte)) 469 return; 470 471 *target_pte = pfn_pte(pa >> PAGE_SHIFT, PAGE_KERNEL); 472 } 473 } 474 475 #else /* CONFIG_X86_64 */ 476 477 /* 478 * On 32 bit PAE systems with 1GB of Kernel address space there is only 479 * one pgd/p4d for the whole kernel. Cloning that would map the whole 480 * address space into the user page-tables, making PTI useless. So clone 481 * the page-table on the PMD level to prevent that. 482 */ 483 static void __init pti_clone_user_shared(void) 484 { 485 unsigned long start, end; 486 487 start = CPU_ENTRY_AREA_BASE; 488 end = start + (PAGE_SIZE * CPU_ENTRY_AREA_PAGES); 489 490 pti_clone_pgtable(start, end, PTI_CLONE_PMD, false); 491 } 492 #endif /* CONFIG_X86_64 */ 493 494 /* 495 * Clone the ESPFIX P4D into the user space visible page table 496 */ 497 static void __init pti_setup_espfix64(void) 498 { 499 #ifdef CONFIG_X86_ESPFIX64 500 pti_clone_p4d(ESPFIX_BASE_ADDR); 501 #endif 502 } 503 504 /* 505 * Clone the populated PMDs of the entry text and force it RO. 506 */ 507 static void pti_clone_entry_text(bool late) 508 { 509 pti_clone_pgtable((unsigned long) __entry_text_start, 510 (unsigned long) __entry_text_end, 511 PTI_LEVEL_KERNEL_IMAGE, late); 512 } 513 514 /* 515 * Global pages and PCIDs are both ways to make kernel TLB entries 516 * live longer, reduce TLB misses and improve kernel performance. 517 * But, leaving all kernel text Global makes it potentially accessible 518 * to Meltdown-style attacks which make it trivial to find gadgets or 519 * defeat KASLR. 520 * 521 * Only use global pages when it is really worth it. 522 */ 523 static inline bool pti_kernel_image_global_ok(void) 524 { 525 /* 526 * Systems with PCIDs get little benefit from global 527 * kernel text and are not worth the downsides. 528 */ 529 if (cpu_feature_enabled(X86_FEATURE_PCID)) 530 return false; 531 532 /* 533 * Only do global kernel image for pti=auto. Do the most 534 * secure thing (not global) if pti=on specified. 535 */ 536 if (pti_mode != PTI_AUTO) 537 return false; 538 539 /* 540 * K8 may not tolerate the cleared _PAGE_RW on the userspace 541 * global kernel image pages. Do the safe thing (disable 542 * global kernel image). This is unlikely to ever be 543 * noticed because PTI is disabled by default on AMD CPUs. 544 */ 545 if (boot_cpu_has(X86_FEATURE_K8)) 546 return false; 547 548 /* 549 * RANDSTRUCT derives its hardening benefits from the 550 * attacker's lack of knowledge about the layout of kernel 551 * data structures. Keep the kernel image non-global in 552 * cases where RANDSTRUCT is in use to help keep the layout a 553 * secret. 554 */ 555 if (IS_ENABLED(CONFIG_RANDSTRUCT)) 556 return false; 557 558 return true; 559 } 560 561 /* 562 * For some configurations, map all of kernel text into the user page 563 * tables. This reduces TLB misses, especially on non-PCID systems. 564 */ 565 static void pti_clone_kernel_text(void) 566 { 567 /* 568 * rodata is part of the kernel image and is normally 569 * readable on the filesystem or on the web. But, do not 570 * clone the areas past rodata, they might contain secrets. 571 */ 572 unsigned long start = PFN_ALIGN(_text); 573 unsigned long end_clone = (unsigned long)__end_rodata_aligned; 574 unsigned long end_global = PFN_ALIGN((unsigned long)_etext); 575 576 if (!pti_kernel_image_global_ok()) 577 return; 578 579 pr_debug("mapping partial kernel image into user address space\n"); 580 581 /* 582 * Note that this will undo _some_ of the work that 583 * pti_set_kernel_image_nonglobal() did to clear the 584 * global bit. 585 */ 586 pti_clone_pgtable(start, end_clone, PTI_LEVEL_KERNEL_IMAGE, false); 587 588 /* 589 * pti_clone_pgtable() will set the global bit in any PMDs 590 * that it clones, but we also need to get any PTEs in 591 * the last level for areas that are not huge-page-aligned. 592 */ 593 594 /* Set the global bit for normal non-__init kernel text: */ 595 set_memory_global(start, (end_global - start) >> PAGE_SHIFT); 596 } 597 598 static void pti_set_kernel_image_nonglobal(void) 599 { 600 /* 601 * The identity map is created with PMDs, regardless of the 602 * actual length of the kernel. We need to clear 603 * _PAGE_GLOBAL up to a PMD boundary, not just to the end 604 * of the image. 605 */ 606 unsigned long start = PFN_ALIGN(_text); 607 unsigned long end = ALIGN((unsigned long)_end, PMD_SIZE); 608 609 /* 610 * This clears _PAGE_GLOBAL from the entire kernel image. 611 * pti_clone_kernel_text() map put _PAGE_GLOBAL back for 612 * areas that are mapped to userspace. 613 */ 614 set_memory_nonglobal(start, (end - start) >> PAGE_SHIFT); 615 } 616 617 /* 618 * Initialize kernel page table isolation 619 */ 620 void __init pti_init(void) 621 { 622 if (!boot_cpu_has(X86_FEATURE_PTI)) 623 return; 624 625 pr_info("enabled\n"); 626 627 #ifdef CONFIG_X86_32 628 /* 629 * We check for X86_FEATURE_PCID here. But the init-code will 630 * clear the feature flag on 32 bit because the feature is not 631 * supported on 32 bit anyway. To print the warning we need to 632 * check with cpuid directly again. 633 */ 634 if (cpuid_ecx(0x1) & BIT(17)) { 635 /* Use printk to work around pr_fmt() */ 636 printk(KERN_WARNING "\n"); 637 printk(KERN_WARNING "************************************************************\n"); 638 printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n"); 639 printk(KERN_WARNING "** **\n"); 640 printk(KERN_WARNING "** You are using 32-bit PTI on a 64-bit PCID-capable CPU. **\n"); 641 printk(KERN_WARNING "** Your performance will increase dramatically if you **\n"); 642 printk(KERN_WARNING "** switch to a 64-bit kernel! **\n"); 643 printk(KERN_WARNING "** **\n"); 644 printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n"); 645 printk(KERN_WARNING "************************************************************\n"); 646 } 647 #endif 648 649 pti_clone_user_shared(); 650 651 /* Undo all global bits from the init pagetables in head_64.S: */ 652 pti_set_kernel_image_nonglobal(); 653 654 /* Replace some of the global bits just for shared entry text: */ 655 /* 656 * This is very early in boot. Device and Late initcalls can do 657 * modprobe before free_initmem() and mark_readonly(). This 658 * pti_clone_entry_text() allows those user-mode-helpers to function, 659 * but notably the text is still RW. 660 */ 661 pti_clone_entry_text(false); 662 pti_setup_espfix64(); 663 pti_setup_vsyscall(); 664 } 665 666 /* 667 * Finalize the kernel mappings in the userspace page-table. Some of the 668 * mappings for the kernel image might have changed since pti_init() 669 * cloned them. This is because parts of the kernel image have been 670 * mapped RO and/or NX. These changes need to be cloned again to the 671 * userspace page-table. 672 */ 673 void pti_finalize(void) 674 { 675 if (!boot_cpu_has(X86_FEATURE_PTI)) 676 return; 677 /* 678 * This is after free_initmem() (all initcalls are done) and we've done 679 * mark_readonly(). Text is now NX which might've split some PMDs 680 * relative to the early clone. 681 */ 682 pti_clone_entry_text(true); 683 pti_clone_kernel_text(); 684 685 debug_checkwx_user(); 686 } 687