xref: /linux/arch/x86/mm/pgtable_32.c (revision d20ead9e86881bc7ae84e385f47b5196b7d93aac)
1 /*
2  *  linux/arch/i386/mm/pgtable.c
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/kernel.h>
7 #include <linux/errno.h>
8 #include <linux/mm.h>
9 #include <linux/nmi.h>
10 #include <linux/swap.h>
11 #include <linux/smp.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 
19 #include <asm/system.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/fixmap.h>
23 #include <asm/e820.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 
27 void show_mem(void)
28 {
29 	int total = 0, reserved = 0;
30 	int shared = 0, cached = 0;
31 	int highmem = 0;
32 	struct page *page;
33 	pg_data_t *pgdat;
34 	unsigned long i;
35 	unsigned long flags;
36 
37 	printk(KERN_INFO "Mem-info:\n");
38 	show_free_areas();
39 	printk(KERN_INFO "Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
40 	for_each_online_pgdat(pgdat) {
41 		pgdat_resize_lock(pgdat, &flags);
42 		for (i = 0; i < pgdat->node_spanned_pages; ++i) {
43 			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
44 				touch_nmi_watchdog();
45 			page = pgdat_page_nr(pgdat, i);
46 			total++;
47 			if (PageHighMem(page))
48 				highmem++;
49 			if (PageReserved(page))
50 				reserved++;
51 			else if (PageSwapCache(page))
52 				cached++;
53 			else if (page_count(page))
54 				shared += page_count(page) - 1;
55 		}
56 		pgdat_resize_unlock(pgdat, &flags);
57 	}
58 	printk(KERN_INFO "%d pages of RAM\n", total);
59 	printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
60 	printk(KERN_INFO "%d reserved pages\n", reserved);
61 	printk(KERN_INFO "%d pages shared\n", shared);
62 	printk(KERN_INFO "%d pages swap cached\n", cached);
63 
64 	printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
65 	printk(KERN_INFO "%lu pages writeback\n",
66 					global_page_state(NR_WRITEBACK));
67 	printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
68 	printk(KERN_INFO "%lu pages slab\n",
69 		global_page_state(NR_SLAB_RECLAIMABLE) +
70 		global_page_state(NR_SLAB_UNRECLAIMABLE));
71 	printk(KERN_INFO "%lu pages pagetables\n",
72 					global_page_state(NR_PAGETABLE));
73 }
74 
75 /*
76  * Associate a virtual page frame with a given physical page frame
77  * and protection flags for that frame.
78  */
79 static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
80 {
81 	pgd_t *pgd;
82 	pud_t *pud;
83 	pmd_t *pmd;
84 	pte_t *pte;
85 
86 	pgd = swapper_pg_dir + pgd_index(vaddr);
87 	if (pgd_none(*pgd)) {
88 		BUG();
89 		return;
90 	}
91 	pud = pud_offset(pgd, vaddr);
92 	if (pud_none(*pud)) {
93 		BUG();
94 		return;
95 	}
96 	pmd = pmd_offset(pud, vaddr);
97 	if (pmd_none(*pmd)) {
98 		BUG();
99 		return;
100 	}
101 	pte = pte_offset_kernel(pmd, vaddr);
102 	if (pgprot_val(flags))
103 		set_pte_present(&init_mm, vaddr, pte, pfn_pte(pfn, flags));
104 	else
105 		pte_clear(&init_mm, vaddr, pte);
106 
107 	/*
108 	 * It's enough to flush this one mapping.
109 	 * (PGE mappings get flushed as well)
110 	 */
111 	__flush_tlb_one(vaddr);
112 }
113 
114 /*
115  * Associate a large virtual page frame with a given physical page frame
116  * and protection flags for that frame. pfn is for the base of the page,
117  * vaddr is what the page gets mapped to - both must be properly aligned.
118  * The pmd must already be instantiated. Assumes PAE mode.
119  */
120 void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
121 {
122 	pgd_t *pgd;
123 	pud_t *pud;
124 	pmd_t *pmd;
125 
126 	if (vaddr & (PMD_SIZE-1)) {		/* vaddr is misaligned */
127 		printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
128 		return; /* BUG(); */
129 	}
130 	if (pfn & (PTRS_PER_PTE-1)) {		/* pfn is misaligned */
131 		printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
132 		return; /* BUG(); */
133 	}
134 	pgd = swapper_pg_dir + pgd_index(vaddr);
135 	if (pgd_none(*pgd)) {
136 		printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
137 		return; /* BUG(); */
138 	}
139 	pud = pud_offset(pgd, vaddr);
140 	pmd = pmd_offset(pud, vaddr);
141 	set_pmd(pmd, pfn_pmd(pfn, flags));
142 	/*
143 	 * It's enough to flush this one mapping.
144 	 * (PGE mappings get flushed as well)
145 	 */
146 	__flush_tlb_one(vaddr);
147 }
148 
149 static int fixmaps;
150 unsigned long __FIXADDR_TOP = 0xfffff000;
151 EXPORT_SYMBOL(__FIXADDR_TOP);
152 
153 void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
154 {
155 	unsigned long address = __fix_to_virt(idx);
156 
157 	if (idx >= __end_of_fixed_addresses) {
158 		BUG();
159 		return;
160 	}
161 	set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
162 	fixmaps++;
163 }
164 
165 /**
166  * reserve_top_address - reserves a hole in the top of kernel address space
167  * @reserve - size of hole to reserve
168  *
169  * Can be used to relocate the fixmap area and poke a hole in the top
170  * of kernel address space to make room for a hypervisor.
171  */
172 void reserve_top_address(unsigned long reserve)
173 {
174 	BUG_ON(fixmaps > 0);
175 	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
176 	       (int)-reserve);
177 	__FIXADDR_TOP = -reserve - PAGE_SIZE;
178 	__VMALLOC_RESERVE += reserve;
179 }
180 
181 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
182 {
183 	return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
184 }
185 
186 struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
187 {
188 	struct page *pte;
189 
190 #ifdef CONFIG_HIGHPTE
191 	pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
192 #else
193 	pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
194 #endif
195 	return pte;
196 }
197 
198 void pmd_ctor(struct kmem_cache *cache, void *pmd)
199 {
200 	memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t));
201 }
202 
203 /*
204  * List of all pgd's needed for non-PAE so it can invalidate entries
205  * in both cached and uncached pgd's; not needed for PAE since the
206  * kernel pmd is shared. If PAE were not to share the pmd a similar
207  * tactic would be needed. This is essentially codepath-based locking
208  * against pageattr.c; it is the unique case in which a valid change
209  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
210  * vmalloc faults work because attached pagetables are never freed.
211  * -- wli
212  */
213 DEFINE_SPINLOCK(pgd_lock);
214 struct page *pgd_list;
215 
216 static inline void pgd_list_add(pgd_t *pgd)
217 {
218 	struct page *page = virt_to_page(pgd);
219 	page->index = (unsigned long)pgd_list;
220 	if (pgd_list)
221 		set_page_private(pgd_list, (unsigned long)&page->index);
222 	pgd_list = page;
223 	set_page_private(page, (unsigned long)&pgd_list);
224 }
225 
226 static inline void pgd_list_del(pgd_t *pgd)
227 {
228 	struct page *next, **pprev, *page = virt_to_page(pgd);
229 	next = (struct page *)page->index;
230 	pprev = (struct page **)page_private(page);
231 	*pprev = next;
232 	if (next)
233 		set_page_private(next, (unsigned long)pprev);
234 }
235 
236 
237 
238 #if (PTRS_PER_PMD == 1)
239 /* Non-PAE pgd constructor */
240 static void pgd_ctor(void *pgd)
241 {
242 	unsigned long flags;
243 
244 	/* !PAE, no pagetable sharing */
245 	memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
246 
247 	spin_lock_irqsave(&pgd_lock, flags);
248 
249 	/* must happen under lock */
250 	clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
251 			swapper_pg_dir + USER_PTRS_PER_PGD,
252 			KERNEL_PGD_PTRS);
253 	paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT,
254 				__pa(swapper_pg_dir) >> PAGE_SHIFT,
255 				USER_PTRS_PER_PGD,
256 				KERNEL_PGD_PTRS);
257 	pgd_list_add(pgd);
258 	spin_unlock_irqrestore(&pgd_lock, flags);
259 }
260 #else  /* PTRS_PER_PMD > 1 */
261 /* PAE pgd constructor */
262 static void pgd_ctor(void *pgd)
263 {
264 	/* PAE, kernel PMD may be shared */
265 
266 	if (SHARED_KERNEL_PMD) {
267 		clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
268 				swapper_pg_dir + USER_PTRS_PER_PGD,
269 				KERNEL_PGD_PTRS);
270 	} else {
271 		unsigned long flags;
272 
273 		memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
274 		spin_lock_irqsave(&pgd_lock, flags);
275 		pgd_list_add(pgd);
276 		spin_unlock_irqrestore(&pgd_lock, flags);
277 	}
278 }
279 #endif	/* PTRS_PER_PMD */
280 
281 static void pgd_dtor(void *pgd)
282 {
283 	unsigned long flags; /* can be called from interrupt context */
284 
285 	if (SHARED_KERNEL_PMD)
286 		return;
287 
288 	paravirt_release_pd(__pa(pgd) >> PAGE_SHIFT);
289 	spin_lock_irqsave(&pgd_lock, flags);
290 	pgd_list_del(pgd);
291 	spin_unlock_irqrestore(&pgd_lock, flags);
292 }
293 
294 #define UNSHARED_PTRS_PER_PGD				\
295 	(SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
296 
297 /* If we allocate a pmd for part of the kernel address space, then
298    make sure its initialized with the appropriate kernel mappings.
299    Otherwise use a cached zeroed pmd.  */
300 static pmd_t *pmd_cache_alloc(int idx)
301 {
302 	pmd_t *pmd;
303 
304 	if (idx >= USER_PTRS_PER_PGD) {
305 		pmd = (pmd_t *)__get_free_page(GFP_KERNEL);
306 
307 		if (pmd)
308 			memcpy(pmd,
309 			       (void *)pgd_page_vaddr(swapper_pg_dir[idx]),
310 			       sizeof(pmd_t) * PTRS_PER_PMD);
311 	} else
312 		pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL);
313 
314 	return pmd;
315 }
316 
317 static void pmd_cache_free(pmd_t *pmd, int idx)
318 {
319 	if (idx >= USER_PTRS_PER_PGD)
320 		free_page((unsigned long)pmd);
321 	else
322 		kmem_cache_free(pmd_cache, pmd);
323 }
324 
325 pgd_t *pgd_alloc(struct mm_struct *mm)
326 {
327 	int i;
328 	pgd_t *pgd = quicklist_alloc(0, GFP_KERNEL, pgd_ctor);
329 
330 	if (PTRS_PER_PMD == 1 || !pgd)
331 		return pgd;
332 
333  	for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) {
334 		pmd_t *pmd = pmd_cache_alloc(i);
335 
336 		if (!pmd)
337 			goto out_oom;
338 
339 		paravirt_alloc_pd(__pa(pmd) >> PAGE_SHIFT);
340 		set_pgd(&pgd[i], __pgd(1 + __pa(pmd)));
341 	}
342 	return pgd;
343 
344 out_oom:
345 	for (i--; i >= 0; i--) {
346 		pgd_t pgdent = pgd[i];
347 		void* pmd = (void *)__va(pgd_val(pgdent)-1);
348 		paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
349 		pmd_cache_free(pmd, i);
350 	}
351 	quicklist_free(0, pgd_dtor, pgd);
352 	return NULL;
353 }
354 
355 void pgd_free(pgd_t *pgd)
356 {
357 	int i;
358 
359 	/* in the PAE case user pgd entries are overwritten before usage */
360 	if (PTRS_PER_PMD > 1)
361 		for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) {
362 			pgd_t pgdent = pgd[i];
363 			void* pmd = (void *)__va(pgd_val(pgdent)-1);
364 			paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
365 			pmd_cache_free(pmd, i);
366 		}
367 	/* in the non-PAE case, free_pgtables() clears user pgd entries */
368 	quicklist_free(0, pgd_dtor, pgd);
369 }
370 
371 void check_pgt_cache(void)
372 {
373 	quicklist_trim(0, pgd_dtor, 25, 16);
374 }
375 
376