xref: /linux/arch/x86/mm/pgtable.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <asm/pgalloc.h>
5 #include <asm/pgtable.h>
6 #include <asm/tlb.h>
7 #include <asm/fixmap.h>
8 #include <asm/mtrr.h>
9 
10 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
11 
12 #ifdef CONFIG_HIGHPTE
13 #define PGALLOC_USER_GFP __GFP_HIGHMEM
14 #else
15 #define PGALLOC_USER_GFP 0
16 #endif
17 
18 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
19 
20 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
21 {
22 	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
23 }
24 
25 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
26 {
27 	struct page *pte;
28 
29 	pte = alloc_pages(__userpte_alloc_gfp, 0);
30 	if (!pte)
31 		return NULL;
32 	if (!pgtable_page_ctor(pte)) {
33 		__free_page(pte);
34 		return NULL;
35 	}
36 	return pte;
37 }
38 
39 static int __init setup_userpte(char *arg)
40 {
41 	if (!arg)
42 		return -EINVAL;
43 
44 	/*
45 	 * "userpte=nohigh" disables allocation of user pagetables in
46 	 * high memory.
47 	 */
48 	if (strcmp(arg, "nohigh") == 0)
49 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
50 	else
51 		return -EINVAL;
52 	return 0;
53 }
54 early_param("userpte", setup_userpte);
55 
56 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
57 {
58 	pgtable_page_dtor(pte);
59 	paravirt_release_pte(page_to_pfn(pte));
60 	tlb_remove_table(tlb, pte);
61 }
62 
63 #if CONFIG_PGTABLE_LEVELS > 2
64 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
65 {
66 	struct page *page = virt_to_page(pmd);
67 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
68 	/*
69 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
70 	 * entries need a full cr3 reload to flush.
71 	 */
72 #ifdef CONFIG_X86_PAE
73 	tlb->need_flush_all = 1;
74 #endif
75 	pgtable_pmd_page_dtor(page);
76 	tlb_remove_table(tlb, page);
77 }
78 
79 #if CONFIG_PGTABLE_LEVELS > 3
80 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
81 {
82 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
83 	tlb_remove_table(tlb, virt_to_page(pud));
84 }
85 
86 #if CONFIG_PGTABLE_LEVELS > 4
87 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
88 {
89 	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
90 	tlb_remove_table(tlb, virt_to_page(p4d));
91 }
92 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
93 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
94 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
95 
96 static inline void pgd_list_add(pgd_t *pgd)
97 {
98 	struct page *page = virt_to_page(pgd);
99 
100 	list_add(&page->lru, &pgd_list);
101 }
102 
103 static inline void pgd_list_del(pgd_t *pgd)
104 {
105 	struct page *page = virt_to_page(pgd);
106 
107 	list_del(&page->lru);
108 }
109 
110 #define UNSHARED_PTRS_PER_PGD				\
111 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
112 
113 
114 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
115 {
116 	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
117 	virt_to_page(pgd)->index = (pgoff_t)mm;
118 }
119 
120 struct mm_struct *pgd_page_get_mm(struct page *page)
121 {
122 	return (struct mm_struct *)page->index;
123 }
124 
125 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
126 {
127 	/* If the pgd points to a shared pagetable level (either the
128 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
129 	   references from swapper_pg_dir. */
130 	if (CONFIG_PGTABLE_LEVELS == 2 ||
131 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
132 	    CONFIG_PGTABLE_LEVELS >= 4) {
133 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
134 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
135 				KERNEL_PGD_PTRS);
136 	}
137 
138 	/* list required to sync kernel mapping updates */
139 	if (!SHARED_KERNEL_PMD) {
140 		pgd_set_mm(pgd, mm);
141 		pgd_list_add(pgd);
142 	}
143 }
144 
145 static void pgd_dtor(pgd_t *pgd)
146 {
147 	if (SHARED_KERNEL_PMD)
148 		return;
149 
150 	spin_lock(&pgd_lock);
151 	pgd_list_del(pgd);
152 	spin_unlock(&pgd_lock);
153 }
154 
155 /*
156  * List of all pgd's needed for non-PAE so it can invalidate entries
157  * in both cached and uncached pgd's; not needed for PAE since the
158  * kernel pmd is shared. If PAE were not to share the pmd a similar
159  * tactic would be needed. This is essentially codepath-based locking
160  * against pageattr.c; it is the unique case in which a valid change
161  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
162  * vmalloc faults work because attached pagetables are never freed.
163  * -- nyc
164  */
165 
166 #ifdef CONFIG_X86_PAE
167 /*
168  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
169  * updating the top-level pagetable entries to guarantee the
170  * processor notices the update.  Since this is expensive, and
171  * all 4 top-level entries are used almost immediately in a
172  * new process's life, we just pre-populate them here.
173  *
174  * Also, if we're in a paravirt environment where the kernel pmd is
175  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
176  * and initialize the kernel pmds here.
177  */
178 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
179 
180 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
181 {
182 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
183 
184 	/* Note: almost everything apart from _PAGE_PRESENT is
185 	   reserved at the pmd (PDPT) level. */
186 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
187 
188 	/*
189 	 * According to Intel App note "TLBs, Paging-Structure Caches,
190 	 * and Their Invalidation", April 2007, document 317080-001,
191 	 * section 8.1: in PAE mode we explicitly have to flush the
192 	 * TLB via cr3 if the top-level pgd is changed...
193 	 */
194 	flush_tlb_mm(mm);
195 }
196 #else  /* !CONFIG_X86_PAE */
197 
198 /* No need to prepopulate any pagetable entries in non-PAE modes. */
199 #define PREALLOCATED_PMDS	0
200 
201 #endif	/* CONFIG_X86_PAE */
202 
203 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
204 {
205 	int i;
206 
207 	for(i = 0; i < PREALLOCATED_PMDS; i++)
208 		if (pmds[i]) {
209 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
210 			free_page((unsigned long)pmds[i]);
211 			mm_dec_nr_pmds(mm);
212 		}
213 }
214 
215 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
216 {
217 	int i;
218 	bool failed = false;
219 	gfp_t gfp = PGALLOC_GFP;
220 
221 	if (mm == &init_mm)
222 		gfp &= ~__GFP_ACCOUNT;
223 
224 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
225 		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
226 		if (!pmd)
227 			failed = true;
228 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
229 			free_page((unsigned long)pmd);
230 			pmd = NULL;
231 			failed = true;
232 		}
233 		if (pmd)
234 			mm_inc_nr_pmds(mm);
235 		pmds[i] = pmd;
236 	}
237 
238 	if (failed) {
239 		free_pmds(mm, pmds);
240 		return -ENOMEM;
241 	}
242 
243 	return 0;
244 }
245 
246 /*
247  * Mop up any pmd pages which may still be attached to the pgd.
248  * Normally they will be freed by munmap/exit_mmap, but any pmd we
249  * preallocate which never got a corresponding vma will need to be
250  * freed manually.
251  */
252 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
253 {
254 	int i;
255 
256 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
257 		pgd_t pgd = pgdp[i];
258 
259 		if (pgd_val(pgd) != 0) {
260 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
261 
262 			pgdp[i] = native_make_pgd(0);
263 
264 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
265 			pmd_free(mm, pmd);
266 			mm_dec_nr_pmds(mm);
267 		}
268 	}
269 }
270 
271 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
272 {
273 	p4d_t *p4d;
274 	pud_t *pud;
275 	int i;
276 
277 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
278 		return;
279 
280 	p4d = p4d_offset(pgd, 0);
281 	pud = pud_offset(p4d, 0);
282 
283 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
284 		pmd_t *pmd = pmds[i];
285 
286 		if (i >= KERNEL_PGD_BOUNDARY)
287 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
288 			       sizeof(pmd_t) * PTRS_PER_PMD);
289 
290 		pud_populate(mm, pud, pmd);
291 	}
292 }
293 
294 /*
295  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
296  * assumes that pgd should be in one page.
297  *
298  * But kernel with PAE paging that is not running as a Xen domain
299  * only needs to allocate 32 bytes for pgd instead of one page.
300  */
301 #ifdef CONFIG_X86_PAE
302 
303 #include <linux/slab.h>
304 
305 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
306 #define PGD_ALIGN	32
307 
308 static struct kmem_cache *pgd_cache;
309 
310 static int __init pgd_cache_init(void)
311 {
312 	/*
313 	 * When PAE kernel is running as a Xen domain, it does not use
314 	 * shared kernel pmd. And this requires a whole page for pgd.
315 	 */
316 	if (!SHARED_KERNEL_PMD)
317 		return 0;
318 
319 	/*
320 	 * when PAE kernel is not running as a Xen domain, it uses
321 	 * shared kernel pmd. Shared kernel pmd does not require a whole
322 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
323 	 * During boot time, we create a 32-byte slab for pgd table allocation.
324 	 */
325 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
326 				      SLAB_PANIC, NULL);
327 	if (!pgd_cache)
328 		return -ENOMEM;
329 
330 	return 0;
331 }
332 core_initcall(pgd_cache_init);
333 
334 static inline pgd_t *_pgd_alloc(void)
335 {
336 	/*
337 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
338 	 * We allocate one page for pgd.
339 	 */
340 	if (!SHARED_KERNEL_PMD)
341 		return (pgd_t *)__get_free_page(PGALLOC_GFP);
342 
343 	/*
344 	 * Now PAE kernel is not running as a Xen domain. We can allocate
345 	 * a 32-byte slab for pgd to save memory space.
346 	 */
347 	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
348 }
349 
350 static inline void _pgd_free(pgd_t *pgd)
351 {
352 	if (!SHARED_KERNEL_PMD)
353 		free_page((unsigned long)pgd);
354 	else
355 		kmem_cache_free(pgd_cache, pgd);
356 }
357 #else
358 
359 static inline pgd_t *_pgd_alloc(void)
360 {
361 	return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
362 }
363 
364 static inline void _pgd_free(pgd_t *pgd)
365 {
366 	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
367 }
368 #endif /* CONFIG_X86_PAE */
369 
370 pgd_t *pgd_alloc(struct mm_struct *mm)
371 {
372 	pgd_t *pgd;
373 	pmd_t *pmds[PREALLOCATED_PMDS];
374 
375 	pgd = _pgd_alloc();
376 
377 	if (pgd == NULL)
378 		goto out;
379 
380 	mm->pgd = pgd;
381 
382 	if (preallocate_pmds(mm, pmds) != 0)
383 		goto out_free_pgd;
384 
385 	if (paravirt_pgd_alloc(mm) != 0)
386 		goto out_free_pmds;
387 
388 	/*
389 	 * Make sure that pre-populating the pmds is atomic with
390 	 * respect to anything walking the pgd_list, so that they
391 	 * never see a partially populated pgd.
392 	 */
393 	spin_lock(&pgd_lock);
394 
395 	pgd_ctor(mm, pgd);
396 	pgd_prepopulate_pmd(mm, pgd, pmds);
397 
398 	spin_unlock(&pgd_lock);
399 
400 	return pgd;
401 
402 out_free_pmds:
403 	free_pmds(mm, pmds);
404 out_free_pgd:
405 	_pgd_free(pgd);
406 out:
407 	return NULL;
408 }
409 
410 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
411 {
412 	pgd_mop_up_pmds(mm, pgd);
413 	pgd_dtor(pgd);
414 	paravirt_pgd_free(mm, pgd);
415 	_pgd_free(pgd);
416 }
417 
418 /*
419  * Used to set accessed or dirty bits in the page table entries
420  * on other architectures. On x86, the accessed and dirty bits
421  * are tracked by hardware. However, do_wp_page calls this function
422  * to also make the pte writeable at the same time the dirty bit is
423  * set. In that case we do actually need to write the PTE.
424  */
425 int ptep_set_access_flags(struct vm_area_struct *vma,
426 			  unsigned long address, pte_t *ptep,
427 			  pte_t entry, int dirty)
428 {
429 	int changed = !pte_same(*ptep, entry);
430 
431 	if (changed && dirty)
432 		*ptep = entry;
433 
434 	return changed;
435 }
436 
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 int pmdp_set_access_flags(struct vm_area_struct *vma,
439 			  unsigned long address, pmd_t *pmdp,
440 			  pmd_t entry, int dirty)
441 {
442 	int changed = !pmd_same(*pmdp, entry);
443 
444 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
445 
446 	if (changed && dirty) {
447 		*pmdp = entry;
448 		/*
449 		 * We had a write-protection fault here and changed the pmd
450 		 * to to more permissive. No need to flush the TLB for that,
451 		 * #PF is architecturally guaranteed to do that and in the
452 		 * worst-case we'll generate a spurious fault.
453 		 */
454 	}
455 
456 	return changed;
457 }
458 
459 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
460 			  pud_t *pudp, pud_t entry, int dirty)
461 {
462 	int changed = !pud_same(*pudp, entry);
463 
464 	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
465 
466 	if (changed && dirty) {
467 		*pudp = entry;
468 		/*
469 		 * We had a write-protection fault here and changed the pud
470 		 * to to more permissive. No need to flush the TLB for that,
471 		 * #PF is architecturally guaranteed to do that and in the
472 		 * worst-case we'll generate a spurious fault.
473 		 */
474 	}
475 
476 	return changed;
477 }
478 #endif
479 
480 int ptep_test_and_clear_young(struct vm_area_struct *vma,
481 			      unsigned long addr, pte_t *ptep)
482 {
483 	int ret = 0;
484 
485 	if (pte_young(*ptep))
486 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
487 					 (unsigned long *) &ptep->pte);
488 
489 	return ret;
490 }
491 
492 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
493 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
494 			      unsigned long addr, pmd_t *pmdp)
495 {
496 	int ret = 0;
497 
498 	if (pmd_young(*pmdp))
499 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
500 					 (unsigned long *)pmdp);
501 
502 	return ret;
503 }
504 int pudp_test_and_clear_young(struct vm_area_struct *vma,
505 			      unsigned long addr, pud_t *pudp)
506 {
507 	int ret = 0;
508 
509 	if (pud_young(*pudp))
510 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
511 					 (unsigned long *)pudp);
512 
513 	return ret;
514 }
515 #endif
516 
517 int ptep_clear_flush_young(struct vm_area_struct *vma,
518 			   unsigned long address, pte_t *ptep)
519 {
520 	/*
521 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
522 	 * doesn't cause data corruption. [ It could cause incorrect
523 	 * page aging and the (mistaken) reclaim of hot pages, but the
524 	 * chance of that should be relatively low. ]
525 	 *
526 	 * So as a performance optimization don't flush the TLB when
527 	 * clearing the accessed bit, it will eventually be flushed by
528 	 * a context switch or a VM operation anyway. [ In the rare
529 	 * event of it not getting flushed for a long time the delay
530 	 * shouldn't really matter because there's no real memory
531 	 * pressure for swapout to react to. ]
532 	 */
533 	return ptep_test_and_clear_young(vma, address, ptep);
534 }
535 
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 int pmdp_clear_flush_young(struct vm_area_struct *vma,
538 			   unsigned long address, pmd_t *pmdp)
539 {
540 	int young;
541 
542 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
543 
544 	young = pmdp_test_and_clear_young(vma, address, pmdp);
545 	if (young)
546 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
547 
548 	return young;
549 }
550 #endif
551 
552 /**
553  * reserve_top_address - reserves a hole in the top of kernel address space
554  * @reserve - size of hole to reserve
555  *
556  * Can be used to relocate the fixmap area and poke a hole in the top
557  * of kernel address space to make room for a hypervisor.
558  */
559 void __init reserve_top_address(unsigned long reserve)
560 {
561 #ifdef CONFIG_X86_32
562 	BUG_ON(fixmaps_set > 0);
563 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
564 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
565 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
566 #endif
567 }
568 
569 int fixmaps_set;
570 
571 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
572 {
573 	unsigned long address = __fix_to_virt(idx);
574 
575 	if (idx >= __end_of_fixed_addresses) {
576 		BUG();
577 		return;
578 	}
579 	set_pte_vaddr(address, pte);
580 	fixmaps_set++;
581 }
582 
583 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
584 		       pgprot_t flags)
585 {
586 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
587 }
588 
589 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
590 #ifdef CONFIG_X86_5LEVEL
591 /**
592  * p4d_set_huge - setup kernel P4D mapping
593  *
594  * No 512GB pages yet -- always return 0
595  */
596 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
597 {
598 	return 0;
599 }
600 
601 /**
602  * p4d_clear_huge - clear kernel P4D mapping when it is set
603  *
604  * No 512GB pages yet -- always return 0
605  */
606 int p4d_clear_huge(p4d_t *p4d)
607 {
608 	return 0;
609 }
610 #endif
611 
612 /**
613  * pud_set_huge - setup kernel PUD mapping
614  *
615  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
616  * function sets up a huge page only if any of the following conditions are met:
617  *
618  * - MTRRs are disabled, or
619  *
620  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
621  *
622  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
623  *   has no effect on the requested PAT memory type.
624  *
625  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
626  * page mapping attempt fails.
627  *
628  * Returns 1 on success and 0 on failure.
629  */
630 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
631 {
632 	u8 mtrr, uniform;
633 
634 	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
635 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
636 	    (mtrr != MTRR_TYPE_WRBACK))
637 		return 0;
638 
639 	prot = pgprot_4k_2_large(prot);
640 
641 	set_pte((pte_t *)pud, pfn_pte(
642 		(u64)addr >> PAGE_SHIFT,
643 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
644 
645 	return 1;
646 }
647 
648 /**
649  * pmd_set_huge - setup kernel PMD mapping
650  *
651  * See text over pud_set_huge() above.
652  *
653  * Returns 1 on success and 0 on failure.
654  */
655 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
656 {
657 	u8 mtrr, uniform;
658 
659 	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
660 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
661 	    (mtrr != MTRR_TYPE_WRBACK)) {
662 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
663 			     __func__, addr, addr + PMD_SIZE);
664 		return 0;
665 	}
666 
667 	prot = pgprot_4k_2_large(prot);
668 
669 	set_pte((pte_t *)pmd, pfn_pte(
670 		(u64)addr >> PAGE_SHIFT,
671 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
672 
673 	return 1;
674 }
675 
676 /**
677  * pud_clear_huge - clear kernel PUD mapping when it is set
678  *
679  * Returns 1 on success and 0 on failure (no PUD map is found).
680  */
681 int pud_clear_huge(pud_t *pud)
682 {
683 	if (pud_large(*pud)) {
684 		pud_clear(pud);
685 		return 1;
686 	}
687 
688 	return 0;
689 }
690 
691 /**
692  * pmd_clear_huge - clear kernel PMD mapping when it is set
693  *
694  * Returns 1 on success and 0 on failure (no PMD map is found).
695  */
696 int pmd_clear_huge(pmd_t *pmd)
697 {
698 	if (pmd_large(*pmd)) {
699 		pmd_clear(pmd);
700 		return 1;
701 	}
702 
703 	return 0;
704 }
705 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
706