1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/gfp.h> 4 #include <asm/pgalloc.h> 5 #include <asm/pgtable.h> 6 #include <asm/tlb.h> 7 #include <asm/fixmap.h> 8 #include <asm/mtrr.h> 9 10 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) 11 12 #ifdef CONFIG_HIGHPTE 13 #define PGALLOC_USER_GFP __GFP_HIGHMEM 14 #else 15 #define PGALLOC_USER_GFP 0 16 #endif 17 18 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; 19 20 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) 21 { 22 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT); 23 } 24 25 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) 26 { 27 struct page *pte; 28 29 pte = alloc_pages(__userpte_alloc_gfp, 0); 30 if (!pte) 31 return NULL; 32 if (!pgtable_page_ctor(pte)) { 33 __free_page(pte); 34 return NULL; 35 } 36 return pte; 37 } 38 39 static int __init setup_userpte(char *arg) 40 { 41 if (!arg) 42 return -EINVAL; 43 44 /* 45 * "userpte=nohigh" disables allocation of user pagetables in 46 * high memory. 47 */ 48 if (strcmp(arg, "nohigh") == 0) 49 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 50 else 51 return -EINVAL; 52 return 0; 53 } 54 early_param("userpte", setup_userpte); 55 56 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) 57 { 58 pgtable_page_dtor(pte); 59 paravirt_release_pte(page_to_pfn(pte)); 60 tlb_remove_table(tlb, pte); 61 } 62 63 #if CONFIG_PGTABLE_LEVELS > 2 64 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) 65 { 66 struct page *page = virt_to_page(pmd); 67 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); 68 /* 69 * NOTE! For PAE, any changes to the top page-directory-pointer-table 70 * entries need a full cr3 reload to flush. 71 */ 72 #ifdef CONFIG_X86_PAE 73 tlb->need_flush_all = 1; 74 #endif 75 pgtable_pmd_page_dtor(page); 76 tlb_remove_table(tlb, page); 77 } 78 79 #if CONFIG_PGTABLE_LEVELS > 3 80 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) 81 { 82 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); 83 tlb_remove_table(tlb, virt_to_page(pud)); 84 } 85 86 #if CONFIG_PGTABLE_LEVELS > 4 87 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d) 88 { 89 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT); 90 tlb_remove_table(tlb, virt_to_page(p4d)); 91 } 92 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 93 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 94 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 95 96 static inline void pgd_list_add(pgd_t *pgd) 97 { 98 struct page *page = virt_to_page(pgd); 99 100 list_add(&page->lru, &pgd_list); 101 } 102 103 static inline void pgd_list_del(pgd_t *pgd) 104 { 105 struct page *page = virt_to_page(pgd); 106 107 list_del(&page->lru); 108 } 109 110 #define UNSHARED_PTRS_PER_PGD \ 111 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) 112 113 114 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) 115 { 116 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm)); 117 virt_to_page(pgd)->index = (pgoff_t)mm; 118 } 119 120 struct mm_struct *pgd_page_get_mm(struct page *page) 121 { 122 return (struct mm_struct *)page->index; 123 } 124 125 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) 126 { 127 /* If the pgd points to a shared pagetable level (either the 128 ptes in non-PAE, or shared PMD in PAE), then just copy the 129 references from swapper_pg_dir. */ 130 if (CONFIG_PGTABLE_LEVELS == 2 || 131 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || 132 CONFIG_PGTABLE_LEVELS >= 4) { 133 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, 134 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 135 KERNEL_PGD_PTRS); 136 } 137 138 /* list required to sync kernel mapping updates */ 139 if (!SHARED_KERNEL_PMD) { 140 pgd_set_mm(pgd, mm); 141 pgd_list_add(pgd); 142 } 143 } 144 145 static void pgd_dtor(pgd_t *pgd) 146 { 147 if (SHARED_KERNEL_PMD) 148 return; 149 150 spin_lock(&pgd_lock); 151 pgd_list_del(pgd); 152 spin_unlock(&pgd_lock); 153 } 154 155 /* 156 * List of all pgd's needed for non-PAE so it can invalidate entries 157 * in both cached and uncached pgd's; not needed for PAE since the 158 * kernel pmd is shared. If PAE were not to share the pmd a similar 159 * tactic would be needed. This is essentially codepath-based locking 160 * against pageattr.c; it is the unique case in which a valid change 161 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 162 * vmalloc faults work because attached pagetables are never freed. 163 * -- nyc 164 */ 165 166 #ifdef CONFIG_X86_PAE 167 /* 168 * In PAE mode, we need to do a cr3 reload (=tlb flush) when 169 * updating the top-level pagetable entries to guarantee the 170 * processor notices the update. Since this is expensive, and 171 * all 4 top-level entries are used almost immediately in a 172 * new process's life, we just pre-populate them here. 173 * 174 * Also, if we're in a paravirt environment where the kernel pmd is 175 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate 176 * and initialize the kernel pmds here. 177 */ 178 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD 179 180 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) 181 { 182 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); 183 184 /* Note: almost everything apart from _PAGE_PRESENT is 185 reserved at the pmd (PDPT) level. */ 186 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); 187 188 /* 189 * According to Intel App note "TLBs, Paging-Structure Caches, 190 * and Their Invalidation", April 2007, document 317080-001, 191 * section 8.1: in PAE mode we explicitly have to flush the 192 * TLB via cr3 if the top-level pgd is changed... 193 */ 194 flush_tlb_mm(mm); 195 } 196 #else /* !CONFIG_X86_PAE */ 197 198 /* No need to prepopulate any pagetable entries in non-PAE modes. */ 199 #define PREALLOCATED_PMDS 0 200 201 #endif /* CONFIG_X86_PAE */ 202 203 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[]) 204 { 205 int i; 206 207 for(i = 0; i < PREALLOCATED_PMDS; i++) 208 if (pmds[i]) { 209 pgtable_pmd_page_dtor(virt_to_page(pmds[i])); 210 free_page((unsigned long)pmds[i]); 211 mm_dec_nr_pmds(mm); 212 } 213 } 214 215 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[]) 216 { 217 int i; 218 bool failed = false; 219 gfp_t gfp = PGALLOC_GFP; 220 221 if (mm == &init_mm) 222 gfp &= ~__GFP_ACCOUNT; 223 224 for(i = 0; i < PREALLOCATED_PMDS; i++) { 225 pmd_t *pmd = (pmd_t *)__get_free_page(gfp); 226 if (!pmd) 227 failed = true; 228 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) { 229 free_page((unsigned long)pmd); 230 pmd = NULL; 231 failed = true; 232 } 233 if (pmd) 234 mm_inc_nr_pmds(mm); 235 pmds[i] = pmd; 236 } 237 238 if (failed) { 239 free_pmds(mm, pmds); 240 return -ENOMEM; 241 } 242 243 return 0; 244 } 245 246 /* 247 * Mop up any pmd pages which may still be attached to the pgd. 248 * Normally they will be freed by munmap/exit_mmap, but any pmd we 249 * preallocate which never got a corresponding vma will need to be 250 * freed manually. 251 */ 252 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) 253 { 254 int i; 255 256 for(i = 0; i < PREALLOCATED_PMDS; i++) { 257 pgd_t pgd = pgdp[i]; 258 259 if (pgd_val(pgd) != 0) { 260 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); 261 262 pgdp[i] = native_make_pgd(0); 263 264 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); 265 pmd_free(mm, pmd); 266 mm_dec_nr_pmds(mm); 267 } 268 } 269 } 270 271 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) 272 { 273 p4d_t *p4d; 274 pud_t *pud; 275 int i; 276 277 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ 278 return; 279 280 p4d = p4d_offset(pgd, 0); 281 pud = pud_offset(p4d, 0); 282 283 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { 284 pmd_t *pmd = pmds[i]; 285 286 if (i >= KERNEL_PGD_BOUNDARY) 287 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), 288 sizeof(pmd_t) * PTRS_PER_PMD); 289 290 pud_populate(mm, pud, pmd); 291 } 292 } 293 294 /* 295 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also 296 * assumes that pgd should be in one page. 297 * 298 * But kernel with PAE paging that is not running as a Xen domain 299 * only needs to allocate 32 bytes for pgd instead of one page. 300 */ 301 #ifdef CONFIG_X86_PAE 302 303 #include <linux/slab.h> 304 305 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 306 #define PGD_ALIGN 32 307 308 static struct kmem_cache *pgd_cache; 309 310 static int __init pgd_cache_init(void) 311 { 312 /* 313 * When PAE kernel is running as a Xen domain, it does not use 314 * shared kernel pmd. And this requires a whole page for pgd. 315 */ 316 if (!SHARED_KERNEL_PMD) 317 return 0; 318 319 /* 320 * when PAE kernel is not running as a Xen domain, it uses 321 * shared kernel pmd. Shared kernel pmd does not require a whole 322 * page for pgd. We are able to just allocate a 32-byte for pgd. 323 * During boot time, we create a 32-byte slab for pgd table allocation. 324 */ 325 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, 326 SLAB_PANIC, NULL); 327 if (!pgd_cache) 328 return -ENOMEM; 329 330 return 0; 331 } 332 core_initcall(pgd_cache_init); 333 334 static inline pgd_t *_pgd_alloc(void) 335 { 336 /* 337 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain. 338 * We allocate one page for pgd. 339 */ 340 if (!SHARED_KERNEL_PMD) 341 return (pgd_t *)__get_free_page(PGALLOC_GFP); 342 343 /* 344 * Now PAE kernel is not running as a Xen domain. We can allocate 345 * a 32-byte slab for pgd to save memory space. 346 */ 347 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP); 348 } 349 350 static inline void _pgd_free(pgd_t *pgd) 351 { 352 if (!SHARED_KERNEL_PMD) 353 free_page((unsigned long)pgd); 354 else 355 kmem_cache_free(pgd_cache, pgd); 356 } 357 #else 358 static inline pgd_t *_pgd_alloc(void) 359 { 360 return (pgd_t *)__get_free_page(PGALLOC_GFP); 361 } 362 363 static inline void _pgd_free(pgd_t *pgd) 364 { 365 free_page((unsigned long)pgd); 366 } 367 #endif /* CONFIG_X86_PAE */ 368 369 pgd_t *pgd_alloc(struct mm_struct *mm) 370 { 371 pgd_t *pgd; 372 pmd_t *pmds[PREALLOCATED_PMDS]; 373 374 pgd = _pgd_alloc(); 375 376 if (pgd == NULL) 377 goto out; 378 379 mm->pgd = pgd; 380 381 if (preallocate_pmds(mm, pmds) != 0) 382 goto out_free_pgd; 383 384 if (paravirt_pgd_alloc(mm) != 0) 385 goto out_free_pmds; 386 387 /* 388 * Make sure that pre-populating the pmds is atomic with 389 * respect to anything walking the pgd_list, so that they 390 * never see a partially populated pgd. 391 */ 392 spin_lock(&pgd_lock); 393 394 pgd_ctor(mm, pgd); 395 pgd_prepopulate_pmd(mm, pgd, pmds); 396 397 spin_unlock(&pgd_lock); 398 399 return pgd; 400 401 out_free_pmds: 402 free_pmds(mm, pmds); 403 out_free_pgd: 404 _pgd_free(pgd); 405 out: 406 return NULL; 407 } 408 409 void pgd_free(struct mm_struct *mm, pgd_t *pgd) 410 { 411 pgd_mop_up_pmds(mm, pgd); 412 pgd_dtor(pgd); 413 paravirt_pgd_free(mm, pgd); 414 _pgd_free(pgd); 415 } 416 417 /* 418 * Used to set accessed or dirty bits in the page table entries 419 * on other architectures. On x86, the accessed and dirty bits 420 * are tracked by hardware. However, do_wp_page calls this function 421 * to also make the pte writeable at the same time the dirty bit is 422 * set. In that case we do actually need to write the PTE. 423 */ 424 int ptep_set_access_flags(struct vm_area_struct *vma, 425 unsigned long address, pte_t *ptep, 426 pte_t entry, int dirty) 427 { 428 int changed = !pte_same(*ptep, entry); 429 430 if (changed && dirty) 431 *ptep = entry; 432 433 return changed; 434 } 435 436 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 437 int pmdp_set_access_flags(struct vm_area_struct *vma, 438 unsigned long address, pmd_t *pmdp, 439 pmd_t entry, int dirty) 440 { 441 int changed = !pmd_same(*pmdp, entry); 442 443 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 444 445 if (changed && dirty) { 446 *pmdp = entry; 447 /* 448 * We had a write-protection fault here and changed the pmd 449 * to to more permissive. No need to flush the TLB for that, 450 * #PF is architecturally guaranteed to do that and in the 451 * worst-case we'll generate a spurious fault. 452 */ 453 } 454 455 return changed; 456 } 457 458 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 459 pud_t *pudp, pud_t entry, int dirty) 460 { 461 int changed = !pud_same(*pudp, entry); 462 463 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 464 465 if (changed && dirty) { 466 *pudp = entry; 467 /* 468 * We had a write-protection fault here and changed the pud 469 * to to more permissive. No need to flush the TLB for that, 470 * #PF is architecturally guaranteed to do that and in the 471 * worst-case we'll generate a spurious fault. 472 */ 473 } 474 475 return changed; 476 } 477 #endif 478 479 int ptep_test_and_clear_young(struct vm_area_struct *vma, 480 unsigned long addr, pte_t *ptep) 481 { 482 int ret = 0; 483 484 if (pte_young(*ptep)) 485 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 486 (unsigned long *) &ptep->pte); 487 488 return ret; 489 } 490 491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 492 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 493 unsigned long addr, pmd_t *pmdp) 494 { 495 int ret = 0; 496 497 if (pmd_young(*pmdp)) 498 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 499 (unsigned long *)pmdp); 500 501 return ret; 502 } 503 int pudp_test_and_clear_young(struct vm_area_struct *vma, 504 unsigned long addr, pud_t *pudp) 505 { 506 int ret = 0; 507 508 if (pud_young(*pudp)) 509 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 510 (unsigned long *)pudp); 511 512 return ret; 513 } 514 #endif 515 516 int ptep_clear_flush_young(struct vm_area_struct *vma, 517 unsigned long address, pte_t *ptep) 518 { 519 /* 520 * On x86 CPUs, clearing the accessed bit without a TLB flush 521 * doesn't cause data corruption. [ It could cause incorrect 522 * page aging and the (mistaken) reclaim of hot pages, but the 523 * chance of that should be relatively low. ] 524 * 525 * So as a performance optimization don't flush the TLB when 526 * clearing the accessed bit, it will eventually be flushed by 527 * a context switch or a VM operation anyway. [ In the rare 528 * event of it not getting flushed for a long time the delay 529 * shouldn't really matter because there's no real memory 530 * pressure for swapout to react to. ] 531 */ 532 return ptep_test_and_clear_young(vma, address, ptep); 533 } 534 535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 536 int pmdp_clear_flush_young(struct vm_area_struct *vma, 537 unsigned long address, pmd_t *pmdp) 538 { 539 int young; 540 541 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 542 543 young = pmdp_test_and_clear_young(vma, address, pmdp); 544 if (young) 545 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 546 547 return young; 548 } 549 #endif 550 551 /** 552 * reserve_top_address - reserves a hole in the top of kernel address space 553 * @reserve - size of hole to reserve 554 * 555 * Can be used to relocate the fixmap area and poke a hole in the top 556 * of kernel address space to make room for a hypervisor. 557 */ 558 void __init reserve_top_address(unsigned long reserve) 559 { 560 #ifdef CONFIG_X86_32 561 BUG_ON(fixmaps_set > 0); 562 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; 563 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", 564 -reserve, __FIXADDR_TOP + PAGE_SIZE); 565 #endif 566 } 567 568 int fixmaps_set; 569 570 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) 571 { 572 unsigned long address = __fix_to_virt(idx); 573 574 if (idx >= __end_of_fixed_addresses) { 575 BUG(); 576 return; 577 } 578 set_pte_vaddr(address, pte); 579 fixmaps_set++; 580 } 581 582 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, 583 pgprot_t flags) 584 { 585 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); 586 } 587 588 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 589 #ifdef CONFIG_X86_5LEVEL 590 /** 591 * p4d_set_huge - setup kernel P4D mapping 592 * 593 * No 512GB pages yet -- always return 0 594 */ 595 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 596 { 597 return 0; 598 } 599 600 /** 601 * p4d_clear_huge - clear kernel P4D mapping when it is set 602 * 603 * No 512GB pages yet -- always return 0 604 */ 605 int p4d_clear_huge(p4d_t *p4d) 606 { 607 return 0; 608 } 609 #endif 610 611 /** 612 * pud_set_huge - setup kernel PUD mapping 613 * 614 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this 615 * function sets up a huge page only if any of the following conditions are met: 616 * 617 * - MTRRs are disabled, or 618 * 619 * - MTRRs are enabled and the range is completely covered by a single MTRR, or 620 * 621 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which 622 * has no effect on the requested PAT memory type. 623 * 624 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger 625 * page mapping attempt fails. 626 * 627 * Returns 1 on success and 0 on failure. 628 */ 629 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 630 { 631 u8 mtrr, uniform; 632 633 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); 634 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 635 (mtrr != MTRR_TYPE_WRBACK)) 636 return 0; 637 638 prot = pgprot_4k_2_large(prot); 639 640 set_pte((pte_t *)pud, pfn_pte( 641 (u64)addr >> PAGE_SHIFT, 642 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 643 644 return 1; 645 } 646 647 /** 648 * pmd_set_huge - setup kernel PMD mapping 649 * 650 * See text over pud_set_huge() above. 651 * 652 * Returns 1 on success and 0 on failure. 653 */ 654 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 655 { 656 u8 mtrr, uniform; 657 658 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); 659 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 660 (mtrr != MTRR_TYPE_WRBACK)) { 661 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", 662 __func__, addr, addr + PMD_SIZE); 663 return 0; 664 } 665 666 prot = pgprot_4k_2_large(prot); 667 668 set_pte((pte_t *)pmd, pfn_pte( 669 (u64)addr >> PAGE_SHIFT, 670 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 671 672 return 1; 673 } 674 675 /** 676 * pud_clear_huge - clear kernel PUD mapping when it is set 677 * 678 * Returns 1 on success and 0 on failure (no PUD map is found). 679 */ 680 int pud_clear_huge(pud_t *pud) 681 { 682 if (pud_large(*pud)) { 683 pud_clear(pud); 684 return 1; 685 } 686 687 return 0; 688 } 689 690 /** 691 * pmd_clear_huge - clear kernel PMD mapping when it is set 692 * 693 * Returns 1 on success and 0 on failure (no PMD map is found). 694 */ 695 int pmd_clear_huge(pmd_t *pmd) 696 { 697 if (pmd_large(*pmd)) { 698 pmd_clear(pmd); 699 return 1; 700 } 701 702 return 0; 703 } 704 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 705