1 #include <linux/mm.h> 2 #include <linux/gfp.h> 3 #include <asm/pgalloc.h> 4 #include <asm/pgtable.h> 5 #include <asm/tlb.h> 6 #include <asm/fixmap.h> 7 #include <asm/mtrr.h> 8 9 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO 10 11 #ifdef CONFIG_HIGHPTE 12 #define PGALLOC_USER_GFP __GFP_HIGHMEM 13 #else 14 #define PGALLOC_USER_GFP 0 15 #endif 16 17 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; 18 19 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) 20 { 21 return (pte_t *)__get_free_page(PGALLOC_GFP); 22 } 23 24 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) 25 { 26 struct page *pte; 27 28 pte = alloc_pages(__userpte_alloc_gfp, 0); 29 if (!pte) 30 return NULL; 31 if (!pgtable_page_ctor(pte)) { 32 __free_page(pte); 33 return NULL; 34 } 35 return pte; 36 } 37 38 static int __init setup_userpte(char *arg) 39 { 40 if (!arg) 41 return -EINVAL; 42 43 /* 44 * "userpte=nohigh" disables allocation of user pagetables in 45 * high memory. 46 */ 47 if (strcmp(arg, "nohigh") == 0) 48 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 49 else 50 return -EINVAL; 51 return 0; 52 } 53 early_param("userpte", setup_userpte); 54 55 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) 56 { 57 pgtable_page_dtor(pte); 58 paravirt_release_pte(page_to_pfn(pte)); 59 tlb_remove_page(tlb, pte); 60 } 61 62 #if CONFIG_PGTABLE_LEVELS > 2 63 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) 64 { 65 struct page *page = virt_to_page(pmd); 66 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); 67 /* 68 * NOTE! For PAE, any changes to the top page-directory-pointer-table 69 * entries need a full cr3 reload to flush. 70 */ 71 #ifdef CONFIG_X86_PAE 72 tlb->need_flush_all = 1; 73 #endif 74 pgtable_pmd_page_dtor(page); 75 tlb_remove_page(tlb, page); 76 } 77 78 #if CONFIG_PGTABLE_LEVELS > 3 79 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) 80 { 81 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); 82 tlb_remove_page(tlb, virt_to_page(pud)); 83 } 84 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 85 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 86 87 static inline void pgd_list_add(pgd_t *pgd) 88 { 89 struct page *page = virt_to_page(pgd); 90 91 list_add(&page->lru, &pgd_list); 92 } 93 94 static inline void pgd_list_del(pgd_t *pgd) 95 { 96 struct page *page = virt_to_page(pgd); 97 98 list_del(&page->lru); 99 } 100 101 #define UNSHARED_PTRS_PER_PGD \ 102 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) 103 104 105 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) 106 { 107 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm)); 108 virt_to_page(pgd)->index = (pgoff_t)mm; 109 } 110 111 struct mm_struct *pgd_page_get_mm(struct page *page) 112 { 113 return (struct mm_struct *)page->index; 114 } 115 116 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) 117 { 118 /* If the pgd points to a shared pagetable level (either the 119 ptes in non-PAE, or shared PMD in PAE), then just copy the 120 references from swapper_pg_dir. */ 121 if (CONFIG_PGTABLE_LEVELS == 2 || 122 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || 123 CONFIG_PGTABLE_LEVELS == 4) { 124 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, 125 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 126 KERNEL_PGD_PTRS); 127 } 128 129 /* list required to sync kernel mapping updates */ 130 if (!SHARED_KERNEL_PMD) { 131 pgd_set_mm(pgd, mm); 132 pgd_list_add(pgd); 133 } 134 } 135 136 static void pgd_dtor(pgd_t *pgd) 137 { 138 if (SHARED_KERNEL_PMD) 139 return; 140 141 spin_lock(&pgd_lock); 142 pgd_list_del(pgd); 143 spin_unlock(&pgd_lock); 144 } 145 146 /* 147 * List of all pgd's needed for non-PAE so it can invalidate entries 148 * in both cached and uncached pgd's; not needed for PAE since the 149 * kernel pmd is shared. If PAE were not to share the pmd a similar 150 * tactic would be needed. This is essentially codepath-based locking 151 * against pageattr.c; it is the unique case in which a valid change 152 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 153 * vmalloc faults work because attached pagetables are never freed. 154 * -- nyc 155 */ 156 157 #ifdef CONFIG_X86_PAE 158 /* 159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when 160 * updating the top-level pagetable entries to guarantee the 161 * processor notices the update. Since this is expensive, and 162 * all 4 top-level entries are used almost immediately in a 163 * new process's life, we just pre-populate them here. 164 * 165 * Also, if we're in a paravirt environment where the kernel pmd is 166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate 167 * and initialize the kernel pmds here. 168 */ 169 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD 170 171 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) 172 { 173 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); 174 175 /* Note: almost everything apart from _PAGE_PRESENT is 176 reserved at the pmd (PDPT) level. */ 177 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); 178 179 /* 180 * According to Intel App note "TLBs, Paging-Structure Caches, 181 * and Their Invalidation", April 2007, document 317080-001, 182 * section 8.1: in PAE mode we explicitly have to flush the 183 * TLB via cr3 if the top-level pgd is changed... 184 */ 185 flush_tlb_mm(mm); 186 } 187 #else /* !CONFIG_X86_PAE */ 188 189 /* No need to prepopulate any pagetable entries in non-PAE modes. */ 190 #define PREALLOCATED_PMDS 0 191 192 #endif /* CONFIG_X86_PAE */ 193 194 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[]) 195 { 196 int i; 197 198 for(i = 0; i < PREALLOCATED_PMDS; i++) 199 if (pmds[i]) { 200 pgtable_pmd_page_dtor(virt_to_page(pmds[i])); 201 free_page((unsigned long)pmds[i]); 202 mm_dec_nr_pmds(mm); 203 } 204 } 205 206 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[]) 207 { 208 int i; 209 bool failed = false; 210 211 for(i = 0; i < PREALLOCATED_PMDS; i++) { 212 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP); 213 if (!pmd) 214 failed = true; 215 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) { 216 free_page((unsigned long)pmd); 217 pmd = NULL; 218 failed = true; 219 } 220 if (pmd) 221 mm_inc_nr_pmds(mm); 222 pmds[i] = pmd; 223 } 224 225 if (failed) { 226 free_pmds(mm, pmds); 227 return -ENOMEM; 228 } 229 230 return 0; 231 } 232 233 /* 234 * Mop up any pmd pages which may still be attached to the pgd. 235 * Normally they will be freed by munmap/exit_mmap, but any pmd we 236 * preallocate which never got a corresponding vma will need to be 237 * freed manually. 238 */ 239 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) 240 { 241 int i; 242 243 for(i = 0; i < PREALLOCATED_PMDS; i++) { 244 pgd_t pgd = pgdp[i]; 245 246 if (pgd_val(pgd) != 0) { 247 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); 248 249 pgdp[i] = native_make_pgd(0); 250 251 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); 252 pmd_free(mm, pmd); 253 mm_dec_nr_pmds(mm); 254 } 255 } 256 } 257 258 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) 259 { 260 pud_t *pud; 261 int i; 262 263 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ 264 return; 265 266 pud = pud_offset(pgd, 0); 267 268 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { 269 pmd_t *pmd = pmds[i]; 270 271 if (i >= KERNEL_PGD_BOUNDARY) 272 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), 273 sizeof(pmd_t) * PTRS_PER_PMD); 274 275 pud_populate(mm, pud, pmd); 276 } 277 } 278 279 /* 280 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also 281 * assumes that pgd should be in one page. 282 * 283 * But kernel with PAE paging that is not running as a Xen domain 284 * only needs to allocate 32 bytes for pgd instead of one page. 285 */ 286 #ifdef CONFIG_X86_PAE 287 288 #include <linux/slab.h> 289 290 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 291 #define PGD_ALIGN 32 292 293 static struct kmem_cache *pgd_cache; 294 295 static int __init pgd_cache_init(void) 296 { 297 /* 298 * When PAE kernel is running as a Xen domain, it does not use 299 * shared kernel pmd. And this requires a whole page for pgd. 300 */ 301 if (!SHARED_KERNEL_PMD) 302 return 0; 303 304 /* 305 * when PAE kernel is not running as a Xen domain, it uses 306 * shared kernel pmd. Shared kernel pmd does not require a whole 307 * page for pgd. We are able to just allocate a 32-byte for pgd. 308 * During boot time, we create a 32-byte slab for pgd table allocation. 309 */ 310 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, 311 SLAB_PANIC, NULL); 312 if (!pgd_cache) 313 return -ENOMEM; 314 315 return 0; 316 } 317 core_initcall(pgd_cache_init); 318 319 static inline pgd_t *_pgd_alloc(void) 320 { 321 /* 322 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain. 323 * We allocate one page for pgd. 324 */ 325 if (!SHARED_KERNEL_PMD) 326 return (pgd_t *)__get_free_page(PGALLOC_GFP); 327 328 /* 329 * Now PAE kernel is not running as a Xen domain. We can allocate 330 * a 32-byte slab for pgd to save memory space. 331 */ 332 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP); 333 } 334 335 static inline void _pgd_free(pgd_t *pgd) 336 { 337 if (!SHARED_KERNEL_PMD) 338 free_page((unsigned long)pgd); 339 else 340 kmem_cache_free(pgd_cache, pgd); 341 } 342 #else 343 static inline pgd_t *_pgd_alloc(void) 344 { 345 return (pgd_t *)__get_free_page(PGALLOC_GFP); 346 } 347 348 static inline void _pgd_free(pgd_t *pgd) 349 { 350 free_page((unsigned long)pgd); 351 } 352 #endif /* CONFIG_X86_PAE */ 353 354 pgd_t *pgd_alloc(struct mm_struct *mm) 355 { 356 pgd_t *pgd; 357 pmd_t *pmds[PREALLOCATED_PMDS]; 358 359 pgd = _pgd_alloc(); 360 361 if (pgd == NULL) 362 goto out; 363 364 mm->pgd = pgd; 365 366 if (preallocate_pmds(mm, pmds) != 0) 367 goto out_free_pgd; 368 369 if (paravirt_pgd_alloc(mm) != 0) 370 goto out_free_pmds; 371 372 /* 373 * Make sure that pre-populating the pmds is atomic with 374 * respect to anything walking the pgd_list, so that they 375 * never see a partially populated pgd. 376 */ 377 spin_lock(&pgd_lock); 378 379 pgd_ctor(mm, pgd); 380 pgd_prepopulate_pmd(mm, pgd, pmds); 381 382 spin_unlock(&pgd_lock); 383 384 return pgd; 385 386 out_free_pmds: 387 free_pmds(mm, pmds); 388 out_free_pgd: 389 _pgd_free(pgd); 390 out: 391 return NULL; 392 } 393 394 void pgd_free(struct mm_struct *mm, pgd_t *pgd) 395 { 396 pgd_mop_up_pmds(mm, pgd); 397 pgd_dtor(pgd); 398 paravirt_pgd_free(mm, pgd); 399 _pgd_free(pgd); 400 } 401 402 /* 403 * Used to set accessed or dirty bits in the page table entries 404 * on other architectures. On x86, the accessed and dirty bits 405 * are tracked by hardware. However, do_wp_page calls this function 406 * to also make the pte writeable at the same time the dirty bit is 407 * set. In that case we do actually need to write the PTE. 408 */ 409 int ptep_set_access_flags(struct vm_area_struct *vma, 410 unsigned long address, pte_t *ptep, 411 pte_t entry, int dirty) 412 { 413 int changed = !pte_same(*ptep, entry); 414 415 if (changed && dirty) { 416 *ptep = entry; 417 pte_update_defer(vma->vm_mm, address, ptep); 418 } 419 420 return changed; 421 } 422 423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 424 int pmdp_set_access_flags(struct vm_area_struct *vma, 425 unsigned long address, pmd_t *pmdp, 426 pmd_t entry, int dirty) 427 { 428 int changed = !pmd_same(*pmdp, entry); 429 430 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 431 432 if (changed && dirty) { 433 *pmdp = entry; 434 pmd_update_defer(vma->vm_mm, address, pmdp); 435 /* 436 * We had a write-protection fault here and changed the pmd 437 * to to more permissive. No need to flush the TLB for that, 438 * #PF is architecturally guaranteed to do that and in the 439 * worst-case we'll generate a spurious fault. 440 */ 441 } 442 443 return changed; 444 } 445 #endif 446 447 int ptep_test_and_clear_young(struct vm_area_struct *vma, 448 unsigned long addr, pte_t *ptep) 449 { 450 int ret = 0; 451 452 if (pte_young(*ptep)) 453 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 454 (unsigned long *) &ptep->pte); 455 456 if (ret) 457 pte_update(vma->vm_mm, addr, ptep); 458 459 return ret; 460 } 461 462 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 463 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 464 unsigned long addr, pmd_t *pmdp) 465 { 466 int ret = 0; 467 468 if (pmd_young(*pmdp)) 469 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 470 (unsigned long *)pmdp); 471 472 if (ret) 473 pmd_update(vma->vm_mm, addr, pmdp); 474 475 return ret; 476 } 477 #endif 478 479 int ptep_clear_flush_young(struct vm_area_struct *vma, 480 unsigned long address, pte_t *ptep) 481 { 482 /* 483 * On x86 CPUs, clearing the accessed bit without a TLB flush 484 * doesn't cause data corruption. [ It could cause incorrect 485 * page aging and the (mistaken) reclaim of hot pages, but the 486 * chance of that should be relatively low. ] 487 * 488 * So as a performance optimization don't flush the TLB when 489 * clearing the accessed bit, it will eventually be flushed by 490 * a context switch or a VM operation anyway. [ In the rare 491 * event of it not getting flushed for a long time the delay 492 * shouldn't really matter because there's no real memory 493 * pressure for swapout to react to. ] 494 */ 495 return ptep_test_and_clear_young(vma, address, ptep); 496 } 497 498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 499 int pmdp_clear_flush_young(struct vm_area_struct *vma, 500 unsigned long address, pmd_t *pmdp) 501 { 502 int young; 503 504 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 505 506 young = pmdp_test_and_clear_young(vma, address, pmdp); 507 if (young) 508 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 509 510 return young; 511 } 512 513 void pmdp_splitting_flush(struct vm_area_struct *vma, 514 unsigned long address, pmd_t *pmdp) 515 { 516 int set; 517 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 518 set = !test_and_set_bit(_PAGE_BIT_SPLITTING, 519 (unsigned long *)pmdp); 520 if (set) { 521 pmd_update(vma->vm_mm, address, pmdp); 522 /* need tlb flush only to serialize against gup-fast */ 523 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 524 } 525 } 526 #endif 527 528 /** 529 * reserve_top_address - reserves a hole in the top of kernel address space 530 * @reserve - size of hole to reserve 531 * 532 * Can be used to relocate the fixmap area and poke a hole in the top 533 * of kernel address space to make room for a hypervisor. 534 */ 535 void __init reserve_top_address(unsigned long reserve) 536 { 537 #ifdef CONFIG_X86_32 538 BUG_ON(fixmaps_set > 0); 539 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; 540 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", 541 -reserve, __FIXADDR_TOP + PAGE_SIZE); 542 #endif 543 } 544 545 int fixmaps_set; 546 547 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) 548 { 549 unsigned long address = __fix_to_virt(idx); 550 551 if (idx >= __end_of_fixed_addresses) { 552 BUG(); 553 return; 554 } 555 set_pte_vaddr(address, pte); 556 fixmaps_set++; 557 } 558 559 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, 560 pgprot_t flags) 561 { 562 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); 563 } 564 565 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 566 /** 567 * pud_set_huge - setup kernel PUD mapping 568 * 569 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this 570 * function sets up a huge page only if any of the following conditions are met: 571 * 572 * - MTRRs are disabled, or 573 * 574 * - MTRRs are enabled and the range is completely covered by a single MTRR, or 575 * 576 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which 577 * has no effect on the requested PAT memory type. 578 * 579 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger 580 * page mapping attempt fails. 581 * 582 * Returns 1 on success and 0 on failure. 583 */ 584 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 585 { 586 u8 mtrr, uniform; 587 588 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); 589 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 590 (mtrr != MTRR_TYPE_WRBACK)) 591 return 0; 592 593 prot = pgprot_4k_2_large(prot); 594 595 set_pte((pte_t *)pud, pfn_pte( 596 (u64)addr >> PAGE_SHIFT, 597 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 598 599 return 1; 600 } 601 602 /** 603 * pmd_set_huge - setup kernel PMD mapping 604 * 605 * See text over pud_set_huge() above. 606 * 607 * Returns 1 on success and 0 on failure. 608 */ 609 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 610 { 611 u8 mtrr, uniform; 612 613 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); 614 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 615 (mtrr != MTRR_TYPE_WRBACK)) { 616 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", 617 __func__, addr, addr + PMD_SIZE); 618 return 0; 619 } 620 621 prot = pgprot_4k_2_large(prot); 622 623 set_pte((pte_t *)pmd, pfn_pte( 624 (u64)addr >> PAGE_SHIFT, 625 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 626 627 return 1; 628 } 629 630 /** 631 * pud_clear_huge - clear kernel PUD mapping when it is set 632 * 633 * Returns 1 on success and 0 on failure (no PUD map is found). 634 */ 635 int pud_clear_huge(pud_t *pud) 636 { 637 if (pud_large(*pud)) { 638 pud_clear(pud); 639 return 1; 640 } 641 642 return 0; 643 } 644 645 /** 646 * pmd_clear_huge - clear kernel PMD mapping when it is set 647 * 648 * Returns 1 on success and 0 on failure (no PMD map is found). 649 */ 650 int pmd_clear_huge(pmd_t *pmd) 651 { 652 if (pmd_large(*pmd)) { 653 pmd_clear(pmd); 654 return 1; 655 } 656 657 return 0; 658 } 659 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 660