xref: /linux/arch/x86/mm/pgtable.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/tlb.h>
7 #include <asm/fixmap.h>
8 #include <asm/mtrr.h>
9 
10 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
11 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
12 EXPORT_SYMBOL(physical_mask);
13 #endif
14 
15 #ifdef CONFIG_HIGHPTE
16 #define PGTABLE_HIGHMEM __GFP_HIGHMEM
17 #else
18 #define PGTABLE_HIGHMEM 0
19 #endif
20 
21 #ifndef CONFIG_PARAVIRT
22 static inline
23 void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
24 {
25 	tlb_remove_page(tlb, table);
26 }
27 #endif
28 
29 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
30 
31 pgtable_t pte_alloc_one(struct mm_struct *mm)
32 {
33 	return __pte_alloc_one(mm, __userpte_alloc_gfp);
34 }
35 
36 static int __init setup_userpte(char *arg)
37 {
38 	if (!arg)
39 		return -EINVAL;
40 
41 	/*
42 	 * "userpte=nohigh" disables allocation of user pagetables in
43 	 * high memory.
44 	 */
45 	if (strcmp(arg, "nohigh") == 0)
46 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
47 	else
48 		return -EINVAL;
49 	return 0;
50 }
51 early_param("userpte", setup_userpte);
52 
53 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
54 {
55 	pagetable_pte_dtor(page_ptdesc(pte));
56 	paravirt_release_pte(page_to_pfn(pte));
57 	paravirt_tlb_remove_table(tlb, pte);
58 }
59 
60 #if CONFIG_PGTABLE_LEVELS > 2
61 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
62 {
63 	struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
64 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
65 	/*
66 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
67 	 * entries need a full cr3 reload to flush.
68 	 */
69 #ifdef CONFIG_X86_PAE
70 	tlb->need_flush_all = 1;
71 #endif
72 	pagetable_pmd_dtor(ptdesc);
73 	paravirt_tlb_remove_table(tlb, ptdesc_page(ptdesc));
74 }
75 
76 #if CONFIG_PGTABLE_LEVELS > 3
77 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
78 {
79 	struct ptdesc *ptdesc = virt_to_ptdesc(pud);
80 
81 	pagetable_pud_dtor(ptdesc);
82 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
83 	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
84 }
85 
86 #if CONFIG_PGTABLE_LEVELS > 4
87 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
88 {
89 	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
90 	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
91 }
92 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
93 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
94 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
95 
96 static inline void pgd_list_add(pgd_t *pgd)
97 {
98 	struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
99 
100 	list_add(&ptdesc->pt_list, &pgd_list);
101 }
102 
103 static inline void pgd_list_del(pgd_t *pgd)
104 {
105 	struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
106 
107 	list_del(&ptdesc->pt_list);
108 }
109 
110 #define UNSHARED_PTRS_PER_PGD				\
111 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
112 #define MAX_UNSHARED_PTRS_PER_PGD			\
113 	MAX_T(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
114 
115 
116 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
117 {
118 	virt_to_ptdesc(pgd)->pt_mm = mm;
119 }
120 
121 struct mm_struct *pgd_page_get_mm(struct page *page)
122 {
123 	return page_ptdesc(page)->pt_mm;
124 }
125 
126 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
127 {
128 	/* If the pgd points to a shared pagetable level (either the
129 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
130 	   references from swapper_pg_dir. */
131 	if (CONFIG_PGTABLE_LEVELS == 2 ||
132 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
133 	    CONFIG_PGTABLE_LEVELS >= 4) {
134 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
135 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
136 				KERNEL_PGD_PTRS);
137 	}
138 
139 	/* list required to sync kernel mapping updates */
140 	if (!SHARED_KERNEL_PMD) {
141 		pgd_set_mm(pgd, mm);
142 		pgd_list_add(pgd);
143 	}
144 }
145 
146 static void pgd_dtor(pgd_t *pgd)
147 {
148 	if (SHARED_KERNEL_PMD)
149 		return;
150 
151 	spin_lock(&pgd_lock);
152 	pgd_list_del(pgd);
153 	spin_unlock(&pgd_lock);
154 }
155 
156 /*
157  * List of all pgd's needed for non-PAE so it can invalidate entries
158  * in both cached and uncached pgd's; not needed for PAE since the
159  * kernel pmd is shared. If PAE were not to share the pmd a similar
160  * tactic would be needed. This is essentially codepath-based locking
161  * against pageattr.c; it is the unique case in which a valid change
162  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
163  * vmalloc faults work because attached pagetables are never freed.
164  * -- nyc
165  */
166 
167 #ifdef CONFIG_X86_PAE
168 /*
169  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
170  * updating the top-level pagetable entries to guarantee the
171  * processor notices the update.  Since this is expensive, and
172  * all 4 top-level entries are used almost immediately in a
173  * new process's life, we just pre-populate them here.
174  *
175  * Also, if we're in a paravirt environment where the kernel pmd is
176  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
177  * and initialize the kernel pmds here.
178  */
179 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
180 #define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD
181 
182 /*
183  * We allocate separate PMDs for the kernel part of the user page-table
184  * when PTI is enabled. We need them to map the per-process LDT into the
185  * user-space page-table.
186  */
187 #define PREALLOCATED_USER_PMDS	 (boot_cpu_has(X86_FEATURE_PTI) ? \
188 					KERNEL_PGD_PTRS : 0)
189 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
190 
191 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
192 {
193 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
194 
195 	/* Note: almost everything apart from _PAGE_PRESENT is
196 	   reserved at the pmd (PDPT) level. */
197 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
198 
199 	/*
200 	 * According to Intel App note "TLBs, Paging-Structure Caches,
201 	 * and Their Invalidation", April 2007, document 317080-001,
202 	 * section 8.1: in PAE mode we explicitly have to flush the
203 	 * TLB via cr3 if the top-level pgd is changed...
204 	 */
205 	flush_tlb_mm(mm);
206 }
207 #else  /* !CONFIG_X86_PAE */
208 
209 /* No need to prepopulate any pagetable entries in non-PAE modes. */
210 #define PREALLOCATED_PMDS	0
211 #define MAX_PREALLOCATED_PMDS	0
212 #define PREALLOCATED_USER_PMDS	 0
213 #define MAX_PREALLOCATED_USER_PMDS 0
214 #endif	/* CONFIG_X86_PAE */
215 
216 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
217 {
218 	int i;
219 	struct ptdesc *ptdesc;
220 
221 	for (i = 0; i < count; i++)
222 		if (pmds[i]) {
223 			ptdesc = virt_to_ptdesc(pmds[i]);
224 
225 			pagetable_pmd_dtor(ptdesc);
226 			pagetable_free(ptdesc);
227 			mm_dec_nr_pmds(mm);
228 		}
229 }
230 
231 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
232 {
233 	int i;
234 	bool failed = false;
235 	gfp_t gfp = GFP_PGTABLE_USER;
236 
237 	if (mm == &init_mm)
238 		gfp &= ~__GFP_ACCOUNT;
239 	gfp &= ~__GFP_HIGHMEM;
240 
241 	for (i = 0; i < count; i++) {
242 		pmd_t *pmd = NULL;
243 		struct ptdesc *ptdesc = pagetable_alloc(gfp, 0);
244 
245 		if (!ptdesc)
246 			failed = true;
247 		if (ptdesc && !pagetable_pmd_ctor(ptdesc)) {
248 			pagetable_free(ptdesc);
249 			ptdesc = NULL;
250 			failed = true;
251 		}
252 		if (ptdesc) {
253 			mm_inc_nr_pmds(mm);
254 			pmd = ptdesc_address(ptdesc);
255 		}
256 
257 		pmds[i] = pmd;
258 	}
259 
260 	if (failed) {
261 		free_pmds(mm, pmds, count);
262 		return -ENOMEM;
263 	}
264 
265 	return 0;
266 }
267 
268 /*
269  * Mop up any pmd pages which may still be attached to the pgd.
270  * Normally they will be freed by munmap/exit_mmap, but any pmd we
271  * preallocate which never got a corresponding vma will need to be
272  * freed manually.
273  */
274 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
275 {
276 	pgd_t pgd = *pgdp;
277 
278 	if (pgd_val(pgd) != 0) {
279 		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
280 
281 		pgd_clear(pgdp);
282 
283 		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
284 		pmd_free(mm, pmd);
285 		mm_dec_nr_pmds(mm);
286 	}
287 }
288 
289 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
290 {
291 	int i;
292 
293 	for (i = 0; i < PREALLOCATED_PMDS; i++)
294 		mop_up_one_pmd(mm, &pgdp[i]);
295 
296 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
297 
298 	if (!boot_cpu_has(X86_FEATURE_PTI))
299 		return;
300 
301 	pgdp = kernel_to_user_pgdp(pgdp);
302 
303 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
304 		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
305 #endif
306 }
307 
308 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
309 {
310 	p4d_t *p4d;
311 	pud_t *pud;
312 	int i;
313 
314 	p4d = p4d_offset(pgd, 0);
315 	pud = pud_offset(p4d, 0);
316 
317 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
318 		pmd_t *pmd = pmds[i];
319 
320 		if (i >= KERNEL_PGD_BOUNDARY)
321 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
322 			       sizeof(pmd_t) * PTRS_PER_PMD);
323 
324 		pud_populate(mm, pud, pmd);
325 	}
326 }
327 
328 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
329 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
330 				     pgd_t *k_pgd, pmd_t *pmds[])
331 {
332 	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
333 	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
334 	p4d_t *u_p4d;
335 	pud_t *u_pud;
336 	int i;
337 
338 	u_p4d = p4d_offset(u_pgd, 0);
339 	u_pud = pud_offset(u_p4d, 0);
340 
341 	s_pgd += KERNEL_PGD_BOUNDARY;
342 	u_pud += KERNEL_PGD_BOUNDARY;
343 
344 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
345 		pmd_t *pmd = pmds[i];
346 
347 		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
348 		       sizeof(pmd_t) * PTRS_PER_PMD);
349 
350 		pud_populate(mm, u_pud, pmd);
351 	}
352 
353 }
354 #else
355 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
356 				     pgd_t *k_pgd, pmd_t *pmds[])
357 {
358 }
359 #endif
360 /*
361  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
362  * assumes that pgd should be in one page.
363  *
364  * But kernel with PAE paging that is not running as a Xen domain
365  * only needs to allocate 32 bytes for pgd instead of one page.
366  */
367 #ifdef CONFIG_X86_PAE
368 
369 #include <linux/slab.h>
370 
371 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
372 #define PGD_ALIGN	32
373 
374 static struct kmem_cache *pgd_cache;
375 
376 void __init pgtable_cache_init(void)
377 {
378 	/*
379 	 * When PAE kernel is running as a Xen domain, it does not use
380 	 * shared kernel pmd. And this requires a whole page for pgd.
381 	 */
382 	if (!SHARED_KERNEL_PMD)
383 		return;
384 
385 	/*
386 	 * when PAE kernel is not running as a Xen domain, it uses
387 	 * shared kernel pmd. Shared kernel pmd does not require a whole
388 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
389 	 * During boot time, we create a 32-byte slab for pgd table allocation.
390 	 */
391 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
392 				      SLAB_PANIC, NULL);
393 }
394 
395 static inline pgd_t *_pgd_alloc(void)
396 {
397 	/*
398 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
399 	 * We allocate one page for pgd.
400 	 */
401 	if (!SHARED_KERNEL_PMD)
402 		return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
403 						 PGD_ALLOCATION_ORDER);
404 
405 	/*
406 	 * Now PAE kernel is not running as a Xen domain. We can allocate
407 	 * a 32-byte slab for pgd to save memory space.
408 	 */
409 	return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
410 }
411 
412 static inline void _pgd_free(pgd_t *pgd)
413 {
414 	if (!SHARED_KERNEL_PMD)
415 		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
416 	else
417 		kmem_cache_free(pgd_cache, pgd);
418 }
419 #else
420 
421 static inline pgd_t *_pgd_alloc(void)
422 {
423 	return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
424 					 PGD_ALLOCATION_ORDER);
425 }
426 
427 static inline void _pgd_free(pgd_t *pgd)
428 {
429 	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
430 }
431 #endif /* CONFIG_X86_PAE */
432 
433 pgd_t *pgd_alloc(struct mm_struct *mm)
434 {
435 	pgd_t *pgd;
436 	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
437 	pmd_t *pmds[MAX_PREALLOCATED_PMDS];
438 
439 	pgd = _pgd_alloc();
440 
441 	if (pgd == NULL)
442 		goto out;
443 
444 	mm->pgd = pgd;
445 
446 	if (sizeof(pmds) != 0 &&
447 			preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
448 		goto out_free_pgd;
449 
450 	if (sizeof(u_pmds) != 0 &&
451 			preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
452 		goto out_free_pmds;
453 
454 	if (paravirt_pgd_alloc(mm) != 0)
455 		goto out_free_user_pmds;
456 
457 	/*
458 	 * Make sure that pre-populating the pmds is atomic with
459 	 * respect to anything walking the pgd_list, so that they
460 	 * never see a partially populated pgd.
461 	 */
462 	spin_lock(&pgd_lock);
463 
464 	pgd_ctor(mm, pgd);
465 	if (sizeof(pmds) != 0)
466 		pgd_prepopulate_pmd(mm, pgd, pmds);
467 
468 	if (sizeof(u_pmds) != 0)
469 		pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
470 
471 	spin_unlock(&pgd_lock);
472 
473 	return pgd;
474 
475 out_free_user_pmds:
476 	if (sizeof(u_pmds) != 0)
477 		free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
478 out_free_pmds:
479 	if (sizeof(pmds) != 0)
480 		free_pmds(mm, pmds, PREALLOCATED_PMDS);
481 out_free_pgd:
482 	_pgd_free(pgd);
483 out:
484 	return NULL;
485 }
486 
487 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
488 {
489 	pgd_mop_up_pmds(mm, pgd);
490 	pgd_dtor(pgd);
491 	paravirt_pgd_free(mm, pgd);
492 	_pgd_free(pgd);
493 }
494 
495 /*
496  * Used to set accessed or dirty bits in the page table entries
497  * on other architectures. On x86, the accessed and dirty bits
498  * are tracked by hardware. However, do_wp_page calls this function
499  * to also make the pte writeable at the same time the dirty bit is
500  * set. In that case we do actually need to write the PTE.
501  */
502 int ptep_set_access_flags(struct vm_area_struct *vma,
503 			  unsigned long address, pte_t *ptep,
504 			  pte_t entry, int dirty)
505 {
506 	int changed = !pte_same(*ptep, entry);
507 
508 	if (changed && dirty)
509 		set_pte(ptep, entry);
510 
511 	return changed;
512 }
513 
514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
515 int pmdp_set_access_flags(struct vm_area_struct *vma,
516 			  unsigned long address, pmd_t *pmdp,
517 			  pmd_t entry, int dirty)
518 {
519 	int changed = !pmd_same(*pmdp, entry);
520 
521 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
522 
523 	if (changed && dirty) {
524 		set_pmd(pmdp, entry);
525 		/*
526 		 * We had a write-protection fault here and changed the pmd
527 		 * to to more permissive. No need to flush the TLB for that,
528 		 * #PF is architecturally guaranteed to do that and in the
529 		 * worst-case we'll generate a spurious fault.
530 		 */
531 	}
532 
533 	return changed;
534 }
535 
536 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
537 			  pud_t *pudp, pud_t entry, int dirty)
538 {
539 	int changed = !pud_same(*pudp, entry);
540 
541 	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
542 
543 	if (changed && dirty) {
544 		set_pud(pudp, entry);
545 		/*
546 		 * We had a write-protection fault here and changed the pud
547 		 * to to more permissive. No need to flush the TLB for that,
548 		 * #PF is architecturally guaranteed to do that and in the
549 		 * worst-case we'll generate a spurious fault.
550 		 */
551 	}
552 
553 	return changed;
554 }
555 #endif
556 
557 int ptep_test_and_clear_young(struct vm_area_struct *vma,
558 			      unsigned long addr, pte_t *ptep)
559 {
560 	int ret = 0;
561 
562 	if (pte_young(*ptep))
563 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
564 					 (unsigned long *) &ptep->pte);
565 
566 	return ret;
567 }
568 
569 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
570 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
571 			      unsigned long addr, pmd_t *pmdp)
572 {
573 	int ret = 0;
574 
575 	if (pmd_young(*pmdp))
576 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
577 					 (unsigned long *)pmdp);
578 
579 	return ret;
580 }
581 #endif
582 
583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
584 int pudp_test_and_clear_young(struct vm_area_struct *vma,
585 			      unsigned long addr, pud_t *pudp)
586 {
587 	int ret = 0;
588 
589 	if (pud_young(*pudp))
590 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
591 					 (unsigned long *)pudp);
592 
593 	return ret;
594 }
595 #endif
596 
597 int ptep_clear_flush_young(struct vm_area_struct *vma,
598 			   unsigned long address, pte_t *ptep)
599 {
600 	/*
601 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
602 	 * doesn't cause data corruption. [ It could cause incorrect
603 	 * page aging and the (mistaken) reclaim of hot pages, but the
604 	 * chance of that should be relatively low. ]
605 	 *
606 	 * So as a performance optimization don't flush the TLB when
607 	 * clearing the accessed bit, it will eventually be flushed by
608 	 * a context switch or a VM operation anyway. [ In the rare
609 	 * event of it not getting flushed for a long time the delay
610 	 * shouldn't really matter because there's no real memory
611 	 * pressure for swapout to react to. ]
612 	 */
613 	return ptep_test_and_clear_young(vma, address, ptep);
614 }
615 
616 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
617 int pmdp_clear_flush_young(struct vm_area_struct *vma,
618 			   unsigned long address, pmd_t *pmdp)
619 {
620 	int young;
621 
622 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
623 
624 	young = pmdp_test_and_clear_young(vma, address, pmdp);
625 	if (young)
626 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
627 
628 	return young;
629 }
630 
631 pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
632 			 pmd_t *pmdp)
633 {
634 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
635 
636 	/*
637 	 * No flush is necessary. Once an invalid PTE is established, the PTE's
638 	 * access and dirty bits cannot be updated.
639 	 */
640 	return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
641 }
642 #endif
643 
644 /**
645  * reserve_top_address - reserves a hole in the top of kernel address space
646  * @reserve - size of hole to reserve
647  *
648  * Can be used to relocate the fixmap area and poke a hole in the top
649  * of kernel address space to make room for a hypervisor.
650  */
651 void __init reserve_top_address(unsigned long reserve)
652 {
653 #ifdef CONFIG_X86_32
654 	BUG_ON(fixmaps_set > 0);
655 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
656 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
657 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
658 #endif
659 }
660 
661 int fixmaps_set;
662 
663 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
664 {
665 	unsigned long address = __fix_to_virt(idx);
666 
667 #ifdef CONFIG_X86_64
668        /*
669 	* Ensure that the static initial page tables are covering the
670 	* fixmap completely.
671 	*/
672 	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
673 		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
674 #endif
675 
676 	if (idx >= __end_of_fixed_addresses) {
677 		BUG();
678 		return;
679 	}
680 	set_pte_vaddr(address, pte);
681 	fixmaps_set++;
682 }
683 
684 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
685 		       phys_addr_t phys, pgprot_t flags)
686 {
687 	/* Sanitize 'prot' against any unsupported bits: */
688 	pgprot_val(flags) &= __default_kernel_pte_mask;
689 
690 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
691 }
692 
693 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
694 #ifdef CONFIG_X86_5LEVEL
695 /**
696  * p4d_set_huge - setup kernel P4D mapping
697  *
698  * No 512GB pages yet -- always return 0
699  */
700 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
701 {
702 	return 0;
703 }
704 
705 /**
706  * p4d_clear_huge - clear kernel P4D mapping when it is set
707  *
708  * No 512GB pages yet -- always return 0
709  */
710 void p4d_clear_huge(p4d_t *p4d)
711 {
712 }
713 #endif
714 
715 /**
716  * pud_set_huge - setup kernel PUD mapping
717  *
718  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
719  * function sets up a huge page only if the complete range has the same MTRR
720  * caching mode.
721  *
722  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
723  * page mapping attempt fails.
724  *
725  * Returns 1 on success and 0 on failure.
726  */
727 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
728 {
729 	u8 uniform;
730 
731 	mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
732 	if (!uniform)
733 		return 0;
734 
735 	/* Bail out if we are we on a populated non-leaf entry: */
736 	if (pud_present(*pud) && !pud_leaf(*pud))
737 		return 0;
738 
739 	set_pte((pte_t *)pud, pfn_pte(
740 		(u64)addr >> PAGE_SHIFT,
741 		__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
742 
743 	return 1;
744 }
745 
746 /**
747  * pmd_set_huge - setup kernel PMD mapping
748  *
749  * See text over pud_set_huge() above.
750  *
751  * Returns 1 on success and 0 on failure.
752  */
753 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
754 {
755 	u8 uniform;
756 
757 	mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
758 	if (!uniform) {
759 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
760 			     __func__, addr, addr + PMD_SIZE);
761 		return 0;
762 	}
763 
764 	/* Bail out if we are we on a populated non-leaf entry: */
765 	if (pmd_present(*pmd) && !pmd_leaf(*pmd))
766 		return 0;
767 
768 	set_pte((pte_t *)pmd, pfn_pte(
769 		(u64)addr >> PAGE_SHIFT,
770 		__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
771 
772 	return 1;
773 }
774 
775 /**
776  * pud_clear_huge - clear kernel PUD mapping when it is set
777  *
778  * Returns 1 on success and 0 on failure (no PUD map is found).
779  */
780 int pud_clear_huge(pud_t *pud)
781 {
782 	if (pud_leaf(*pud)) {
783 		pud_clear(pud);
784 		return 1;
785 	}
786 
787 	return 0;
788 }
789 
790 /**
791  * pmd_clear_huge - clear kernel PMD mapping when it is set
792  *
793  * Returns 1 on success and 0 on failure (no PMD map is found).
794  */
795 int pmd_clear_huge(pmd_t *pmd)
796 {
797 	if (pmd_leaf(*pmd)) {
798 		pmd_clear(pmd);
799 		return 1;
800 	}
801 
802 	return 0;
803 }
804 
805 #ifdef CONFIG_X86_64
806 /**
807  * pud_free_pmd_page - Clear pud entry and free pmd page.
808  * @pud: Pointer to a PUD.
809  * @addr: Virtual address associated with pud.
810  *
811  * Context: The pud range has been unmapped and TLB purged.
812  * Return: 1 if clearing the entry succeeded. 0 otherwise.
813  *
814  * NOTE: Callers must allow a single page allocation.
815  */
816 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
817 {
818 	pmd_t *pmd, *pmd_sv;
819 	pte_t *pte;
820 	int i;
821 
822 	pmd = pud_pgtable(*pud);
823 	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
824 	if (!pmd_sv)
825 		return 0;
826 
827 	for (i = 0; i < PTRS_PER_PMD; i++) {
828 		pmd_sv[i] = pmd[i];
829 		if (!pmd_none(pmd[i]))
830 			pmd_clear(&pmd[i]);
831 	}
832 
833 	pud_clear(pud);
834 
835 	/* INVLPG to clear all paging-structure caches */
836 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
837 
838 	for (i = 0; i < PTRS_PER_PMD; i++) {
839 		if (!pmd_none(pmd_sv[i])) {
840 			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
841 			free_page((unsigned long)pte);
842 		}
843 	}
844 
845 	free_page((unsigned long)pmd_sv);
846 
847 	pagetable_pmd_dtor(virt_to_ptdesc(pmd));
848 	free_page((unsigned long)pmd);
849 
850 	return 1;
851 }
852 
853 /**
854  * pmd_free_pte_page - Clear pmd entry and free pte page.
855  * @pmd: Pointer to a PMD.
856  * @addr: Virtual address associated with pmd.
857  *
858  * Context: The pmd range has been unmapped and TLB purged.
859  * Return: 1 if clearing the entry succeeded. 0 otherwise.
860  */
861 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
862 {
863 	pte_t *pte;
864 
865 	pte = (pte_t *)pmd_page_vaddr(*pmd);
866 	pmd_clear(pmd);
867 
868 	/* INVLPG to clear all paging-structure caches */
869 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
870 
871 	free_page((unsigned long)pte);
872 
873 	return 1;
874 }
875 
876 #else /* !CONFIG_X86_64 */
877 
878 /*
879  * Disable free page handling on x86-PAE. This assures that ioremap()
880  * does not update sync'd pmd entries. See vmalloc_sync_one().
881  */
882 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
883 {
884 	return pmd_none(*pmd);
885 }
886 
887 #endif /* CONFIG_X86_64 */
888 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
889 
890 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
891 {
892 	if (vma->vm_flags & VM_SHADOW_STACK)
893 		return pte_mkwrite_shstk(pte);
894 
895 	pte = pte_mkwrite_novma(pte);
896 
897 	return pte_clear_saveddirty(pte);
898 }
899 
900 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
901 {
902 	if (vma->vm_flags & VM_SHADOW_STACK)
903 		return pmd_mkwrite_shstk(pmd);
904 
905 	pmd = pmd_mkwrite_novma(pmd);
906 
907 	return pmd_clear_saveddirty(pmd);
908 }
909 
910 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte)
911 {
912 	/*
913 	 * Hardware before shadow stack can (rarely) set Dirty=1
914 	 * on a Write=0 PTE. So the below condition
915 	 * only indicates a software bug when shadow stack is
916 	 * supported by the HW. This checking is covered in
917 	 * pte_shstk().
918 	 */
919 	VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
920 			pte_shstk(pte));
921 }
922 
923 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd)
924 {
925 	/* See note in arch_check_zapped_pte() */
926 	VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
927 			pmd_shstk(pmd));
928 }
929