xref: /linux/arch/x86/mm/pgtable.c (revision 8b1935e6a36b0967efc593d67ed3aebbfbc1f5b1)
1 #include <linux/mm.h>
2 #include <asm/pgalloc.h>
3 #include <asm/pgtable.h>
4 #include <asm/tlb.h>
5 #include <asm/fixmap.h>
6 
7 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
8 
9 #ifdef CONFIG_HIGHPTE
10 #define PGALLOC_USER_GFP __GFP_HIGHMEM
11 #else
12 #define PGALLOC_USER_GFP 0
13 #endif
14 
15 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
16 
17 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
18 {
19 	return (pte_t *)__get_free_page(PGALLOC_GFP);
20 }
21 
22 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
23 {
24 	struct page *pte;
25 
26 	pte = alloc_pages(__userpte_alloc_gfp, 0);
27 	if (pte)
28 		pgtable_page_ctor(pte);
29 	return pte;
30 }
31 
32 static int __init setup_userpte(char *arg)
33 {
34 	if (!arg)
35 		return -EINVAL;
36 
37 	/*
38 	 * "userpte=nohigh" disables allocation of user pagetables in
39 	 * high memory.
40 	 */
41 	if (strcmp(arg, "nohigh") == 0)
42 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
43 	else
44 		return -EINVAL;
45 	return 0;
46 }
47 early_param("userpte", setup_userpte);
48 
49 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
50 {
51 	pgtable_page_dtor(pte);
52 	paravirt_release_pte(page_to_pfn(pte));
53 	tlb_remove_page(tlb, pte);
54 }
55 
56 #if PAGETABLE_LEVELS > 2
57 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
58 {
59 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
60 	tlb_remove_page(tlb, virt_to_page(pmd));
61 }
62 
63 #if PAGETABLE_LEVELS > 3
64 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
65 {
66 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
67 	tlb_remove_page(tlb, virt_to_page(pud));
68 }
69 #endif	/* PAGETABLE_LEVELS > 3 */
70 #endif	/* PAGETABLE_LEVELS > 2 */
71 
72 static inline void pgd_list_add(pgd_t *pgd)
73 {
74 	struct page *page = virt_to_page(pgd);
75 
76 	list_add(&page->lru, &pgd_list);
77 }
78 
79 static inline void pgd_list_del(pgd_t *pgd)
80 {
81 	struct page *page = virt_to_page(pgd);
82 
83 	list_del(&page->lru);
84 }
85 
86 #define UNSHARED_PTRS_PER_PGD				\
87 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
88 
89 static void pgd_ctor(pgd_t *pgd)
90 {
91 	/* If the pgd points to a shared pagetable level (either the
92 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
93 	   references from swapper_pg_dir. */
94 	if (PAGETABLE_LEVELS == 2 ||
95 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
96 	    PAGETABLE_LEVELS == 4) {
97 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
98 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
99 				KERNEL_PGD_PTRS);
100 		paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
101 					 __pa(swapper_pg_dir) >> PAGE_SHIFT,
102 					 KERNEL_PGD_BOUNDARY,
103 					 KERNEL_PGD_PTRS);
104 	}
105 
106 	/* list required to sync kernel mapping updates */
107 	if (!SHARED_KERNEL_PMD)
108 		pgd_list_add(pgd);
109 }
110 
111 static void pgd_dtor(pgd_t *pgd)
112 {
113 	unsigned long flags; /* can be called from interrupt context */
114 
115 	if (SHARED_KERNEL_PMD)
116 		return;
117 
118 	spin_lock_irqsave(&pgd_lock, flags);
119 	pgd_list_del(pgd);
120 	spin_unlock_irqrestore(&pgd_lock, flags);
121 }
122 
123 /*
124  * List of all pgd's needed for non-PAE so it can invalidate entries
125  * in both cached and uncached pgd's; not needed for PAE since the
126  * kernel pmd is shared. If PAE were not to share the pmd a similar
127  * tactic would be needed. This is essentially codepath-based locking
128  * against pageattr.c; it is the unique case in which a valid change
129  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
130  * vmalloc faults work because attached pagetables are never freed.
131  * -- wli
132  */
133 
134 #ifdef CONFIG_X86_PAE
135 /*
136  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
137  * updating the top-level pagetable entries to guarantee the
138  * processor notices the update.  Since this is expensive, and
139  * all 4 top-level entries are used almost immediately in a
140  * new process's life, we just pre-populate them here.
141  *
142  * Also, if we're in a paravirt environment where the kernel pmd is
143  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
144  * and initialize the kernel pmds here.
145  */
146 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
147 
148 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
149 {
150 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
151 
152 	/* Note: almost everything apart from _PAGE_PRESENT is
153 	   reserved at the pmd (PDPT) level. */
154 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
155 
156 	/*
157 	 * According to Intel App note "TLBs, Paging-Structure Caches,
158 	 * and Their Invalidation", April 2007, document 317080-001,
159 	 * section 8.1: in PAE mode we explicitly have to flush the
160 	 * TLB via cr3 if the top-level pgd is changed...
161 	 */
162 	if (mm == current->active_mm)
163 		write_cr3(read_cr3());
164 }
165 #else  /* !CONFIG_X86_PAE */
166 
167 /* No need to prepopulate any pagetable entries in non-PAE modes. */
168 #define PREALLOCATED_PMDS	0
169 
170 #endif	/* CONFIG_X86_PAE */
171 
172 static void free_pmds(pmd_t *pmds[])
173 {
174 	int i;
175 
176 	for(i = 0; i < PREALLOCATED_PMDS; i++)
177 		if (pmds[i])
178 			free_page((unsigned long)pmds[i]);
179 }
180 
181 static int preallocate_pmds(pmd_t *pmds[])
182 {
183 	int i;
184 	bool failed = false;
185 
186 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
187 		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
188 		if (pmd == NULL)
189 			failed = true;
190 		pmds[i] = pmd;
191 	}
192 
193 	if (failed) {
194 		free_pmds(pmds);
195 		return -ENOMEM;
196 	}
197 
198 	return 0;
199 }
200 
201 /*
202  * Mop up any pmd pages which may still be attached to the pgd.
203  * Normally they will be freed by munmap/exit_mmap, but any pmd we
204  * preallocate which never got a corresponding vma will need to be
205  * freed manually.
206  */
207 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
208 {
209 	int i;
210 
211 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
212 		pgd_t pgd = pgdp[i];
213 
214 		if (pgd_val(pgd) != 0) {
215 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
216 
217 			pgdp[i] = native_make_pgd(0);
218 
219 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
220 			pmd_free(mm, pmd);
221 		}
222 	}
223 }
224 
225 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
226 {
227 	pud_t *pud;
228 	unsigned long addr;
229 	int i;
230 
231 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
232 		return;
233 
234 	pud = pud_offset(pgd, 0);
235 
236  	for (addr = i = 0; i < PREALLOCATED_PMDS;
237 	     i++, pud++, addr += PUD_SIZE) {
238 		pmd_t *pmd = pmds[i];
239 
240 		if (i >= KERNEL_PGD_BOUNDARY)
241 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
242 			       sizeof(pmd_t) * PTRS_PER_PMD);
243 
244 		pud_populate(mm, pud, pmd);
245 	}
246 }
247 
248 pgd_t *pgd_alloc(struct mm_struct *mm)
249 {
250 	pgd_t *pgd;
251 	pmd_t *pmds[PREALLOCATED_PMDS];
252 	unsigned long flags;
253 
254 	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
255 
256 	if (pgd == NULL)
257 		goto out;
258 
259 	mm->pgd = pgd;
260 
261 	if (preallocate_pmds(pmds) != 0)
262 		goto out_free_pgd;
263 
264 	if (paravirt_pgd_alloc(mm) != 0)
265 		goto out_free_pmds;
266 
267 	/*
268 	 * Make sure that pre-populating the pmds is atomic with
269 	 * respect to anything walking the pgd_list, so that they
270 	 * never see a partially populated pgd.
271 	 */
272 	spin_lock_irqsave(&pgd_lock, flags);
273 
274 	pgd_ctor(pgd);
275 	pgd_prepopulate_pmd(mm, pgd, pmds);
276 
277 	spin_unlock_irqrestore(&pgd_lock, flags);
278 
279 	return pgd;
280 
281 out_free_pmds:
282 	free_pmds(pmds);
283 out_free_pgd:
284 	free_page((unsigned long)pgd);
285 out:
286 	return NULL;
287 }
288 
289 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
290 {
291 	pgd_mop_up_pmds(mm, pgd);
292 	pgd_dtor(pgd);
293 	paravirt_pgd_free(mm, pgd);
294 	free_page((unsigned long)pgd);
295 }
296 
297 int ptep_set_access_flags(struct vm_area_struct *vma,
298 			  unsigned long address, pte_t *ptep,
299 			  pte_t entry, int dirty)
300 {
301 	int changed = !pte_same(*ptep, entry);
302 
303 	if (changed && dirty) {
304 		*ptep = entry;
305 		pte_update_defer(vma->vm_mm, address, ptep);
306 		flush_tlb_page(vma, address);
307 	}
308 
309 	return changed;
310 }
311 
312 int ptep_test_and_clear_young(struct vm_area_struct *vma,
313 			      unsigned long addr, pte_t *ptep)
314 {
315 	int ret = 0;
316 
317 	if (pte_young(*ptep))
318 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
319 					 (unsigned long *) &ptep->pte);
320 
321 	if (ret)
322 		pte_update(vma->vm_mm, addr, ptep);
323 
324 	return ret;
325 }
326 
327 int ptep_clear_flush_young(struct vm_area_struct *vma,
328 			   unsigned long address, pte_t *ptep)
329 {
330 	int young;
331 
332 	young = ptep_test_and_clear_young(vma, address, ptep);
333 	if (young)
334 		flush_tlb_page(vma, address);
335 
336 	return young;
337 }
338 
339 /**
340  * reserve_top_address - reserves a hole in the top of kernel address space
341  * @reserve - size of hole to reserve
342  *
343  * Can be used to relocate the fixmap area and poke a hole in the top
344  * of kernel address space to make room for a hypervisor.
345  */
346 void __init reserve_top_address(unsigned long reserve)
347 {
348 #ifdef CONFIG_X86_32
349 	BUG_ON(fixmaps_set > 0);
350 	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
351 	       (int)-reserve);
352 	__FIXADDR_TOP = -reserve - PAGE_SIZE;
353 #endif
354 }
355 
356 int fixmaps_set;
357 
358 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
359 {
360 	unsigned long address = __fix_to_virt(idx);
361 
362 	if (idx >= __end_of_fixed_addresses) {
363 		BUG();
364 		return;
365 	}
366 	set_pte_vaddr(address, pte);
367 	fixmaps_set++;
368 }
369 
370 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
371 		       pgprot_t flags)
372 {
373 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
374 }
375