1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/gfp.h> 4 #include <linux/hugetlb.h> 5 #include <asm/pgalloc.h> 6 #include <asm/pgtable.h> 7 #include <asm/tlb.h> 8 #include <asm/fixmap.h> 9 #include <asm/mtrr.h> 10 11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 12 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1; 13 EXPORT_SYMBOL(physical_mask); 14 #endif 15 16 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) 17 18 #ifdef CONFIG_HIGHPTE 19 #define PGALLOC_USER_GFP __GFP_HIGHMEM 20 #else 21 #define PGALLOC_USER_GFP 0 22 #endif 23 24 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; 25 26 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) 27 { 28 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT); 29 } 30 31 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) 32 { 33 struct page *pte; 34 35 pte = alloc_pages(__userpte_alloc_gfp, 0); 36 if (!pte) 37 return NULL; 38 if (!pgtable_page_ctor(pte)) { 39 __free_page(pte); 40 return NULL; 41 } 42 return pte; 43 } 44 45 static int __init setup_userpte(char *arg) 46 { 47 if (!arg) 48 return -EINVAL; 49 50 /* 51 * "userpte=nohigh" disables allocation of user pagetables in 52 * high memory. 53 */ 54 if (strcmp(arg, "nohigh") == 0) 55 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 56 else 57 return -EINVAL; 58 return 0; 59 } 60 early_param("userpte", setup_userpte); 61 62 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) 63 { 64 pgtable_page_dtor(pte); 65 paravirt_release_pte(page_to_pfn(pte)); 66 tlb_remove_table(tlb, pte); 67 } 68 69 #if CONFIG_PGTABLE_LEVELS > 2 70 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) 71 { 72 struct page *page = virt_to_page(pmd); 73 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); 74 /* 75 * NOTE! For PAE, any changes to the top page-directory-pointer-table 76 * entries need a full cr3 reload to flush. 77 */ 78 #ifdef CONFIG_X86_PAE 79 tlb->need_flush_all = 1; 80 #endif 81 pgtable_pmd_page_dtor(page); 82 tlb_remove_table(tlb, page); 83 } 84 85 #if CONFIG_PGTABLE_LEVELS > 3 86 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) 87 { 88 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); 89 tlb_remove_table(tlb, virt_to_page(pud)); 90 } 91 92 #if CONFIG_PGTABLE_LEVELS > 4 93 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d) 94 { 95 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT); 96 tlb_remove_table(tlb, virt_to_page(p4d)); 97 } 98 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 99 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 100 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 101 102 static inline void pgd_list_add(pgd_t *pgd) 103 { 104 struct page *page = virt_to_page(pgd); 105 106 list_add(&page->lru, &pgd_list); 107 } 108 109 static inline void pgd_list_del(pgd_t *pgd) 110 { 111 struct page *page = virt_to_page(pgd); 112 113 list_del(&page->lru); 114 } 115 116 #define UNSHARED_PTRS_PER_PGD \ 117 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) 118 119 120 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) 121 { 122 virt_to_page(pgd)->pt_mm = mm; 123 } 124 125 struct mm_struct *pgd_page_get_mm(struct page *page) 126 { 127 return page->pt_mm; 128 } 129 130 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) 131 { 132 /* If the pgd points to a shared pagetable level (either the 133 ptes in non-PAE, or shared PMD in PAE), then just copy the 134 references from swapper_pg_dir. */ 135 if (CONFIG_PGTABLE_LEVELS == 2 || 136 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || 137 CONFIG_PGTABLE_LEVELS >= 4) { 138 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, 139 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 140 KERNEL_PGD_PTRS); 141 } 142 143 /* list required to sync kernel mapping updates */ 144 if (!SHARED_KERNEL_PMD) { 145 pgd_set_mm(pgd, mm); 146 pgd_list_add(pgd); 147 } 148 } 149 150 static void pgd_dtor(pgd_t *pgd) 151 { 152 if (SHARED_KERNEL_PMD) 153 return; 154 155 spin_lock(&pgd_lock); 156 pgd_list_del(pgd); 157 spin_unlock(&pgd_lock); 158 } 159 160 /* 161 * List of all pgd's needed for non-PAE so it can invalidate entries 162 * in both cached and uncached pgd's; not needed for PAE since the 163 * kernel pmd is shared. If PAE were not to share the pmd a similar 164 * tactic would be needed. This is essentially codepath-based locking 165 * against pageattr.c; it is the unique case in which a valid change 166 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 167 * vmalloc faults work because attached pagetables are never freed. 168 * -- nyc 169 */ 170 171 #ifdef CONFIG_X86_PAE 172 /* 173 * In PAE mode, we need to do a cr3 reload (=tlb flush) when 174 * updating the top-level pagetable entries to guarantee the 175 * processor notices the update. Since this is expensive, and 176 * all 4 top-level entries are used almost immediately in a 177 * new process's life, we just pre-populate them here. 178 * 179 * Also, if we're in a paravirt environment where the kernel pmd is 180 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate 181 * and initialize the kernel pmds here. 182 */ 183 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD 184 185 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) 186 { 187 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); 188 189 /* Note: almost everything apart from _PAGE_PRESENT is 190 reserved at the pmd (PDPT) level. */ 191 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); 192 193 /* 194 * According to Intel App note "TLBs, Paging-Structure Caches, 195 * and Their Invalidation", April 2007, document 317080-001, 196 * section 8.1: in PAE mode we explicitly have to flush the 197 * TLB via cr3 if the top-level pgd is changed... 198 */ 199 flush_tlb_mm(mm); 200 } 201 #else /* !CONFIG_X86_PAE */ 202 203 /* No need to prepopulate any pagetable entries in non-PAE modes. */ 204 #define PREALLOCATED_PMDS 0 205 206 #endif /* CONFIG_X86_PAE */ 207 208 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[]) 209 { 210 int i; 211 212 for(i = 0; i < PREALLOCATED_PMDS; i++) 213 if (pmds[i]) { 214 pgtable_pmd_page_dtor(virt_to_page(pmds[i])); 215 free_page((unsigned long)pmds[i]); 216 mm_dec_nr_pmds(mm); 217 } 218 } 219 220 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[]) 221 { 222 int i; 223 bool failed = false; 224 gfp_t gfp = PGALLOC_GFP; 225 226 if (mm == &init_mm) 227 gfp &= ~__GFP_ACCOUNT; 228 229 for(i = 0; i < PREALLOCATED_PMDS; i++) { 230 pmd_t *pmd = (pmd_t *)__get_free_page(gfp); 231 if (!pmd) 232 failed = true; 233 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) { 234 free_page((unsigned long)pmd); 235 pmd = NULL; 236 failed = true; 237 } 238 if (pmd) 239 mm_inc_nr_pmds(mm); 240 pmds[i] = pmd; 241 } 242 243 if (failed) { 244 free_pmds(mm, pmds); 245 return -ENOMEM; 246 } 247 248 return 0; 249 } 250 251 /* 252 * Mop up any pmd pages which may still be attached to the pgd. 253 * Normally they will be freed by munmap/exit_mmap, but any pmd we 254 * preallocate which never got a corresponding vma will need to be 255 * freed manually. 256 */ 257 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) 258 { 259 int i; 260 261 for(i = 0; i < PREALLOCATED_PMDS; i++) { 262 pgd_t pgd = pgdp[i]; 263 264 if (pgd_val(pgd) != 0) { 265 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); 266 267 pgdp[i] = native_make_pgd(0); 268 269 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); 270 pmd_free(mm, pmd); 271 mm_dec_nr_pmds(mm); 272 } 273 } 274 } 275 276 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) 277 { 278 p4d_t *p4d; 279 pud_t *pud; 280 int i; 281 282 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ 283 return; 284 285 p4d = p4d_offset(pgd, 0); 286 pud = pud_offset(p4d, 0); 287 288 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { 289 pmd_t *pmd = pmds[i]; 290 291 if (i >= KERNEL_PGD_BOUNDARY) 292 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), 293 sizeof(pmd_t) * PTRS_PER_PMD); 294 295 pud_populate(mm, pud, pmd); 296 } 297 } 298 299 /* 300 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also 301 * assumes that pgd should be in one page. 302 * 303 * But kernel with PAE paging that is not running as a Xen domain 304 * only needs to allocate 32 bytes for pgd instead of one page. 305 */ 306 #ifdef CONFIG_X86_PAE 307 308 #include <linux/slab.h> 309 310 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 311 #define PGD_ALIGN 32 312 313 static struct kmem_cache *pgd_cache; 314 315 static int __init pgd_cache_init(void) 316 { 317 /* 318 * When PAE kernel is running as a Xen domain, it does not use 319 * shared kernel pmd. And this requires a whole page for pgd. 320 */ 321 if (!SHARED_KERNEL_PMD) 322 return 0; 323 324 /* 325 * when PAE kernel is not running as a Xen domain, it uses 326 * shared kernel pmd. Shared kernel pmd does not require a whole 327 * page for pgd. We are able to just allocate a 32-byte for pgd. 328 * During boot time, we create a 32-byte slab for pgd table allocation. 329 */ 330 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, 331 SLAB_PANIC, NULL); 332 if (!pgd_cache) 333 return -ENOMEM; 334 335 return 0; 336 } 337 core_initcall(pgd_cache_init); 338 339 static inline pgd_t *_pgd_alloc(void) 340 { 341 /* 342 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain. 343 * We allocate one page for pgd. 344 */ 345 if (!SHARED_KERNEL_PMD) 346 return (pgd_t *)__get_free_page(PGALLOC_GFP); 347 348 /* 349 * Now PAE kernel is not running as a Xen domain. We can allocate 350 * a 32-byte slab for pgd to save memory space. 351 */ 352 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP); 353 } 354 355 static inline void _pgd_free(pgd_t *pgd) 356 { 357 if (!SHARED_KERNEL_PMD) 358 free_page((unsigned long)pgd); 359 else 360 kmem_cache_free(pgd_cache, pgd); 361 } 362 #else 363 364 static inline pgd_t *_pgd_alloc(void) 365 { 366 return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER); 367 } 368 369 static inline void _pgd_free(pgd_t *pgd) 370 { 371 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); 372 } 373 #endif /* CONFIG_X86_PAE */ 374 375 pgd_t *pgd_alloc(struct mm_struct *mm) 376 { 377 pgd_t *pgd; 378 pmd_t *pmds[PREALLOCATED_PMDS]; 379 380 pgd = _pgd_alloc(); 381 382 if (pgd == NULL) 383 goto out; 384 385 mm->pgd = pgd; 386 387 if (preallocate_pmds(mm, pmds) != 0) 388 goto out_free_pgd; 389 390 if (paravirt_pgd_alloc(mm) != 0) 391 goto out_free_pmds; 392 393 /* 394 * Make sure that pre-populating the pmds is atomic with 395 * respect to anything walking the pgd_list, so that they 396 * never see a partially populated pgd. 397 */ 398 spin_lock(&pgd_lock); 399 400 pgd_ctor(mm, pgd); 401 pgd_prepopulate_pmd(mm, pgd, pmds); 402 403 spin_unlock(&pgd_lock); 404 405 return pgd; 406 407 out_free_pmds: 408 free_pmds(mm, pmds); 409 out_free_pgd: 410 _pgd_free(pgd); 411 out: 412 return NULL; 413 } 414 415 void pgd_free(struct mm_struct *mm, pgd_t *pgd) 416 { 417 pgd_mop_up_pmds(mm, pgd); 418 pgd_dtor(pgd); 419 paravirt_pgd_free(mm, pgd); 420 _pgd_free(pgd); 421 } 422 423 /* 424 * Used to set accessed or dirty bits in the page table entries 425 * on other architectures. On x86, the accessed and dirty bits 426 * are tracked by hardware. However, do_wp_page calls this function 427 * to also make the pte writeable at the same time the dirty bit is 428 * set. In that case we do actually need to write the PTE. 429 */ 430 int ptep_set_access_flags(struct vm_area_struct *vma, 431 unsigned long address, pte_t *ptep, 432 pte_t entry, int dirty) 433 { 434 int changed = !pte_same(*ptep, entry); 435 436 if (changed && dirty) 437 *ptep = entry; 438 439 return changed; 440 } 441 442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 443 int pmdp_set_access_flags(struct vm_area_struct *vma, 444 unsigned long address, pmd_t *pmdp, 445 pmd_t entry, int dirty) 446 { 447 int changed = !pmd_same(*pmdp, entry); 448 449 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 450 451 if (changed && dirty) { 452 *pmdp = entry; 453 /* 454 * We had a write-protection fault here and changed the pmd 455 * to to more permissive. No need to flush the TLB for that, 456 * #PF is architecturally guaranteed to do that and in the 457 * worst-case we'll generate a spurious fault. 458 */ 459 } 460 461 return changed; 462 } 463 464 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 465 pud_t *pudp, pud_t entry, int dirty) 466 { 467 int changed = !pud_same(*pudp, entry); 468 469 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 470 471 if (changed && dirty) { 472 *pudp = entry; 473 /* 474 * We had a write-protection fault here and changed the pud 475 * to to more permissive. No need to flush the TLB for that, 476 * #PF is architecturally guaranteed to do that and in the 477 * worst-case we'll generate a spurious fault. 478 */ 479 } 480 481 return changed; 482 } 483 #endif 484 485 int ptep_test_and_clear_young(struct vm_area_struct *vma, 486 unsigned long addr, pte_t *ptep) 487 { 488 int ret = 0; 489 490 if (pte_young(*ptep)) 491 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 492 (unsigned long *) &ptep->pte); 493 494 return ret; 495 } 496 497 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 498 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 499 unsigned long addr, pmd_t *pmdp) 500 { 501 int ret = 0; 502 503 if (pmd_young(*pmdp)) 504 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 505 (unsigned long *)pmdp); 506 507 return ret; 508 } 509 int pudp_test_and_clear_young(struct vm_area_struct *vma, 510 unsigned long addr, pud_t *pudp) 511 { 512 int ret = 0; 513 514 if (pud_young(*pudp)) 515 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 516 (unsigned long *)pudp); 517 518 return ret; 519 } 520 #endif 521 522 int ptep_clear_flush_young(struct vm_area_struct *vma, 523 unsigned long address, pte_t *ptep) 524 { 525 /* 526 * On x86 CPUs, clearing the accessed bit without a TLB flush 527 * doesn't cause data corruption. [ It could cause incorrect 528 * page aging and the (mistaken) reclaim of hot pages, but the 529 * chance of that should be relatively low. ] 530 * 531 * So as a performance optimization don't flush the TLB when 532 * clearing the accessed bit, it will eventually be flushed by 533 * a context switch or a VM operation anyway. [ In the rare 534 * event of it not getting flushed for a long time the delay 535 * shouldn't really matter because there's no real memory 536 * pressure for swapout to react to. ] 537 */ 538 return ptep_test_and_clear_young(vma, address, ptep); 539 } 540 541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 542 int pmdp_clear_flush_young(struct vm_area_struct *vma, 543 unsigned long address, pmd_t *pmdp) 544 { 545 int young; 546 547 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 548 549 young = pmdp_test_and_clear_young(vma, address, pmdp); 550 if (young) 551 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 552 553 return young; 554 } 555 #endif 556 557 /** 558 * reserve_top_address - reserves a hole in the top of kernel address space 559 * @reserve - size of hole to reserve 560 * 561 * Can be used to relocate the fixmap area and poke a hole in the top 562 * of kernel address space to make room for a hypervisor. 563 */ 564 void __init reserve_top_address(unsigned long reserve) 565 { 566 #ifdef CONFIG_X86_32 567 BUG_ON(fixmaps_set > 0); 568 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; 569 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", 570 -reserve, __FIXADDR_TOP + PAGE_SIZE); 571 #endif 572 } 573 574 int fixmaps_set; 575 576 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) 577 { 578 unsigned long address = __fix_to_virt(idx); 579 580 if (idx >= __end_of_fixed_addresses) { 581 BUG(); 582 return; 583 } 584 set_pte_vaddr(address, pte); 585 fixmaps_set++; 586 } 587 588 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, 589 pgprot_t flags) 590 { 591 /* Sanitize 'prot' against any unsupported bits: */ 592 pgprot_val(flags) &= __default_kernel_pte_mask; 593 594 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); 595 } 596 597 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 598 #ifdef CONFIG_X86_5LEVEL 599 /** 600 * p4d_set_huge - setup kernel P4D mapping 601 * 602 * No 512GB pages yet -- always return 0 603 */ 604 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 605 { 606 return 0; 607 } 608 609 /** 610 * p4d_clear_huge - clear kernel P4D mapping when it is set 611 * 612 * No 512GB pages yet -- always return 0 613 */ 614 int p4d_clear_huge(p4d_t *p4d) 615 { 616 return 0; 617 } 618 #endif 619 620 /** 621 * pud_set_huge - setup kernel PUD mapping 622 * 623 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this 624 * function sets up a huge page only if any of the following conditions are met: 625 * 626 * - MTRRs are disabled, or 627 * 628 * - MTRRs are enabled and the range is completely covered by a single MTRR, or 629 * 630 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which 631 * has no effect on the requested PAT memory type. 632 * 633 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger 634 * page mapping attempt fails. 635 * 636 * Returns 1 on success and 0 on failure. 637 */ 638 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 639 { 640 u8 mtrr, uniform; 641 642 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); 643 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 644 (mtrr != MTRR_TYPE_WRBACK)) 645 return 0; 646 647 /* Bail out if we are we on a populated non-leaf entry: */ 648 if (pud_present(*pud) && !pud_huge(*pud)) 649 return 0; 650 651 prot = pgprot_4k_2_large(prot); 652 653 set_pte((pte_t *)pud, pfn_pte( 654 (u64)addr >> PAGE_SHIFT, 655 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 656 657 return 1; 658 } 659 660 /** 661 * pmd_set_huge - setup kernel PMD mapping 662 * 663 * See text over pud_set_huge() above. 664 * 665 * Returns 1 on success and 0 on failure. 666 */ 667 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 668 { 669 u8 mtrr, uniform; 670 671 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); 672 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 673 (mtrr != MTRR_TYPE_WRBACK)) { 674 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", 675 __func__, addr, addr + PMD_SIZE); 676 return 0; 677 } 678 679 /* Bail out if we are we on a populated non-leaf entry: */ 680 if (pmd_present(*pmd) && !pmd_huge(*pmd)) 681 return 0; 682 683 prot = pgprot_4k_2_large(prot); 684 685 set_pte((pte_t *)pmd, pfn_pte( 686 (u64)addr >> PAGE_SHIFT, 687 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 688 689 return 1; 690 } 691 692 /** 693 * pud_clear_huge - clear kernel PUD mapping when it is set 694 * 695 * Returns 1 on success and 0 on failure (no PUD map is found). 696 */ 697 int pud_clear_huge(pud_t *pud) 698 { 699 if (pud_large(*pud)) { 700 pud_clear(pud); 701 return 1; 702 } 703 704 return 0; 705 } 706 707 /** 708 * pmd_clear_huge - clear kernel PMD mapping when it is set 709 * 710 * Returns 1 on success and 0 on failure (no PMD map is found). 711 */ 712 int pmd_clear_huge(pmd_t *pmd) 713 { 714 if (pmd_large(*pmd)) { 715 pmd_clear(pmd); 716 return 1; 717 } 718 719 return 0; 720 } 721 722 /** 723 * pud_free_pmd_page - Clear pud entry and free pmd page. 724 * @pud: Pointer to a PUD. 725 * 726 * Context: The pud range has been unmaped and TLB purged. 727 * Return: 1 if clearing the entry succeeded. 0 otherwise. 728 */ 729 int pud_free_pmd_page(pud_t *pud) 730 { 731 pmd_t *pmd; 732 int i; 733 734 if (pud_none(*pud)) 735 return 1; 736 737 pmd = (pmd_t *)pud_page_vaddr(*pud); 738 739 for (i = 0; i < PTRS_PER_PMD; i++) 740 if (!pmd_free_pte_page(&pmd[i])) 741 return 0; 742 743 pud_clear(pud); 744 free_page((unsigned long)pmd); 745 746 return 1; 747 } 748 749 /** 750 * pmd_free_pte_page - Clear pmd entry and free pte page. 751 * @pmd: Pointer to a PMD. 752 * 753 * Context: The pmd range has been unmaped and TLB purged. 754 * Return: 1 if clearing the entry succeeded. 0 otherwise. 755 */ 756 int pmd_free_pte_page(pmd_t *pmd) 757 { 758 pte_t *pte; 759 760 if (pmd_none(*pmd)) 761 return 1; 762 763 pte = (pte_t *)pmd_page_vaddr(*pmd); 764 pmd_clear(pmd); 765 free_page((unsigned long)pte); 766 767 return 1; 768 } 769 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 770