1 #include <linux/mm.h> 2 #include <linux/gfp.h> 3 #include <asm/pgalloc.h> 4 #include <asm/pgtable.h> 5 #include <asm/tlb.h> 6 #include <asm/fixmap.h> 7 #include <asm/mtrr.h> 8 9 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO) 10 11 #ifdef CONFIG_HIGHPTE 12 #define PGALLOC_USER_GFP __GFP_HIGHMEM 13 #else 14 #define PGALLOC_USER_GFP 0 15 #endif 16 17 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; 18 19 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) 20 { 21 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT); 22 } 23 24 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) 25 { 26 struct page *pte; 27 28 pte = alloc_pages(__userpte_alloc_gfp, 0); 29 if (!pte) 30 return NULL; 31 if (!pgtable_page_ctor(pte)) { 32 __free_page(pte); 33 return NULL; 34 } 35 return pte; 36 } 37 38 static int __init setup_userpte(char *arg) 39 { 40 if (!arg) 41 return -EINVAL; 42 43 /* 44 * "userpte=nohigh" disables allocation of user pagetables in 45 * high memory. 46 */ 47 if (strcmp(arg, "nohigh") == 0) 48 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 49 else 50 return -EINVAL; 51 return 0; 52 } 53 early_param("userpte", setup_userpte); 54 55 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) 56 { 57 pgtable_page_dtor(pte); 58 paravirt_release_pte(page_to_pfn(pte)); 59 tlb_remove_page(tlb, pte); 60 } 61 62 #if CONFIG_PGTABLE_LEVELS > 2 63 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) 64 { 65 struct page *page = virt_to_page(pmd); 66 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); 67 /* 68 * NOTE! For PAE, any changes to the top page-directory-pointer-table 69 * entries need a full cr3 reload to flush. 70 */ 71 #ifdef CONFIG_X86_PAE 72 tlb->need_flush_all = 1; 73 #endif 74 pgtable_pmd_page_dtor(page); 75 tlb_remove_page(tlb, page); 76 } 77 78 #if CONFIG_PGTABLE_LEVELS > 3 79 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) 80 { 81 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); 82 tlb_remove_page(tlb, virt_to_page(pud)); 83 } 84 85 #if CONFIG_PGTABLE_LEVELS > 4 86 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d) 87 { 88 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT); 89 tlb_remove_page(tlb, virt_to_page(p4d)); 90 } 91 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 92 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 93 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 94 95 static inline void pgd_list_add(pgd_t *pgd) 96 { 97 struct page *page = virt_to_page(pgd); 98 99 list_add(&page->lru, &pgd_list); 100 } 101 102 static inline void pgd_list_del(pgd_t *pgd) 103 { 104 struct page *page = virt_to_page(pgd); 105 106 list_del(&page->lru); 107 } 108 109 #define UNSHARED_PTRS_PER_PGD \ 110 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) 111 112 113 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) 114 { 115 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm)); 116 virt_to_page(pgd)->index = (pgoff_t)mm; 117 } 118 119 struct mm_struct *pgd_page_get_mm(struct page *page) 120 { 121 return (struct mm_struct *)page->index; 122 } 123 124 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) 125 { 126 /* If the pgd points to a shared pagetable level (either the 127 ptes in non-PAE, or shared PMD in PAE), then just copy the 128 references from swapper_pg_dir. */ 129 if (CONFIG_PGTABLE_LEVELS == 2 || 130 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || 131 CONFIG_PGTABLE_LEVELS >= 4) { 132 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, 133 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 134 KERNEL_PGD_PTRS); 135 } 136 137 /* list required to sync kernel mapping updates */ 138 if (!SHARED_KERNEL_PMD) { 139 pgd_set_mm(pgd, mm); 140 pgd_list_add(pgd); 141 } 142 } 143 144 static void pgd_dtor(pgd_t *pgd) 145 { 146 if (SHARED_KERNEL_PMD) 147 return; 148 149 spin_lock(&pgd_lock); 150 pgd_list_del(pgd); 151 spin_unlock(&pgd_lock); 152 } 153 154 /* 155 * List of all pgd's needed for non-PAE so it can invalidate entries 156 * in both cached and uncached pgd's; not needed for PAE since the 157 * kernel pmd is shared. If PAE were not to share the pmd a similar 158 * tactic would be needed. This is essentially codepath-based locking 159 * against pageattr.c; it is the unique case in which a valid change 160 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 161 * vmalloc faults work because attached pagetables are never freed. 162 * -- nyc 163 */ 164 165 #ifdef CONFIG_X86_PAE 166 /* 167 * In PAE mode, we need to do a cr3 reload (=tlb flush) when 168 * updating the top-level pagetable entries to guarantee the 169 * processor notices the update. Since this is expensive, and 170 * all 4 top-level entries are used almost immediately in a 171 * new process's life, we just pre-populate them here. 172 * 173 * Also, if we're in a paravirt environment where the kernel pmd is 174 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate 175 * and initialize the kernel pmds here. 176 */ 177 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD 178 179 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) 180 { 181 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); 182 183 /* Note: almost everything apart from _PAGE_PRESENT is 184 reserved at the pmd (PDPT) level. */ 185 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); 186 187 /* 188 * According to Intel App note "TLBs, Paging-Structure Caches, 189 * and Their Invalidation", April 2007, document 317080-001, 190 * section 8.1: in PAE mode we explicitly have to flush the 191 * TLB via cr3 if the top-level pgd is changed... 192 */ 193 flush_tlb_mm(mm); 194 } 195 #else /* !CONFIG_X86_PAE */ 196 197 /* No need to prepopulate any pagetable entries in non-PAE modes. */ 198 #define PREALLOCATED_PMDS 0 199 200 #endif /* CONFIG_X86_PAE */ 201 202 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[]) 203 { 204 int i; 205 206 for(i = 0; i < PREALLOCATED_PMDS; i++) 207 if (pmds[i]) { 208 pgtable_pmd_page_dtor(virt_to_page(pmds[i])); 209 free_page((unsigned long)pmds[i]); 210 mm_dec_nr_pmds(mm); 211 } 212 } 213 214 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[]) 215 { 216 int i; 217 bool failed = false; 218 gfp_t gfp = PGALLOC_GFP; 219 220 if (mm == &init_mm) 221 gfp &= ~__GFP_ACCOUNT; 222 223 for(i = 0; i < PREALLOCATED_PMDS; i++) { 224 pmd_t *pmd = (pmd_t *)__get_free_page(gfp); 225 if (!pmd) 226 failed = true; 227 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) { 228 free_page((unsigned long)pmd); 229 pmd = NULL; 230 failed = true; 231 } 232 if (pmd) 233 mm_inc_nr_pmds(mm); 234 pmds[i] = pmd; 235 } 236 237 if (failed) { 238 free_pmds(mm, pmds); 239 return -ENOMEM; 240 } 241 242 return 0; 243 } 244 245 /* 246 * Mop up any pmd pages which may still be attached to the pgd. 247 * Normally they will be freed by munmap/exit_mmap, but any pmd we 248 * preallocate which never got a corresponding vma will need to be 249 * freed manually. 250 */ 251 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) 252 { 253 int i; 254 255 for(i = 0; i < PREALLOCATED_PMDS; i++) { 256 pgd_t pgd = pgdp[i]; 257 258 if (pgd_val(pgd) != 0) { 259 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); 260 261 pgdp[i] = native_make_pgd(0); 262 263 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); 264 pmd_free(mm, pmd); 265 mm_dec_nr_pmds(mm); 266 } 267 } 268 } 269 270 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) 271 { 272 p4d_t *p4d; 273 pud_t *pud; 274 int i; 275 276 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ 277 return; 278 279 p4d = p4d_offset(pgd, 0); 280 pud = pud_offset(p4d, 0); 281 282 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { 283 pmd_t *pmd = pmds[i]; 284 285 if (i >= KERNEL_PGD_BOUNDARY) 286 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), 287 sizeof(pmd_t) * PTRS_PER_PMD); 288 289 pud_populate(mm, pud, pmd); 290 } 291 } 292 293 /* 294 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also 295 * assumes that pgd should be in one page. 296 * 297 * But kernel with PAE paging that is not running as a Xen domain 298 * only needs to allocate 32 bytes for pgd instead of one page. 299 */ 300 #ifdef CONFIG_X86_PAE 301 302 #include <linux/slab.h> 303 304 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 305 #define PGD_ALIGN 32 306 307 static struct kmem_cache *pgd_cache; 308 309 static int __init pgd_cache_init(void) 310 { 311 /* 312 * When PAE kernel is running as a Xen domain, it does not use 313 * shared kernel pmd. And this requires a whole page for pgd. 314 */ 315 if (!SHARED_KERNEL_PMD) 316 return 0; 317 318 /* 319 * when PAE kernel is not running as a Xen domain, it uses 320 * shared kernel pmd. Shared kernel pmd does not require a whole 321 * page for pgd. We are able to just allocate a 32-byte for pgd. 322 * During boot time, we create a 32-byte slab for pgd table allocation. 323 */ 324 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, 325 SLAB_PANIC, NULL); 326 if (!pgd_cache) 327 return -ENOMEM; 328 329 return 0; 330 } 331 core_initcall(pgd_cache_init); 332 333 static inline pgd_t *_pgd_alloc(void) 334 { 335 /* 336 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain. 337 * We allocate one page for pgd. 338 */ 339 if (!SHARED_KERNEL_PMD) 340 return (pgd_t *)__get_free_page(PGALLOC_GFP); 341 342 /* 343 * Now PAE kernel is not running as a Xen domain. We can allocate 344 * a 32-byte slab for pgd to save memory space. 345 */ 346 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP); 347 } 348 349 static inline void _pgd_free(pgd_t *pgd) 350 { 351 if (!SHARED_KERNEL_PMD) 352 free_page((unsigned long)pgd); 353 else 354 kmem_cache_free(pgd_cache, pgd); 355 } 356 #else 357 static inline pgd_t *_pgd_alloc(void) 358 { 359 return (pgd_t *)__get_free_page(PGALLOC_GFP); 360 } 361 362 static inline void _pgd_free(pgd_t *pgd) 363 { 364 free_page((unsigned long)pgd); 365 } 366 #endif /* CONFIG_X86_PAE */ 367 368 pgd_t *pgd_alloc(struct mm_struct *mm) 369 { 370 pgd_t *pgd; 371 pmd_t *pmds[PREALLOCATED_PMDS]; 372 373 pgd = _pgd_alloc(); 374 375 if (pgd == NULL) 376 goto out; 377 378 mm->pgd = pgd; 379 380 if (preallocate_pmds(mm, pmds) != 0) 381 goto out_free_pgd; 382 383 if (paravirt_pgd_alloc(mm) != 0) 384 goto out_free_pmds; 385 386 /* 387 * Make sure that pre-populating the pmds is atomic with 388 * respect to anything walking the pgd_list, so that they 389 * never see a partially populated pgd. 390 */ 391 spin_lock(&pgd_lock); 392 393 pgd_ctor(mm, pgd); 394 pgd_prepopulate_pmd(mm, pgd, pmds); 395 396 spin_unlock(&pgd_lock); 397 398 return pgd; 399 400 out_free_pmds: 401 free_pmds(mm, pmds); 402 out_free_pgd: 403 _pgd_free(pgd); 404 out: 405 return NULL; 406 } 407 408 void pgd_free(struct mm_struct *mm, pgd_t *pgd) 409 { 410 pgd_mop_up_pmds(mm, pgd); 411 pgd_dtor(pgd); 412 paravirt_pgd_free(mm, pgd); 413 _pgd_free(pgd); 414 } 415 416 /* 417 * Used to set accessed or dirty bits in the page table entries 418 * on other architectures. On x86, the accessed and dirty bits 419 * are tracked by hardware. However, do_wp_page calls this function 420 * to also make the pte writeable at the same time the dirty bit is 421 * set. In that case we do actually need to write the PTE. 422 */ 423 int ptep_set_access_flags(struct vm_area_struct *vma, 424 unsigned long address, pte_t *ptep, 425 pte_t entry, int dirty) 426 { 427 int changed = !pte_same(*ptep, entry); 428 429 if (changed && dirty) { 430 *ptep = entry; 431 pte_update(vma->vm_mm, address, ptep); 432 } 433 434 return changed; 435 } 436 437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 438 int pmdp_set_access_flags(struct vm_area_struct *vma, 439 unsigned long address, pmd_t *pmdp, 440 pmd_t entry, int dirty) 441 { 442 int changed = !pmd_same(*pmdp, entry); 443 444 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 445 446 if (changed && dirty) { 447 *pmdp = entry; 448 /* 449 * We had a write-protection fault here and changed the pmd 450 * to to more permissive. No need to flush the TLB for that, 451 * #PF is architecturally guaranteed to do that and in the 452 * worst-case we'll generate a spurious fault. 453 */ 454 } 455 456 return changed; 457 } 458 459 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 460 pud_t *pudp, pud_t entry, int dirty) 461 { 462 int changed = !pud_same(*pudp, entry); 463 464 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 465 466 if (changed && dirty) { 467 *pudp = entry; 468 /* 469 * We had a write-protection fault here and changed the pud 470 * to to more permissive. No need to flush the TLB for that, 471 * #PF is architecturally guaranteed to do that and in the 472 * worst-case we'll generate a spurious fault. 473 */ 474 } 475 476 return changed; 477 } 478 #endif 479 480 int ptep_test_and_clear_young(struct vm_area_struct *vma, 481 unsigned long addr, pte_t *ptep) 482 { 483 int ret = 0; 484 485 if (pte_young(*ptep)) 486 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 487 (unsigned long *) &ptep->pte); 488 489 if (ret) 490 pte_update(vma->vm_mm, addr, ptep); 491 492 return ret; 493 } 494 495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 496 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 497 unsigned long addr, pmd_t *pmdp) 498 { 499 int ret = 0; 500 501 if (pmd_young(*pmdp)) 502 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 503 (unsigned long *)pmdp); 504 505 return ret; 506 } 507 int pudp_test_and_clear_young(struct vm_area_struct *vma, 508 unsigned long addr, pud_t *pudp) 509 { 510 int ret = 0; 511 512 if (pud_young(*pudp)) 513 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 514 (unsigned long *)pudp); 515 516 return ret; 517 } 518 #endif 519 520 int ptep_clear_flush_young(struct vm_area_struct *vma, 521 unsigned long address, pte_t *ptep) 522 { 523 /* 524 * On x86 CPUs, clearing the accessed bit without a TLB flush 525 * doesn't cause data corruption. [ It could cause incorrect 526 * page aging and the (mistaken) reclaim of hot pages, but the 527 * chance of that should be relatively low. ] 528 * 529 * So as a performance optimization don't flush the TLB when 530 * clearing the accessed bit, it will eventually be flushed by 531 * a context switch or a VM operation anyway. [ In the rare 532 * event of it not getting flushed for a long time the delay 533 * shouldn't really matter because there's no real memory 534 * pressure for swapout to react to. ] 535 */ 536 return ptep_test_and_clear_young(vma, address, ptep); 537 } 538 539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 540 int pmdp_clear_flush_young(struct vm_area_struct *vma, 541 unsigned long address, pmd_t *pmdp) 542 { 543 int young; 544 545 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 546 547 young = pmdp_test_and_clear_young(vma, address, pmdp); 548 if (young) 549 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 550 551 return young; 552 } 553 #endif 554 555 /** 556 * reserve_top_address - reserves a hole in the top of kernel address space 557 * @reserve - size of hole to reserve 558 * 559 * Can be used to relocate the fixmap area and poke a hole in the top 560 * of kernel address space to make room for a hypervisor. 561 */ 562 void __init reserve_top_address(unsigned long reserve) 563 { 564 #ifdef CONFIG_X86_32 565 BUG_ON(fixmaps_set > 0); 566 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; 567 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", 568 -reserve, __FIXADDR_TOP + PAGE_SIZE); 569 #endif 570 } 571 572 int fixmaps_set; 573 574 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) 575 { 576 unsigned long address = __fix_to_virt(idx); 577 578 if (idx >= __end_of_fixed_addresses) { 579 BUG(); 580 return; 581 } 582 set_pte_vaddr(address, pte); 583 fixmaps_set++; 584 } 585 586 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, 587 pgprot_t flags) 588 { 589 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); 590 } 591 592 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 593 #ifdef CONFIG_X86_5LEVEL 594 /** 595 * p4d_set_huge - setup kernel P4D mapping 596 * 597 * No 512GB pages yet -- always return 0 598 */ 599 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 600 { 601 return 0; 602 } 603 604 /** 605 * p4d_clear_huge - clear kernel P4D mapping when it is set 606 * 607 * No 512GB pages yet -- always return 0 608 */ 609 int p4d_clear_huge(p4d_t *p4d) 610 { 611 return 0; 612 } 613 #endif 614 615 /** 616 * pud_set_huge - setup kernel PUD mapping 617 * 618 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this 619 * function sets up a huge page only if any of the following conditions are met: 620 * 621 * - MTRRs are disabled, or 622 * 623 * - MTRRs are enabled and the range is completely covered by a single MTRR, or 624 * 625 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which 626 * has no effect on the requested PAT memory type. 627 * 628 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger 629 * page mapping attempt fails. 630 * 631 * Returns 1 on success and 0 on failure. 632 */ 633 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 634 { 635 u8 mtrr, uniform; 636 637 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); 638 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 639 (mtrr != MTRR_TYPE_WRBACK)) 640 return 0; 641 642 prot = pgprot_4k_2_large(prot); 643 644 set_pte((pte_t *)pud, pfn_pte( 645 (u64)addr >> PAGE_SHIFT, 646 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 647 648 return 1; 649 } 650 651 /** 652 * pmd_set_huge - setup kernel PMD mapping 653 * 654 * See text over pud_set_huge() above. 655 * 656 * Returns 1 on success and 0 on failure. 657 */ 658 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 659 { 660 u8 mtrr, uniform; 661 662 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); 663 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 664 (mtrr != MTRR_TYPE_WRBACK)) { 665 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", 666 __func__, addr, addr + PMD_SIZE); 667 return 0; 668 } 669 670 prot = pgprot_4k_2_large(prot); 671 672 set_pte((pte_t *)pmd, pfn_pte( 673 (u64)addr >> PAGE_SHIFT, 674 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 675 676 return 1; 677 } 678 679 /** 680 * pud_clear_huge - clear kernel PUD mapping when it is set 681 * 682 * Returns 1 on success and 0 on failure (no PUD map is found). 683 */ 684 int pud_clear_huge(pud_t *pud) 685 { 686 if (pud_large(*pud)) { 687 pud_clear(pud); 688 return 1; 689 } 690 691 return 0; 692 } 693 694 /** 695 * pmd_clear_huge - clear kernel PMD mapping when it is set 696 * 697 * Returns 1 on success and 0 on failure (no PMD map is found). 698 */ 699 int pmd_clear_huge(pmd_t *pmd) 700 { 701 if (pmd_large(*pmd)) { 702 pmd_clear(pmd); 703 return 1; 704 } 705 706 return 0; 707 } 708 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 709