xref: /linux/arch/x86/mm/pgtable.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7 #include <asm/mtrr.h>
8 
9 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
10 
11 #ifdef CONFIG_HIGHPTE
12 #define PGALLOC_USER_GFP __GFP_HIGHMEM
13 #else
14 #define PGALLOC_USER_GFP 0
15 #endif
16 
17 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
18 
19 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
20 {
21 	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
22 }
23 
24 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
25 {
26 	struct page *pte;
27 
28 	pte = alloc_pages(__userpte_alloc_gfp, 0);
29 	if (!pte)
30 		return NULL;
31 	if (!pgtable_page_ctor(pte)) {
32 		__free_page(pte);
33 		return NULL;
34 	}
35 	return pte;
36 }
37 
38 static int __init setup_userpte(char *arg)
39 {
40 	if (!arg)
41 		return -EINVAL;
42 
43 	/*
44 	 * "userpte=nohigh" disables allocation of user pagetables in
45 	 * high memory.
46 	 */
47 	if (strcmp(arg, "nohigh") == 0)
48 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
49 	else
50 		return -EINVAL;
51 	return 0;
52 }
53 early_param("userpte", setup_userpte);
54 
55 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
56 {
57 	pgtable_page_dtor(pte);
58 	paravirt_release_pte(page_to_pfn(pte));
59 	tlb_remove_page(tlb, pte);
60 }
61 
62 #if CONFIG_PGTABLE_LEVELS > 2
63 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
64 {
65 	struct page *page = virt_to_page(pmd);
66 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
67 	/*
68 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
69 	 * entries need a full cr3 reload to flush.
70 	 */
71 #ifdef CONFIG_X86_PAE
72 	tlb->need_flush_all = 1;
73 #endif
74 	pgtable_pmd_page_dtor(page);
75 	tlb_remove_page(tlb, page);
76 }
77 
78 #if CONFIG_PGTABLE_LEVELS > 3
79 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
80 {
81 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
82 	tlb_remove_page(tlb, virt_to_page(pud));
83 }
84 
85 #if CONFIG_PGTABLE_LEVELS > 4
86 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
87 {
88 	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
89 	tlb_remove_page(tlb, virt_to_page(p4d));
90 }
91 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
92 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
93 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
94 
95 static inline void pgd_list_add(pgd_t *pgd)
96 {
97 	struct page *page = virt_to_page(pgd);
98 
99 	list_add(&page->lru, &pgd_list);
100 }
101 
102 static inline void pgd_list_del(pgd_t *pgd)
103 {
104 	struct page *page = virt_to_page(pgd);
105 
106 	list_del(&page->lru);
107 }
108 
109 #define UNSHARED_PTRS_PER_PGD				\
110 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
111 
112 
113 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
114 {
115 	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
116 	virt_to_page(pgd)->index = (pgoff_t)mm;
117 }
118 
119 struct mm_struct *pgd_page_get_mm(struct page *page)
120 {
121 	return (struct mm_struct *)page->index;
122 }
123 
124 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
125 {
126 	/* If the pgd points to a shared pagetable level (either the
127 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
128 	   references from swapper_pg_dir. */
129 	if (CONFIG_PGTABLE_LEVELS == 2 ||
130 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
131 	    CONFIG_PGTABLE_LEVELS >= 4) {
132 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
133 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
134 				KERNEL_PGD_PTRS);
135 	}
136 
137 	/* list required to sync kernel mapping updates */
138 	if (!SHARED_KERNEL_PMD) {
139 		pgd_set_mm(pgd, mm);
140 		pgd_list_add(pgd);
141 	}
142 }
143 
144 static void pgd_dtor(pgd_t *pgd)
145 {
146 	if (SHARED_KERNEL_PMD)
147 		return;
148 
149 	spin_lock(&pgd_lock);
150 	pgd_list_del(pgd);
151 	spin_unlock(&pgd_lock);
152 }
153 
154 /*
155  * List of all pgd's needed for non-PAE so it can invalidate entries
156  * in both cached and uncached pgd's; not needed for PAE since the
157  * kernel pmd is shared. If PAE were not to share the pmd a similar
158  * tactic would be needed. This is essentially codepath-based locking
159  * against pageattr.c; it is the unique case in which a valid change
160  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
161  * vmalloc faults work because attached pagetables are never freed.
162  * -- nyc
163  */
164 
165 #ifdef CONFIG_X86_PAE
166 /*
167  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
168  * updating the top-level pagetable entries to guarantee the
169  * processor notices the update.  Since this is expensive, and
170  * all 4 top-level entries are used almost immediately in a
171  * new process's life, we just pre-populate them here.
172  *
173  * Also, if we're in a paravirt environment where the kernel pmd is
174  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
175  * and initialize the kernel pmds here.
176  */
177 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
178 
179 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
180 {
181 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
182 
183 	/* Note: almost everything apart from _PAGE_PRESENT is
184 	   reserved at the pmd (PDPT) level. */
185 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
186 
187 	/*
188 	 * According to Intel App note "TLBs, Paging-Structure Caches,
189 	 * and Their Invalidation", April 2007, document 317080-001,
190 	 * section 8.1: in PAE mode we explicitly have to flush the
191 	 * TLB via cr3 if the top-level pgd is changed...
192 	 */
193 	flush_tlb_mm(mm);
194 }
195 #else  /* !CONFIG_X86_PAE */
196 
197 /* No need to prepopulate any pagetable entries in non-PAE modes. */
198 #define PREALLOCATED_PMDS	0
199 
200 #endif	/* CONFIG_X86_PAE */
201 
202 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
203 {
204 	int i;
205 
206 	for(i = 0; i < PREALLOCATED_PMDS; i++)
207 		if (pmds[i]) {
208 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
209 			free_page((unsigned long)pmds[i]);
210 			mm_dec_nr_pmds(mm);
211 		}
212 }
213 
214 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
215 {
216 	int i;
217 	bool failed = false;
218 	gfp_t gfp = PGALLOC_GFP;
219 
220 	if (mm == &init_mm)
221 		gfp &= ~__GFP_ACCOUNT;
222 
223 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
224 		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
225 		if (!pmd)
226 			failed = true;
227 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
228 			free_page((unsigned long)pmd);
229 			pmd = NULL;
230 			failed = true;
231 		}
232 		if (pmd)
233 			mm_inc_nr_pmds(mm);
234 		pmds[i] = pmd;
235 	}
236 
237 	if (failed) {
238 		free_pmds(mm, pmds);
239 		return -ENOMEM;
240 	}
241 
242 	return 0;
243 }
244 
245 /*
246  * Mop up any pmd pages which may still be attached to the pgd.
247  * Normally they will be freed by munmap/exit_mmap, but any pmd we
248  * preallocate which never got a corresponding vma will need to be
249  * freed manually.
250  */
251 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
252 {
253 	int i;
254 
255 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
256 		pgd_t pgd = pgdp[i];
257 
258 		if (pgd_val(pgd) != 0) {
259 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
260 
261 			pgdp[i] = native_make_pgd(0);
262 
263 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
264 			pmd_free(mm, pmd);
265 			mm_dec_nr_pmds(mm);
266 		}
267 	}
268 }
269 
270 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
271 {
272 	p4d_t *p4d;
273 	pud_t *pud;
274 	int i;
275 
276 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
277 		return;
278 
279 	p4d = p4d_offset(pgd, 0);
280 	pud = pud_offset(p4d, 0);
281 
282 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
283 		pmd_t *pmd = pmds[i];
284 
285 		if (i >= KERNEL_PGD_BOUNDARY)
286 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
287 			       sizeof(pmd_t) * PTRS_PER_PMD);
288 
289 		pud_populate(mm, pud, pmd);
290 	}
291 }
292 
293 /*
294  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
295  * assumes that pgd should be in one page.
296  *
297  * But kernel with PAE paging that is not running as a Xen domain
298  * only needs to allocate 32 bytes for pgd instead of one page.
299  */
300 #ifdef CONFIG_X86_PAE
301 
302 #include <linux/slab.h>
303 
304 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
305 #define PGD_ALIGN	32
306 
307 static struct kmem_cache *pgd_cache;
308 
309 static int __init pgd_cache_init(void)
310 {
311 	/*
312 	 * When PAE kernel is running as a Xen domain, it does not use
313 	 * shared kernel pmd. And this requires a whole page for pgd.
314 	 */
315 	if (!SHARED_KERNEL_PMD)
316 		return 0;
317 
318 	/*
319 	 * when PAE kernel is not running as a Xen domain, it uses
320 	 * shared kernel pmd. Shared kernel pmd does not require a whole
321 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
322 	 * During boot time, we create a 32-byte slab for pgd table allocation.
323 	 */
324 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
325 				      SLAB_PANIC, NULL);
326 	if (!pgd_cache)
327 		return -ENOMEM;
328 
329 	return 0;
330 }
331 core_initcall(pgd_cache_init);
332 
333 static inline pgd_t *_pgd_alloc(void)
334 {
335 	/*
336 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
337 	 * We allocate one page for pgd.
338 	 */
339 	if (!SHARED_KERNEL_PMD)
340 		return (pgd_t *)__get_free_page(PGALLOC_GFP);
341 
342 	/*
343 	 * Now PAE kernel is not running as a Xen domain. We can allocate
344 	 * a 32-byte slab for pgd to save memory space.
345 	 */
346 	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
347 }
348 
349 static inline void _pgd_free(pgd_t *pgd)
350 {
351 	if (!SHARED_KERNEL_PMD)
352 		free_page((unsigned long)pgd);
353 	else
354 		kmem_cache_free(pgd_cache, pgd);
355 }
356 #else
357 static inline pgd_t *_pgd_alloc(void)
358 {
359 	return (pgd_t *)__get_free_page(PGALLOC_GFP);
360 }
361 
362 static inline void _pgd_free(pgd_t *pgd)
363 {
364 	free_page((unsigned long)pgd);
365 }
366 #endif /* CONFIG_X86_PAE */
367 
368 pgd_t *pgd_alloc(struct mm_struct *mm)
369 {
370 	pgd_t *pgd;
371 	pmd_t *pmds[PREALLOCATED_PMDS];
372 
373 	pgd = _pgd_alloc();
374 
375 	if (pgd == NULL)
376 		goto out;
377 
378 	mm->pgd = pgd;
379 
380 	if (preallocate_pmds(mm, pmds) != 0)
381 		goto out_free_pgd;
382 
383 	if (paravirt_pgd_alloc(mm) != 0)
384 		goto out_free_pmds;
385 
386 	/*
387 	 * Make sure that pre-populating the pmds is atomic with
388 	 * respect to anything walking the pgd_list, so that they
389 	 * never see a partially populated pgd.
390 	 */
391 	spin_lock(&pgd_lock);
392 
393 	pgd_ctor(mm, pgd);
394 	pgd_prepopulate_pmd(mm, pgd, pmds);
395 
396 	spin_unlock(&pgd_lock);
397 
398 	return pgd;
399 
400 out_free_pmds:
401 	free_pmds(mm, pmds);
402 out_free_pgd:
403 	_pgd_free(pgd);
404 out:
405 	return NULL;
406 }
407 
408 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
409 {
410 	pgd_mop_up_pmds(mm, pgd);
411 	pgd_dtor(pgd);
412 	paravirt_pgd_free(mm, pgd);
413 	_pgd_free(pgd);
414 }
415 
416 /*
417  * Used to set accessed or dirty bits in the page table entries
418  * on other architectures. On x86, the accessed and dirty bits
419  * are tracked by hardware. However, do_wp_page calls this function
420  * to also make the pte writeable at the same time the dirty bit is
421  * set. In that case we do actually need to write the PTE.
422  */
423 int ptep_set_access_flags(struct vm_area_struct *vma,
424 			  unsigned long address, pte_t *ptep,
425 			  pte_t entry, int dirty)
426 {
427 	int changed = !pte_same(*ptep, entry);
428 
429 	if (changed && dirty) {
430 		*ptep = entry;
431 		pte_update(vma->vm_mm, address, ptep);
432 	}
433 
434 	return changed;
435 }
436 
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 int pmdp_set_access_flags(struct vm_area_struct *vma,
439 			  unsigned long address, pmd_t *pmdp,
440 			  pmd_t entry, int dirty)
441 {
442 	int changed = !pmd_same(*pmdp, entry);
443 
444 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
445 
446 	if (changed && dirty) {
447 		*pmdp = entry;
448 		/*
449 		 * We had a write-protection fault here and changed the pmd
450 		 * to to more permissive. No need to flush the TLB for that,
451 		 * #PF is architecturally guaranteed to do that and in the
452 		 * worst-case we'll generate a spurious fault.
453 		 */
454 	}
455 
456 	return changed;
457 }
458 
459 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
460 			  pud_t *pudp, pud_t entry, int dirty)
461 {
462 	int changed = !pud_same(*pudp, entry);
463 
464 	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
465 
466 	if (changed && dirty) {
467 		*pudp = entry;
468 		/*
469 		 * We had a write-protection fault here and changed the pud
470 		 * to to more permissive. No need to flush the TLB for that,
471 		 * #PF is architecturally guaranteed to do that and in the
472 		 * worst-case we'll generate a spurious fault.
473 		 */
474 	}
475 
476 	return changed;
477 }
478 #endif
479 
480 int ptep_test_and_clear_young(struct vm_area_struct *vma,
481 			      unsigned long addr, pte_t *ptep)
482 {
483 	int ret = 0;
484 
485 	if (pte_young(*ptep))
486 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
487 					 (unsigned long *) &ptep->pte);
488 
489 	if (ret)
490 		pte_update(vma->vm_mm, addr, ptep);
491 
492 	return ret;
493 }
494 
495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
496 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
497 			      unsigned long addr, pmd_t *pmdp)
498 {
499 	int ret = 0;
500 
501 	if (pmd_young(*pmdp))
502 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
503 					 (unsigned long *)pmdp);
504 
505 	return ret;
506 }
507 int pudp_test_and_clear_young(struct vm_area_struct *vma,
508 			      unsigned long addr, pud_t *pudp)
509 {
510 	int ret = 0;
511 
512 	if (pud_young(*pudp))
513 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
514 					 (unsigned long *)pudp);
515 
516 	return ret;
517 }
518 #endif
519 
520 int ptep_clear_flush_young(struct vm_area_struct *vma,
521 			   unsigned long address, pte_t *ptep)
522 {
523 	/*
524 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
525 	 * doesn't cause data corruption. [ It could cause incorrect
526 	 * page aging and the (mistaken) reclaim of hot pages, but the
527 	 * chance of that should be relatively low. ]
528 	 *
529 	 * So as a performance optimization don't flush the TLB when
530 	 * clearing the accessed bit, it will eventually be flushed by
531 	 * a context switch or a VM operation anyway. [ In the rare
532 	 * event of it not getting flushed for a long time the delay
533 	 * shouldn't really matter because there's no real memory
534 	 * pressure for swapout to react to. ]
535 	 */
536 	return ptep_test_and_clear_young(vma, address, ptep);
537 }
538 
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 int pmdp_clear_flush_young(struct vm_area_struct *vma,
541 			   unsigned long address, pmd_t *pmdp)
542 {
543 	int young;
544 
545 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
546 
547 	young = pmdp_test_and_clear_young(vma, address, pmdp);
548 	if (young)
549 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
550 
551 	return young;
552 }
553 #endif
554 
555 /**
556  * reserve_top_address - reserves a hole in the top of kernel address space
557  * @reserve - size of hole to reserve
558  *
559  * Can be used to relocate the fixmap area and poke a hole in the top
560  * of kernel address space to make room for a hypervisor.
561  */
562 void __init reserve_top_address(unsigned long reserve)
563 {
564 #ifdef CONFIG_X86_32
565 	BUG_ON(fixmaps_set > 0);
566 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
567 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
568 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
569 #endif
570 }
571 
572 int fixmaps_set;
573 
574 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
575 {
576 	unsigned long address = __fix_to_virt(idx);
577 
578 	if (idx >= __end_of_fixed_addresses) {
579 		BUG();
580 		return;
581 	}
582 	set_pte_vaddr(address, pte);
583 	fixmaps_set++;
584 }
585 
586 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
587 		       pgprot_t flags)
588 {
589 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
590 }
591 
592 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
593 #ifdef CONFIG_X86_5LEVEL
594 /**
595  * p4d_set_huge - setup kernel P4D mapping
596  *
597  * No 512GB pages yet -- always return 0
598  */
599 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
600 {
601 	return 0;
602 }
603 
604 /**
605  * p4d_clear_huge - clear kernel P4D mapping when it is set
606  *
607  * No 512GB pages yet -- always return 0
608  */
609 int p4d_clear_huge(p4d_t *p4d)
610 {
611 	return 0;
612 }
613 #endif
614 
615 /**
616  * pud_set_huge - setup kernel PUD mapping
617  *
618  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
619  * function sets up a huge page only if any of the following conditions are met:
620  *
621  * - MTRRs are disabled, or
622  *
623  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
624  *
625  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
626  *   has no effect on the requested PAT memory type.
627  *
628  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
629  * page mapping attempt fails.
630  *
631  * Returns 1 on success and 0 on failure.
632  */
633 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
634 {
635 	u8 mtrr, uniform;
636 
637 	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
638 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
639 	    (mtrr != MTRR_TYPE_WRBACK))
640 		return 0;
641 
642 	prot = pgprot_4k_2_large(prot);
643 
644 	set_pte((pte_t *)pud, pfn_pte(
645 		(u64)addr >> PAGE_SHIFT,
646 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
647 
648 	return 1;
649 }
650 
651 /**
652  * pmd_set_huge - setup kernel PMD mapping
653  *
654  * See text over pud_set_huge() above.
655  *
656  * Returns 1 on success and 0 on failure.
657  */
658 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
659 {
660 	u8 mtrr, uniform;
661 
662 	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
663 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
664 	    (mtrr != MTRR_TYPE_WRBACK)) {
665 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
666 			     __func__, addr, addr + PMD_SIZE);
667 		return 0;
668 	}
669 
670 	prot = pgprot_4k_2_large(prot);
671 
672 	set_pte((pte_t *)pmd, pfn_pte(
673 		(u64)addr >> PAGE_SHIFT,
674 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
675 
676 	return 1;
677 }
678 
679 /**
680  * pud_clear_huge - clear kernel PUD mapping when it is set
681  *
682  * Returns 1 on success and 0 on failure (no PUD map is found).
683  */
684 int pud_clear_huge(pud_t *pud)
685 {
686 	if (pud_large(*pud)) {
687 		pud_clear(pud);
688 		return 1;
689 	}
690 
691 	return 0;
692 }
693 
694 /**
695  * pmd_clear_huge - clear kernel PMD mapping when it is set
696  *
697  * Returns 1 on success and 0 on failure (no PMD map is found).
698  */
699 int pmd_clear_huge(pmd_t *pmd)
700 {
701 	if (pmd_large(*pmd)) {
702 		pmd_clear(pmd);
703 		return 1;
704 	}
705 
706 	return 0;
707 }
708 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
709