xref: /linux/arch/x86/mm/pgtable.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/pgtable.h>
7 #include <asm/tlb.h>
8 #include <asm/fixmap.h>
9 #include <asm/mtrr.h>
10 
11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
12 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
13 EXPORT_SYMBOL(physical_mask);
14 #endif
15 
16 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
17 
18 #ifdef CONFIG_HIGHPTE
19 #define PGALLOC_USER_GFP __GFP_HIGHMEM
20 #else
21 #define PGALLOC_USER_GFP 0
22 #endif
23 
24 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
25 
26 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
27 {
28 	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
29 }
30 
31 pgtable_t pte_alloc_one(struct mm_struct *mm)
32 {
33 	struct page *pte;
34 
35 	pte = alloc_pages(__userpte_alloc_gfp, 0);
36 	if (!pte)
37 		return NULL;
38 	if (!pgtable_page_ctor(pte)) {
39 		__free_page(pte);
40 		return NULL;
41 	}
42 	return pte;
43 }
44 
45 static int __init setup_userpte(char *arg)
46 {
47 	if (!arg)
48 		return -EINVAL;
49 
50 	/*
51 	 * "userpte=nohigh" disables allocation of user pagetables in
52 	 * high memory.
53 	 */
54 	if (strcmp(arg, "nohigh") == 0)
55 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
56 	else
57 		return -EINVAL;
58 	return 0;
59 }
60 early_param("userpte", setup_userpte);
61 
62 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
63 {
64 	pgtable_page_dtor(pte);
65 	paravirt_release_pte(page_to_pfn(pte));
66 	paravirt_tlb_remove_table(tlb, pte);
67 }
68 
69 #if CONFIG_PGTABLE_LEVELS > 2
70 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
71 {
72 	struct page *page = virt_to_page(pmd);
73 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
74 	/*
75 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
76 	 * entries need a full cr3 reload to flush.
77 	 */
78 #ifdef CONFIG_X86_PAE
79 	tlb->need_flush_all = 1;
80 #endif
81 	pgtable_pmd_page_dtor(page);
82 	paravirt_tlb_remove_table(tlb, page);
83 }
84 
85 #if CONFIG_PGTABLE_LEVELS > 3
86 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
87 {
88 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
89 	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
90 }
91 
92 #if CONFIG_PGTABLE_LEVELS > 4
93 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
94 {
95 	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
96 	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
97 }
98 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
99 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
100 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
101 
102 static inline void pgd_list_add(pgd_t *pgd)
103 {
104 	struct page *page = virt_to_page(pgd);
105 
106 	list_add(&page->lru, &pgd_list);
107 }
108 
109 static inline void pgd_list_del(pgd_t *pgd)
110 {
111 	struct page *page = virt_to_page(pgd);
112 
113 	list_del(&page->lru);
114 }
115 
116 #define UNSHARED_PTRS_PER_PGD				\
117 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
118 #define MAX_UNSHARED_PTRS_PER_PGD			\
119 	max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
120 
121 
122 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
123 {
124 	virt_to_page(pgd)->pt_mm = mm;
125 }
126 
127 struct mm_struct *pgd_page_get_mm(struct page *page)
128 {
129 	return page->pt_mm;
130 }
131 
132 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
133 {
134 	/* If the pgd points to a shared pagetable level (either the
135 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
136 	   references from swapper_pg_dir. */
137 	if (CONFIG_PGTABLE_LEVELS == 2 ||
138 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
139 	    CONFIG_PGTABLE_LEVELS >= 4) {
140 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
141 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
142 				KERNEL_PGD_PTRS);
143 	}
144 
145 	/* list required to sync kernel mapping updates */
146 	if (!SHARED_KERNEL_PMD) {
147 		pgd_set_mm(pgd, mm);
148 		pgd_list_add(pgd);
149 	}
150 }
151 
152 static void pgd_dtor(pgd_t *pgd)
153 {
154 	if (SHARED_KERNEL_PMD)
155 		return;
156 
157 	spin_lock(&pgd_lock);
158 	pgd_list_del(pgd);
159 	spin_unlock(&pgd_lock);
160 }
161 
162 /*
163  * List of all pgd's needed for non-PAE so it can invalidate entries
164  * in both cached and uncached pgd's; not needed for PAE since the
165  * kernel pmd is shared. If PAE were not to share the pmd a similar
166  * tactic would be needed. This is essentially codepath-based locking
167  * against pageattr.c; it is the unique case in which a valid change
168  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
169  * vmalloc faults work because attached pagetables are never freed.
170  * -- nyc
171  */
172 
173 #ifdef CONFIG_X86_PAE
174 /*
175  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
176  * updating the top-level pagetable entries to guarantee the
177  * processor notices the update.  Since this is expensive, and
178  * all 4 top-level entries are used almost immediately in a
179  * new process's life, we just pre-populate them here.
180  *
181  * Also, if we're in a paravirt environment where the kernel pmd is
182  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
183  * and initialize the kernel pmds here.
184  */
185 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
186 #define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD
187 
188 /*
189  * We allocate separate PMDs for the kernel part of the user page-table
190  * when PTI is enabled. We need them to map the per-process LDT into the
191  * user-space page-table.
192  */
193 #define PREALLOCATED_USER_PMDS	 (static_cpu_has(X86_FEATURE_PTI) ? \
194 					KERNEL_PGD_PTRS : 0)
195 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
196 
197 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
198 {
199 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
200 
201 	/* Note: almost everything apart from _PAGE_PRESENT is
202 	   reserved at the pmd (PDPT) level. */
203 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
204 
205 	/*
206 	 * According to Intel App note "TLBs, Paging-Structure Caches,
207 	 * and Their Invalidation", April 2007, document 317080-001,
208 	 * section 8.1: in PAE mode we explicitly have to flush the
209 	 * TLB via cr3 if the top-level pgd is changed...
210 	 */
211 	flush_tlb_mm(mm);
212 }
213 #else  /* !CONFIG_X86_PAE */
214 
215 /* No need to prepopulate any pagetable entries in non-PAE modes. */
216 #define PREALLOCATED_PMDS	0
217 #define MAX_PREALLOCATED_PMDS	0
218 #define PREALLOCATED_USER_PMDS	 0
219 #define MAX_PREALLOCATED_USER_PMDS 0
220 #endif	/* CONFIG_X86_PAE */
221 
222 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
223 {
224 	int i;
225 
226 	for (i = 0; i < count; i++)
227 		if (pmds[i]) {
228 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
229 			free_page((unsigned long)pmds[i]);
230 			mm_dec_nr_pmds(mm);
231 		}
232 }
233 
234 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
235 {
236 	int i;
237 	bool failed = false;
238 	gfp_t gfp = PGALLOC_GFP;
239 
240 	if (mm == &init_mm)
241 		gfp &= ~__GFP_ACCOUNT;
242 
243 	for (i = 0; i < count; i++) {
244 		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
245 		if (!pmd)
246 			failed = true;
247 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
248 			free_page((unsigned long)pmd);
249 			pmd = NULL;
250 			failed = true;
251 		}
252 		if (pmd)
253 			mm_inc_nr_pmds(mm);
254 		pmds[i] = pmd;
255 	}
256 
257 	if (failed) {
258 		free_pmds(mm, pmds, count);
259 		return -ENOMEM;
260 	}
261 
262 	return 0;
263 }
264 
265 /*
266  * Mop up any pmd pages which may still be attached to the pgd.
267  * Normally they will be freed by munmap/exit_mmap, but any pmd we
268  * preallocate which never got a corresponding vma will need to be
269  * freed manually.
270  */
271 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
272 {
273 	pgd_t pgd = *pgdp;
274 
275 	if (pgd_val(pgd) != 0) {
276 		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
277 
278 		pgd_clear(pgdp);
279 
280 		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
281 		pmd_free(mm, pmd);
282 		mm_dec_nr_pmds(mm);
283 	}
284 }
285 
286 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
287 {
288 	int i;
289 
290 	for (i = 0; i < PREALLOCATED_PMDS; i++)
291 		mop_up_one_pmd(mm, &pgdp[i]);
292 
293 #ifdef CONFIG_PAGE_TABLE_ISOLATION
294 
295 	if (!static_cpu_has(X86_FEATURE_PTI))
296 		return;
297 
298 	pgdp = kernel_to_user_pgdp(pgdp);
299 
300 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
301 		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
302 #endif
303 }
304 
305 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
306 {
307 	p4d_t *p4d;
308 	pud_t *pud;
309 	int i;
310 
311 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
312 		return;
313 
314 	p4d = p4d_offset(pgd, 0);
315 	pud = pud_offset(p4d, 0);
316 
317 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
318 		pmd_t *pmd = pmds[i];
319 
320 		if (i >= KERNEL_PGD_BOUNDARY)
321 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
322 			       sizeof(pmd_t) * PTRS_PER_PMD);
323 
324 		pud_populate(mm, pud, pmd);
325 	}
326 }
327 
328 #ifdef CONFIG_PAGE_TABLE_ISOLATION
329 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
330 				     pgd_t *k_pgd, pmd_t *pmds[])
331 {
332 	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
333 	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
334 	p4d_t *u_p4d;
335 	pud_t *u_pud;
336 	int i;
337 
338 	u_p4d = p4d_offset(u_pgd, 0);
339 	u_pud = pud_offset(u_p4d, 0);
340 
341 	s_pgd += KERNEL_PGD_BOUNDARY;
342 	u_pud += KERNEL_PGD_BOUNDARY;
343 
344 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
345 		pmd_t *pmd = pmds[i];
346 
347 		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
348 		       sizeof(pmd_t) * PTRS_PER_PMD);
349 
350 		pud_populate(mm, u_pud, pmd);
351 	}
352 
353 }
354 #else
355 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
356 				     pgd_t *k_pgd, pmd_t *pmds[])
357 {
358 }
359 #endif
360 /*
361  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
362  * assumes that pgd should be in one page.
363  *
364  * But kernel with PAE paging that is not running as a Xen domain
365  * only needs to allocate 32 bytes for pgd instead of one page.
366  */
367 #ifdef CONFIG_X86_PAE
368 
369 #include <linux/slab.h>
370 
371 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
372 #define PGD_ALIGN	32
373 
374 static struct kmem_cache *pgd_cache;
375 
376 static int __init pgd_cache_init(void)
377 {
378 	/*
379 	 * When PAE kernel is running as a Xen domain, it does not use
380 	 * shared kernel pmd. And this requires a whole page for pgd.
381 	 */
382 	if (!SHARED_KERNEL_PMD)
383 		return 0;
384 
385 	/*
386 	 * when PAE kernel is not running as a Xen domain, it uses
387 	 * shared kernel pmd. Shared kernel pmd does not require a whole
388 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
389 	 * During boot time, we create a 32-byte slab for pgd table allocation.
390 	 */
391 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
392 				      SLAB_PANIC, NULL);
393 	return 0;
394 }
395 core_initcall(pgd_cache_init);
396 
397 static inline pgd_t *_pgd_alloc(void)
398 {
399 	/*
400 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
401 	 * We allocate one page for pgd.
402 	 */
403 	if (!SHARED_KERNEL_PMD)
404 		return (pgd_t *)__get_free_pages(PGALLOC_GFP,
405 						 PGD_ALLOCATION_ORDER);
406 
407 	/*
408 	 * Now PAE kernel is not running as a Xen domain. We can allocate
409 	 * a 32-byte slab for pgd to save memory space.
410 	 */
411 	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
412 }
413 
414 static inline void _pgd_free(pgd_t *pgd)
415 {
416 	if (!SHARED_KERNEL_PMD)
417 		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
418 	else
419 		kmem_cache_free(pgd_cache, pgd);
420 }
421 #else
422 
423 static inline pgd_t *_pgd_alloc(void)
424 {
425 	return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
426 }
427 
428 static inline void _pgd_free(pgd_t *pgd)
429 {
430 	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
431 }
432 #endif /* CONFIG_X86_PAE */
433 
434 pgd_t *pgd_alloc(struct mm_struct *mm)
435 {
436 	pgd_t *pgd;
437 	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
438 	pmd_t *pmds[MAX_PREALLOCATED_PMDS];
439 
440 	pgd = _pgd_alloc();
441 
442 	if (pgd == NULL)
443 		goto out;
444 
445 	mm->pgd = pgd;
446 
447 	if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
448 		goto out_free_pgd;
449 
450 	if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
451 		goto out_free_pmds;
452 
453 	if (paravirt_pgd_alloc(mm) != 0)
454 		goto out_free_user_pmds;
455 
456 	/*
457 	 * Make sure that pre-populating the pmds is atomic with
458 	 * respect to anything walking the pgd_list, so that they
459 	 * never see a partially populated pgd.
460 	 */
461 	spin_lock(&pgd_lock);
462 
463 	pgd_ctor(mm, pgd);
464 	pgd_prepopulate_pmd(mm, pgd, pmds);
465 	pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
466 
467 	spin_unlock(&pgd_lock);
468 
469 	return pgd;
470 
471 out_free_user_pmds:
472 	free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
473 out_free_pmds:
474 	free_pmds(mm, pmds, PREALLOCATED_PMDS);
475 out_free_pgd:
476 	_pgd_free(pgd);
477 out:
478 	return NULL;
479 }
480 
481 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
482 {
483 	pgd_mop_up_pmds(mm, pgd);
484 	pgd_dtor(pgd);
485 	paravirt_pgd_free(mm, pgd);
486 	_pgd_free(pgd);
487 }
488 
489 /*
490  * Used to set accessed or dirty bits in the page table entries
491  * on other architectures. On x86, the accessed and dirty bits
492  * are tracked by hardware. However, do_wp_page calls this function
493  * to also make the pte writeable at the same time the dirty bit is
494  * set. In that case we do actually need to write the PTE.
495  */
496 int ptep_set_access_flags(struct vm_area_struct *vma,
497 			  unsigned long address, pte_t *ptep,
498 			  pte_t entry, int dirty)
499 {
500 	int changed = !pte_same(*ptep, entry);
501 
502 	if (changed && dirty)
503 		set_pte(ptep, entry);
504 
505 	return changed;
506 }
507 
508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
509 int pmdp_set_access_flags(struct vm_area_struct *vma,
510 			  unsigned long address, pmd_t *pmdp,
511 			  pmd_t entry, int dirty)
512 {
513 	int changed = !pmd_same(*pmdp, entry);
514 
515 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
516 
517 	if (changed && dirty) {
518 		set_pmd(pmdp, entry);
519 		/*
520 		 * We had a write-protection fault here and changed the pmd
521 		 * to to more permissive. No need to flush the TLB for that,
522 		 * #PF is architecturally guaranteed to do that and in the
523 		 * worst-case we'll generate a spurious fault.
524 		 */
525 	}
526 
527 	return changed;
528 }
529 
530 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
531 			  pud_t *pudp, pud_t entry, int dirty)
532 {
533 	int changed = !pud_same(*pudp, entry);
534 
535 	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
536 
537 	if (changed && dirty) {
538 		set_pud(pudp, entry);
539 		/*
540 		 * We had a write-protection fault here and changed the pud
541 		 * to to more permissive. No need to flush the TLB for that,
542 		 * #PF is architecturally guaranteed to do that and in the
543 		 * worst-case we'll generate a spurious fault.
544 		 */
545 	}
546 
547 	return changed;
548 }
549 #endif
550 
551 int ptep_test_and_clear_young(struct vm_area_struct *vma,
552 			      unsigned long addr, pte_t *ptep)
553 {
554 	int ret = 0;
555 
556 	if (pte_young(*ptep))
557 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
558 					 (unsigned long *) &ptep->pte);
559 
560 	return ret;
561 }
562 
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
565 			      unsigned long addr, pmd_t *pmdp)
566 {
567 	int ret = 0;
568 
569 	if (pmd_young(*pmdp))
570 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
571 					 (unsigned long *)pmdp);
572 
573 	return ret;
574 }
575 int pudp_test_and_clear_young(struct vm_area_struct *vma,
576 			      unsigned long addr, pud_t *pudp)
577 {
578 	int ret = 0;
579 
580 	if (pud_young(*pudp))
581 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
582 					 (unsigned long *)pudp);
583 
584 	return ret;
585 }
586 #endif
587 
588 int ptep_clear_flush_young(struct vm_area_struct *vma,
589 			   unsigned long address, pte_t *ptep)
590 {
591 	/*
592 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
593 	 * doesn't cause data corruption. [ It could cause incorrect
594 	 * page aging and the (mistaken) reclaim of hot pages, but the
595 	 * chance of that should be relatively low. ]
596 	 *
597 	 * So as a performance optimization don't flush the TLB when
598 	 * clearing the accessed bit, it will eventually be flushed by
599 	 * a context switch or a VM operation anyway. [ In the rare
600 	 * event of it not getting flushed for a long time the delay
601 	 * shouldn't really matter because there's no real memory
602 	 * pressure for swapout to react to. ]
603 	 */
604 	return ptep_test_and_clear_young(vma, address, ptep);
605 }
606 
607 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
608 int pmdp_clear_flush_young(struct vm_area_struct *vma,
609 			   unsigned long address, pmd_t *pmdp)
610 {
611 	int young;
612 
613 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
614 
615 	young = pmdp_test_and_clear_young(vma, address, pmdp);
616 	if (young)
617 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
618 
619 	return young;
620 }
621 #endif
622 
623 /**
624  * reserve_top_address - reserves a hole in the top of kernel address space
625  * @reserve - size of hole to reserve
626  *
627  * Can be used to relocate the fixmap area and poke a hole in the top
628  * of kernel address space to make room for a hypervisor.
629  */
630 void __init reserve_top_address(unsigned long reserve)
631 {
632 #ifdef CONFIG_X86_32
633 	BUG_ON(fixmaps_set > 0);
634 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
635 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
636 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
637 #endif
638 }
639 
640 int fixmaps_set;
641 
642 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
643 {
644 	unsigned long address = __fix_to_virt(idx);
645 
646 #ifdef CONFIG_X86_64
647        /*
648 	* Ensure that the static initial page tables are covering the
649 	* fixmap completely.
650 	*/
651 	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
652 		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
653 #endif
654 
655 	if (idx >= __end_of_fixed_addresses) {
656 		BUG();
657 		return;
658 	}
659 	set_pte_vaddr(address, pte);
660 	fixmaps_set++;
661 }
662 
663 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
664 		       pgprot_t flags)
665 {
666 	/* Sanitize 'prot' against any unsupported bits: */
667 	pgprot_val(flags) &= __default_kernel_pte_mask;
668 
669 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
670 }
671 
672 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
673 #ifdef CONFIG_X86_5LEVEL
674 /**
675  * p4d_set_huge - setup kernel P4D mapping
676  *
677  * No 512GB pages yet -- always return 0
678  */
679 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
680 {
681 	return 0;
682 }
683 
684 /**
685  * p4d_clear_huge - clear kernel P4D mapping when it is set
686  *
687  * No 512GB pages yet -- always return 0
688  */
689 int p4d_clear_huge(p4d_t *p4d)
690 {
691 	return 0;
692 }
693 #endif
694 
695 /**
696  * pud_set_huge - setup kernel PUD mapping
697  *
698  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
699  * function sets up a huge page only if any of the following conditions are met:
700  *
701  * - MTRRs are disabled, or
702  *
703  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
704  *
705  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
706  *   has no effect on the requested PAT memory type.
707  *
708  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
709  * page mapping attempt fails.
710  *
711  * Returns 1 on success and 0 on failure.
712  */
713 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
714 {
715 	u8 mtrr, uniform;
716 
717 	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
718 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
719 	    (mtrr != MTRR_TYPE_WRBACK))
720 		return 0;
721 
722 	/* Bail out if we are we on a populated non-leaf entry: */
723 	if (pud_present(*pud) && !pud_huge(*pud))
724 		return 0;
725 
726 	prot = pgprot_4k_2_large(prot);
727 
728 	set_pte((pte_t *)pud, pfn_pte(
729 		(u64)addr >> PAGE_SHIFT,
730 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
731 
732 	return 1;
733 }
734 
735 /**
736  * pmd_set_huge - setup kernel PMD mapping
737  *
738  * See text over pud_set_huge() above.
739  *
740  * Returns 1 on success and 0 on failure.
741  */
742 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
743 {
744 	u8 mtrr, uniform;
745 
746 	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
747 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
748 	    (mtrr != MTRR_TYPE_WRBACK)) {
749 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
750 			     __func__, addr, addr + PMD_SIZE);
751 		return 0;
752 	}
753 
754 	/* Bail out if we are we on a populated non-leaf entry: */
755 	if (pmd_present(*pmd) && !pmd_huge(*pmd))
756 		return 0;
757 
758 	prot = pgprot_4k_2_large(prot);
759 
760 	set_pte((pte_t *)pmd, pfn_pte(
761 		(u64)addr >> PAGE_SHIFT,
762 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
763 
764 	return 1;
765 }
766 
767 /**
768  * pud_clear_huge - clear kernel PUD mapping when it is set
769  *
770  * Returns 1 on success and 0 on failure (no PUD map is found).
771  */
772 int pud_clear_huge(pud_t *pud)
773 {
774 	if (pud_large(*pud)) {
775 		pud_clear(pud);
776 		return 1;
777 	}
778 
779 	return 0;
780 }
781 
782 /**
783  * pmd_clear_huge - clear kernel PMD mapping when it is set
784  *
785  * Returns 1 on success and 0 on failure (no PMD map is found).
786  */
787 int pmd_clear_huge(pmd_t *pmd)
788 {
789 	if (pmd_large(*pmd)) {
790 		pmd_clear(pmd);
791 		return 1;
792 	}
793 
794 	return 0;
795 }
796 
797 /*
798  * Until we support 512GB pages, skip them in the vmap area.
799  */
800 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
801 {
802 	return 0;
803 }
804 
805 #ifdef CONFIG_X86_64
806 /**
807  * pud_free_pmd_page - Clear pud entry and free pmd page.
808  * @pud: Pointer to a PUD.
809  * @addr: Virtual address associated with pud.
810  *
811  * Context: The pud range has been unmapped and TLB purged.
812  * Return: 1 if clearing the entry succeeded. 0 otherwise.
813  *
814  * NOTE: Callers must allow a single page allocation.
815  */
816 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
817 {
818 	pmd_t *pmd, *pmd_sv;
819 	pte_t *pte;
820 	int i;
821 
822 	pmd = (pmd_t *)pud_page_vaddr(*pud);
823 	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
824 	if (!pmd_sv)
825 		return 0;
826 
827 	for (i = 0; i < PTRS_PER_PMD; i++) {
828 		pmd_sv[i] = pmd[i];
829 		if (!pmd_none(pmd[i]))
830 			pmd_clear(&pmd[i]);
831 	}
832 
833 	pud_clear(pud);
834 
835 	/* INVLPG to clear all paging-structure caches */
836 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
837 
838 	for (i = 0; i < PTRS_PER_PMD; i++) {
839 		if (!pmd_none(pmd_sv[i])) {
840 			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
841 			free_page((unsigned long)pte);
842 		}
843 	}
844 
845 	free_page((unsigned long)pmd_sv);
846 	free_page((unsigned long)pmd);
847 
848 	return 1;
849 }
850 
851 /**
852  * pmd_free_pte_page - Clear pmd entry and free pte page.
853  * @pmd: Pointer to a PMD.
854  * @addr: Virtual address associated with pmd.
855  *
856  * Context: The pmd range has been unmapped and TLB purged.
857  * Return: 1 if clearing the entry succeeded. 0 otherwise.
858  */
859 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
860 {
861 	pte_t *pte;
862 
863 	pte = (pte_t *)pmd_page_vaddr(*pmd);
864 	pmd_clear(pmd);
865 
866 	/* INVLPG to clear all paging-structure caches */
867 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
868 
869 	free_page((unsigned long)pte);
870 
871 	return 1;
872 }
873 
874 #else /* !CONFIG_X86_64 */
875 
876 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
877 {
878 	return pud_none(*pud);
879 }
880 
881 /*
882  * Disable free page handling on x86-PAE. This assures that ioremap()
883  * does not update sync'd pmd entries. See vmalloc_sync_one().
884  */
885 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
886 {
887 	return pmd_none(*pmd);
888 }
889 
890 #endif /* CONFIG_X86_64 */
891 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
892