xref: /linux/arch/x86/mm/pat/set_memory.c (revision f5c31bcf604db54470868f3118a60dc4a9ba8813)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/proc_fs.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/vmalloc.h>
19 #include <linux/libnvdimm.h>
20 #include <linux/vmstat.h>
21 #include <linux/kernel.h>
22 #include <linux/cc_platform.h>
23 #include <linux/set_memory.h>
24 #include <linux/memregion.h>
25 
26 #include <asm/e820/api.h>
27 #include <asm/processor.h>
28 #include <asm/tlbflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 #include <linux/uaccess.h>
32 #include <asm/pgalloc.h>
33 #include <asm/proto.h>
34 #include <asm/memtype.h>
35 #include <asm/hyperv-tlfs.h>
36 #include <asm/mshyperv.h>
37 
38 #include "../mm_internal.h"
39 
40 /*
41  * The current flushing context - we pass it instead of 5 arguments:
42  */
43 struct cpa_data {
44 	unsigned long	*vaddr;
45 	pgd_t		*pgd;
46 	pgprot_t	mask_set;
47 	pgprot_t	mask_clr;
48 	unsigned long	numpages;
49 	unsigned long	curpage;
50 	unsigned long	pfn;
51 	unsigned int	flags;
52 	unsigned int	force_split		: 1,
53 			force_static_prot	: 1,
54 			force_flush_all		: 1;
55 	struct page	**pages;
56 };
57 
58 enum cpa_warn {
59 	CPA_CONFLICT,
60 	CPA_PROTECT,
61 	CPA_DETECT,
62 };
63 
64 static const int cpa_warn_level = CPA_PROTECT;
65 
66 /*
67  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
68  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
69  * entries change the page attribute in parallel to some other cpu
70  * splitting a large page entry along with changing the attribute.
71  */
72 static DEFINE_SPINLOCK(cpa_lock);
73 
74 #define CPA_FLUSHTLB 1
75 #define CPA_ARRAY 2
76 #define CPA_PAGES_ARRAY 4
77 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
78 
79 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
80 {
81 	return __pgprot(cachemode2protval(pcm));
82 }
83 
84 #ifdef CONFIG_PROC_FS
85 static unsigned long direct_pages_count[PG_LEVEL_NUM];
86 
87 void update_page_count(int level, unsigned long pages)
88 {
89 	/* Protect against CPA */
90 	spin_lock(&pgd_lock);
91 	direct_pages_count[level] += pages;
92 	spin_unlock(&pgd_lock);
93 }
94 
95 static void split_page_count(int level)
96 {
97 	if (direct_pages_count[level] == 0)
98 		return;
99 
100 	direct_pages_count[level]--;
101 	if (system_state == SYSTEM_RUNNING) {
102 		if (level == PG_LEVEL_2M)
103 			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
104 		else if (level == PG_LEVEL_1G)
105 			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
106 	}
107 	direct_pages_count[level - 1] += PTRS_PER_PTE;
108 }
109 
110 void arch_report_meminfo(struct seq_file *m)
111 {
112 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
113 			direct_pages_count[PG_LEVEL_4K] << 2);
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
116 			direct_pages_count[PG_LEVEL_2M] << 11);
117 #else
118 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
119 			direct_pages_count[PG_LEVEL_2M] << 12);
120 #endif
121 	if (direct_gbpages)
122 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
123 			direct_pages_count[PG_LEVEL_1G] << 20);
124 }
125 #else
126 static inline void split_page_count(int level) { }
127 #endif
128 
129 #ifdef CONFIG_X86_CPA_STATISTICS
130 
131 static unsigned long cpa_1g_checked;
132 static unsigned long cpa_1g_sameprot;
133 static unsigned long cpa_1g_preserved;
134 static unsigned long cpa_2m_checked;
135 static unsigned long cpa_2m_sameprot;
136 static unsigned long cpa_2m_preserved;
137 static unsigned long cpa_4k_install;
138 
139 static inline void cpa_inc_1g_checked(void)
140 {
141 	cpa_1g_checked++;
142 }
143 
144 static inline void cpa_inc_2m_checked(void)
145 {
146 	cpa_2m_checked++;
147 }
148 
149 static inline void cpa_inc_4k_install(void)
150 {
151 	data_race(cpa_4k_install++);
152 }
153 
154 static inline void cpa_inc_lp_sameprot(int level)
155 {
156 	if (level == PG_LEVEL_1G)
157 		cpa_1g_sameprot++;
158 	else
159 		cpa_2m_sameprot++;
160 }
161 
162 static inline void cpa_inc_lp_preserved(int level)
163 {
164 	if (level == PG_LEVEL_1G)
165 		cpa_1g_preserved++;
166 	else
167 		cpa_2m_preserved++;
168 }
169 
170 static int cpastats_show(struct seq_file *m, void *p)
171 {
172 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
173 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
174 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
175 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
176 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
177 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
178 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
179 	return 0;
180 }
181 
182 static int cpastats_open(struct inode *inode, struct file *file)
183 {
184 	return single_open(file, cpastats_show, NULL);
185 }
186 
187 static const struct file_operations cpastats_fops = {
188 	.open		= cpastats_open,
189 	.read		= seq_read,
190 	.llseek		= seq_lseek,
191 	.release	= single_release,
192 };
193 
194 static int __init cpa_stats_init(void)
195 {
196 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
197 			    &cpastats_fops);
198 	return 0;
199 }
200 late_initcall(cpa_stats_init);
201 #else
202 static inline void cpa_inc_1g_checked(void) { }
203 static inline void cpa_inc_2m_checked(void) { }
204 static inline void cpa_inc_4k_install(void) { }
205 static inline void cpa_inc_lp_sameprot(int level) { }
206 static inline void cpa_inc_lp_preserved(int level) { }
207 #endif
208 
209 
210 static inline int
211 within(unsigned long addr, unsigned long start, unsigned long end)
212 {
213 	return addr >= start && addr < end;
214 }
215 
216 static inline int
217 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
218 {
219 	return addr >= start && addr <= end;
220 }
221 
222 #ifdef CONFIG_X86_64
223 
224 /*
225  * The kernel image is mapped into two places in the virtual address space
226  * (addresses without KASLR, of course):
227  *
228  * 1. The kernel direct map (0xffff880000000000)
229  * 2. The "high kernel map" (0xffffffff81000000)
230  *
231  * We actually execute out of #2. If we get the address of a kernel symbol, it
232  * points to #2, but almost all physical-to-virtual translations point to #1.
233  *
234  * This is so that we can have both a directmap of all physical memory *and*
235  * take full advantage of the limited (s32) immediate addressing range (2G)
236  * of x86_64.
237  *
238  * See Documentation/arch/x86/x86_64/mm.rst for more detail.
239  */
240 
241 static inline unsigned long highmap_start_pfn(void)
242 {
243 	return __pa_symbol(_text) >> PAGE_SHIFT;
244 }
245 
246 static inline unsigned long highmap_end_pfn(void)
247 {
248 	/* Do not reference physical address outside the kernel. */
249 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
250 }
251 
252 static bool __cpa_pfn_in_highmap(unsigned long pfn)
253 {
254 	/*
255 	 * Kernel text has an alias mapping at a high address, known
256 	 * here as "highmap".
257 	 */
258 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
259 }
260 
261 #else
262 
263 static bool __cpa_pfn_in_highmap(unsigned long pfn)
264 {
265 	/* There is no highmap on 32-bit */
266 	return false;
267 }
268 
269 #endif
270 
271 /*
272  * See set_mce_nospec().
273  *
274  * Machine check recovery code needs to change cache mode of poisoned pages to
275  * UC to avoid speculative access logging another error. But passing the
276  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
277  * speculative access. So we cheat and flip the top bit of the address. This
278  * works fine for the code that updates the page tables. But at the end of the
279  * process we need to flush the TLB and cache and the non-canonical address
280  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
281  *
282  * But in the common case we already have a canonical address. This code
283  * will fix the top bit if needed and is a no-op otherwise.
284  */
285 static inline unsigned long fix_addr(unsigned long addr)
286 {
287 #ifdef CONFIG_X86_64
288 	return (long)(addr << 1) >> 1;
289 #else
290 	return addr;
291 #endif
292 }
293 
294 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
295 {
296 	if (cpa->flags & CPA_PAGES_ARRAY) {
297 		struct page *page = cpa->pages[idx];
298 
299 		if (unlikely(PageHighMem(page)))
300 			return 0;
301 
302 		return (unsigned long)page_address(page);
303 	}
304 
305 	if (cpa->flags & CPA_ARRAY)
306 		return cpa->vaddr[idx];
307 
308 	return *cpa->vaddr + idx * PAGE_SIZE;
309 }
310 
311 /*
312  * Flushing functions
313  */
314 
315 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
316 {
317 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
318 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
319 	void *vend = vaddr + size;
320 
321 	if (p >= vend)
322 		return;
323 
324 	for (; p < vend; p += clflush_size)
325 		clflushopt(p);
326 }
327 
328 /**
329  * clflush_cache_range - flush a cache range with clflush
330  * @vaddr:	virtual start address
331  * @size:	number of bytes to flush
332  *
333  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
334  * SFENCE to avoid ordering issues.
335  */
336 void clflush_cache_range(void *vaddr, unsigned int size)
337 {
338 	mb();
339 	clflush_cache_range_opt(vaddr, size);
340 	mb();
341 }
342 EXPORT_SYMBOL_GPL(clflush_cache_range);
343 
344 #ifdef CONFIG_ARCH_HAS_PMEM_API
345 void arch_invalidate_pmem(void *addr, size_t size)
346 {
347 	clflush_cache_range(addr, size);
348 }
349 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
350 #endif
351 
352 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
353 bool cpu_cache_has_invalidate_memregion(void)
354 {
355 	return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
356 }
357 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
358 
359 int cpu_cache_invalidate_memregion(int res_desc)
360 {
361 	if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
362 		return -ENXIO;
363 	wbinvd_on_all_cpus();
364 	return 0;
365 }
366 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
367 #endif
368 
369 static void __cpa_flush_all(void *arg)
370 {
371 	unsigned long cache = (unsigned long)arg;
372 
373 	/*
374 	 * Flush all to work around Errata in early athlons regarding
375 	 * large page flushing.
376 	 */
377 	__flush_tlb_all();
378 
379 	if (cache && boot_cpu_data.x86 >= 4)
380 		wbinvd();
381 }
382 
383 static void cpa_flush_all(unsigned long cache)
384 {
385 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
386 
387 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
388 }
389 
390 static void __cpa_flush_tlb(void *data)
391 {
392 	struct cpa_data *cpa = data;
393 	unsigned int i;
394 
395 	for (i = 0; i < cpa->numpages; i++)
396 		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
397 }
398 
399 static void cpa_flush(struct cpa_data *data, int cache)
400 {
401 	struct cpa_data *cpa = data;
402 	unsigned int i;
403 
404 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
405 
406 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
407 		cpa_flush_all(cache);
408 		return;
409 	}
410 
411 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
412 		flush_tlb_all();
413 	else
414 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
415 
416 	if (!cache)
417 		return;
418 
419 	mb();
420 	for (i = 0; i < cpa->numpages; i++) {
421 		unsigned long addr = __cpa_addr(cpa, i);
422 		unsigned int level;
423 
424 		pte_t *pte = lookup_address(addr, &level);
425 
426 		/*
427 		 * Only flush present addresses:
428 		 */
429 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
430 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
431 	}
432 	mb();
433 }
434 
435 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
436 		     unsigned long r2_start, unsigned long r2_end)
437 {
438 	return (r1_start <= r2_end && r1_end >= r2_start) ||
439 		(r2_start <= r1_end && r2_end >= r1_start);
440 }
441 
442 #ifdef CONFIG_PCI_BIOS
443 /*
444  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
445  * based config access (CONFIG_PCI_GOBIOS) support.
446  */
447 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
448 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
449 
450 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
451 {
452 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
453 		return _PAGE_NX;
454 	return 0;
455 }
456 #else
457 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
458 {
459 	return 0;
460 }
461 #endif
462 
463 /*
464  * The .rodata section needs to be read-only. Using the pfn catches all
465  * aliases.  This also includes __ro_after_init, so do not enforce until
466  * kernel_set_to_readonly is true.
467  */
468 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
469 {
470 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
471 
472 	/*
473 	 * Note: __end_rodata is at page aligned and not inclusive, so
474 	 * subtract 1 to get the last enforced PFN in the rodata area.
475 	 */
476 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
477 
478 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
479 		return _PAGE_RW;
480 	return 0;
481 }
482 
483 /*
484  * Protect kernel text against becoming non executable by forbidding
485  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
486  * out of which the kernel actually executes.  Do not protect the low
487  * mapping.
488  *
489  * This does not cover __inittext since that is gone after boot.
490  */
491 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
492 {
493 	unsigned long t_end = (unsigned long)_etext - 1;
494 	unsigned long t_start = (unsigned long)_text;
495 
496 	if (overlaps(start, end, t_start, t_end))
497 		return _PAGE_NX;
498 	return 0;
499 }
500 
501 #if defined(CONFIG_X86_64)
502 /*
503  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
504  * kernel text mappings for the large page aligned text, rodata sections
505  * will be always read-only. For the kernel identity mappings covering the
506  * holes caused by this alignment can be anything that user asks.
507  *
508  * This will preserve the large page mappings for kernel text/data at no
509  * extra cost.
510  */
511 static pgprotval_t protect_kernel_text_ro(unsigned long start,
512 					  unsigned long end)
513 {
514 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
515 	unsigned long t_start = (unsigned long)_text;
516 	unsigned int level;
517 
518 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
519 		return 0;
520 	/*
521 	 * Don't enforce the !RW mapping for the kernel text mapping, if
522 	 * the current mapping is already using small page mapping.  No
523 	 * need to work hard to preserve large page mappings in this case.
524 	 *
525 	 * This also fixes the Linux Xen paravirt guest boot failure caused
526 	 * by unexpected read-only mappings for kernel identity
527 	 * mappings. In this paravirt guest case, the kernel text mapping
528 	 * and the kernel identity mapping share the same page-table pages,
529 	 * so the protections for kernel text and identity mappings have to
530 	 * be the same.
531 	 */
532 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
533 		return _PAGE_RW;
534 	return 0;
535 }
536 #else
537 static pgprotval_t protect_kernel_text_ro(unsigned long start,
538 					  unsigned long end)
539 {
540 	return 0;
541 }
542 #endif
543 
544 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
545 {
546 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
547 }
548 
549 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
550 				  unsigned long start, unsigned long end,
551 				  unsigned long pfn, const char *txt)
552 {
553 	static const char *lvltxt[] = {
554 		[CPA_CONFLICT]	= "conflict",
555 		[CPA_PROTECT]	= "protect",
556 		[CPA_DETECT]	= "detect",
557 	};
558 
559 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
560 		return;
561 
562 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
563 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
564 		(unsigned long long)val);
565 }
566 
567 /*
568  * Certain areas of memory on x86 require very specific protection flags,
569  * for example the BIOS area or kernel text. Callers don't always get this
570  * right (again, ioremap() on BIOS memory is not uncommon) so this function
571  * checks and fixes these known static required protection bits.
572  */
573 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
574 					  unsigned long pfn, unsigned long npg,
575 					  unsigned long lpsize, int warnlvl)
576 {
577 	pgprotval_t forbidden, res;
578 	unsigned long end;
579 
580 	/*
581 	 * There is no point in checking RW/NX conflicts when the requested
582 	 * mapping is setting the page !PRESENT.
583 	 */
584 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
585 		return prot;
586 
587 	/* Operate on the virtual address */
588 	end = start + npg * PAGE_SIZE - 1;
589 
590 	res = protect_kernel_text(start, end);
591 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
592 	forbidden = res;
593 
594 	/*
595 	 * Special case to preserve a large page. If the change spawns the
596 	 * full large page mapping then there is no point to split it
597 	 * up. Happens with ftrace and is going to be removed once ftrace
598 	 * switched to text_poke().
599 	 */
600 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
601 		res = protect_kernel_text_ro(start, end);
602 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
603 		forbidden |= res;
604 	}
605 
606 	/* Check the PFN directly */
607 	res = protect_pci_bios(pfn, pfn + npg - 1);
608 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
609 	forbidden |= res;
610 
611 	res = protect_rodata(pfn, pfn + npg - 1);
612 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
613 	forbidden |= res;
614 
615 	return __pgprot(pgprot_val(prot) & ~forbidden);
616 }
617 
618 /*
619  * Validate strict W^X semantics.
620  */
621 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
622 				  unsigned long pfn, unsigned long npg)
623 {
624 	unsigned long end;
625 
626 	/*
627 	 * 32-bit has some unfixable W+X issues, like EFI code
628 	 * and writeable data being in the same page.  Disable
629 	 * detection and enforcement there.
630 	 */
631 	if (IS_ENABLED(CONFIG_X86_32))
632 		return new;
633 
634 	/* Only verify when NX is supported: */
635 	if (!(__supported_pte_mask & _PAGE_NX))
636 		return new;
637 
638 	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
639 		return new;
640 
641 	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
642 		return new;
643 
644 	end = start + npg * PAGE_SIZE - 1;
645 	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
646 		  (unsigned long long)pgprot_val(old),
647 		  (unsigned long long)pgprot_val(new),
648 		  start, end, pfn);
649 
650 	/*
651 	 * For now, allow all permission change attempts by returning the
652 	 * attempted permissions.  This can 'return old' to actively
653 	 * refuse the permission change at a later time.
654 	 */
655 	return new;
656 }
657 
658 /*
659  * Lookup the page table entry for a virtual address in a specific pgd.
660  * Return a pointer to the entry and the level of the mapping.
661  */
662 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
663 			     unsigned int *level)
664 {
665 	p4d_t *p4d;
666 	pud_t *pud;
667 	pmd_t *pmd;
668 
669 	*level = PG_LEVEL_NONE;
670 
671 	if (pgd_none(*pgd))
672 		return NULL;
673 
674 	p4d = p4d_offset(pgd, address);
675 	if (p4d_none(*p4d))
676 		return NULL;
677 
678 	*level = PG_LEVEL_512G;
679 	if (p4d_large(*p4d) || !p4d_present(*p4d))
680 		return (pte_t *)p4d;
681 
682 	pud = pud_offset(p4d, address);
683 	if (pud_none(*pud))
684 		return NULL;
685 
686 	*level = PG_LEVEL_1G;
687 	if (pud_large(*pud) || !pud_present(*pud))
688 		return (pte_t *)pud;
689 
690 	pmd = pmd_offset(pud, address);
691 	if (pmd_none(*pmd))
692 		return NULL;
693 
694 	*level = PG_LEVEL_2M;
695 	if (pmd_large(*pmd) || !pmd_present(*pmd))
696 		return (pte_t *)pmd;
697 
698 	*level = PG_LEVEL_4K;
699 
700 	return pte_offset_kernel(pmd, address);
701 }
702 
703 /*
704  * Lookup the page table entry for a virtual address. Return a pointer
705  * to the entry and the level of the mapping.
706  *
707  * Note: We return pud and pmd either when the entry is marked large
708  * or when the present bit is not set. Otherwise we would return a
709  * pointer to a nonexisting mapping.
710  */
711 pte_t *lookup_address(unsigned long address, unsigned int *level)
712 {
713 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
714 }
715 EXPORT_SYMBOL_GPL(lookup_address);
716 
717 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
718 				  unsigned int *level)
719 {
720 	if (cpa->pgd)
721 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
722 					       address, level);
723 
724 	return lookup_address(address, level);
725 }
726 
727 /*
728  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
729  * or NULL if not present.
730  */
731 pmd_t *lookup_pmd_address(unsigned long address)
732 {
733 	pgd_t *pgd;
734 	p4d_t *p4d;
735 	pud_t *pud;
736 
737 	pgd = pgd_offset_k(address);
738 	if (pgd_none(*pgd))
739 		return NULL;
740 
741 	p4d = p4d_offset(pgd, address);
742 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
743 		return NULL;
744 
745 	pud = pud_offset(p4d, address);
746 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
747 		return NULL;
748 
749 	return pmd_offset(pud, address);
750 }
751 
752 /*
753  * This is necessary because __pa() does not work on some
754  * kinds of memory, like vmalloc() or the alloc_remap()
755  * areas on 32-bit NUMA systems.  The percpu areas can
756  * end up in this kind of memory, for instance.
757  *
758  * Note that as long as the PTEs are well-formed with correct PFNs, this
759  * works without checking the PRESENT bit in the leaf PTE.  This is unlike
760  * the similar vmalloc_to_page() and derivatives.  Callers may depend on
761  * this behavior.
762  *
763  * This could be optimized, but it is only used in paths that are not perf
764  * sensitive, and keeping it unoptimized should increase the testing coverage
765  * for the more obscure platforms.
766  */
767 phys_addr_t slow_virt_to_phys(void *__virt_addr)
768 {
769 	unsigned long virt_addr = (unsigned long)__virt_addr;
770 	phys_addr_t phys_addr;
771 	unsigned long offset;
772 	enum pg_level level;
773 	pte_t *pte;
774 
775 	pte = lookup_address(virt_addr, &level);
776 	BUG_ON(!pte);
777 
778 	/*
779 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
780 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
781 	 * make 32-PAE kernel work correctly.
782 	 */
783 	switch (level) {
784 	case PG_LEVEL_1G:
785 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
786 		offset = virt_addr & ~PUD_MASK;
787 		break;
788 	case PG_LEVEL_2M:
789 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
790 		offset = virt_addr & ~PMD_MASK;
791 		break;
792 	default:
793 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
794 		offset = virt_addr & ~PAGE_MASK;
795 	}
796 
797 	return (phys_addr_t)(phys_addr | offset);
798 }
799 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
800 
801 /*
802  * Set the new pmd in all the pgds we know about:
803  */
804 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
805 {
806 	/* change init_mm */
807 	set_pte_atomic(kpte, pte);
808 #ifdef CONFIG_X86_32
809 	if (!SHARED_KERNEL_PMD) {
810 		struct page *page;
811 
812 		list_for_each_entry(page, &pgd_list, lru) {
813 			pgd_t *pgd;
814 			p4d_t *p4d;
815 			pud_t *pud;
816 			pmd_t *pmd;
817 
818 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
819 			p4d = p4d_offset(pgd, address);
820 			pud = pud_offset(p4d, address);
821 			pmd = pmd_offset(pud, address);
822 			set_pte_atomic((pte_t *)pmd, pte);
823 		}
824 	}
825 #endif
826 }
827 
828 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
829 {
830 	/*
831 	 * _PAGE_GLOBAL means "global page" for present PTEs.
832 	 * But, it is also used to indicate _PAGE_PROTNONE
833 	 * for non-present PTEs.
834 	 *
835 	 * This ensures that a _PAGE_GLOBAL PTE going from
836 	 * present to non-present is not confused as
837 	 * _PAGE_PROTNONE.
838 	 */
839 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
840 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
841 
842 	return prot;
843 }
844 
845 static int __should_split_large_page(pte_t *kpte, unsigned long address,
846 				     struct cpa_data *cpa)
847 {
848 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
849 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
850 	pte_t new_pte, *tmp;
851 	enum pg_level level;
852 
853 	/*
854 	 * Check for races, another CPU might have split this page
855 	 * up already:
856 	 */
857 	tmp = _lookup_address_cpa(cpa, address, &level);
858 	if (tmp != kpte)
859 		return 1;
860 
861 	switch (level) {
862 	case PG_LEVEL_2M:
863 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
864 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
865 		cpa_inc_2m_checked();
866 		break;
867 	case PG_LEVEL_1G:
868 		old_prot = pud_pgprot(*(pud_t *)kpte);
869 		old_pfn = pud_pfn(*(pud_t *)kpte);
870 		cpa_inc_1g_checked();
871 		break;
872 	default:
873 		return -EINVAL;
874 	}
875 
876 	psize = page_level_size(level);
877 	pmask = page_level_mask(level);
878 
879 	/*
880 	 * Calculate the number of pages, which fit into this large
881 	 * page starting at address:
882 	 */
883 	lpaddr = (address + psize) & pmask;
884 	numpages = (lpaddr - address) >> PAGE_SHIFT;
885 	if (numpages < cpa->numpages)
886 		cpa->numpages = numpages;
887 
888 	/*
889 	 * We are safe now. Check whether the new pgprot is the same:
890 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
891 	 * up accordingly.
892 	 */
893 
894 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
895 	req_prot = pgprot_large_2_4k(old_prot);
896 
897 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
898 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
899 
900 	/*
901 	 * req_prot is in format of 4k pages. It must be converted to large
902 	 * page format: the caching mode includes the PAT bit located at
903 	 * different bit positions in the two formats.
904 	 */
905 	req_prot = pgprot_4k_2_large(req_prot);
906 	req_prot = pgprot_clear_protnone_bits(req_prot);
907 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
908 		pgprot_val(req_prot) |= _PAGE_PSE;
909 
910 	/*
911 	 * old_pfn points to the large page base pfn. So we need to add the
912 	 * offset of the virtual address:
913 	 */
914 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
915 	cpa->pfn = pfn;
916 
917 	/*
918 	 * Calculate the large page base address and the number of 4K pages
919 	 * in the large page
920 	 */
921 	lpaddr = address & pmask;
922 	numpages = psize >> PAGE_SHIFT;
923 
924 	/*
925 	 * Sanity check that the existing mapping is correct versus the static
926 	 * protections. static_protections() guards against !PRESENT, so no
927 	 * extra conditional required here.
928 	 */
929 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
930 				      psize, CPA_CONFLICT);
931 
932 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
933 		/*
934 		 * Split the large page and tell the split code to
935 		 * enforce static protections.
936 		 */
937 		cpa->force_static_prot = 1;
938 		return 1;
939 	}
940 
941 	/*
942 	 * Optimization: If the requested pgprot is the same as the current
943 	 * pgprot, then the large page can be preserved and no updates are
944 	 * required independent of alignment and length of the requested
945 	 * range. The above already established that the current pgprot is
946 	 * correct, which in consequence makes the requested pgprot correct
947 	 * as well if it is the same. The static protection scan below will
948 	 * not come to a different conclusion.
949 	 */
950 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
951 		cpa_inc_lp_sameprot(level);
952 		return 0;
953 	}
954 
955 	/*
956 	 * If the requested range does not cover the full page, split it up
957 	 */
958 	if (address != lpaddr || cpa->numpages != numpages)
959 		return 1;
960 
961 	/*
962 	 * Check whether the requested pgprot is conflicting with a static
963 	 * protection requirement in the large page.
964 	 */
965 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
966 				      psize, CPA_DETECT);
967 
968 	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages);
969 
970 	/*
971 	 * If there is a conflict, split the large page.
972 	 *
973 	 * There used to be a 4k wise evaluation trying really hard to
974 	 * preserve the large pages, but experimentation has shown, that this
975 	 * does not help at all. There might be corner cases which would
976 	 * preserve one large page occasionally, but it's really not worth the
977 	 * extra code and cycles for the common case.
978 	 */
979 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
980 		return 1;
981 
982 	/* All checks passed. Update the large page mapping. */
983 	new_pte = pfn_pte(old_pfn, new_prot);
984 	__set_pmd_pte(kpte, address, new_pte);
985 	cpa->flags |= CPA_FLUSHTLB;
986 	cpa_inc_lp_preserved(level);
987 	return 0;
988 }
989 
990 static int should_split_large_page(pte_t *kpte, unsigned long address,
991 				   struct cpa_data *cpa)
992 {
993 	int do_split;
994 
995 	if (cpa->force_split)
996 		return 1;
997 
998 	spin_lock(&pgd_lock);
999 	do_split = __should_split_large_page(kpte, address, cpa);
1000 	spin_unlock(&pgd_lock);
1001 
1002 	return do_split;
1003 }
1004 
1005 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1006 			  pgprot_t ref_prot, unsigned long address,
1007 			  unsigned long size)
1008 {
1009 	unsigned int npg = PFN_DOWN(size);
1010 	pgprot_t prot;
1011 
1012 	/*
1013 	 * If should_split_large_page() discovered an inconsistent mapping,
1014 	 * remove the invalid protection in the split mapping.
1015 	 */
1016 	if (!cpa->force_static_prot)
1017 		goto set;
1018 
1019 	/* Hand in lpsize = 0 to enforce the protection mechanism */
1020 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1021 
1022 	if (pgprot_val(prot) == pgprot_val(ref_prot))
1023 		goto set;
1024 
1025 	/*
1026 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
1027 	 * fixed trivially as that would require to rescan the newly
1028 	 * installed PMD mappings after returning from split_large_page()
1029 	 * so an eventual further split can allocate the necessary PTE
1030 	 * pages. Warn for now and revisit it in case this actually
1031 	 * happens.
1032 	 */
1033 	if (size == PAGE_SIZE)
1034 		ref_prot = prot;
1035 	else
1036 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1037 set:
1038 	set_pte(pte, pfn_pte(pfn, ref_prot));
1039 }
1040 
1041 static int
1042 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1043 		   struct page *base)
1044 {
1045 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1046 	pte_t *pbase = (pte_t *)page_address(base);
1047 	unsigned int i, level;
1048 	pgprot_t ref_prot;
1049 	pte_t *tmp;
1050 
1051 	spin_lock(&pgd_lock);
1052 	/*
1053 	 * Check for races, another CPU might have split this page
1054 	 * up for us already:
1055 	 */
1056 	tmp = _lookup_address_cpa(cpa, address, &level);
1057 	if (tmp != kpte) {
1058 		spin_unlock(&pgd_lock);
1059 		return 1;
1060 	}
1061 
1062 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1063 
1064 	switch (level) {
1065 	case PG_LEVEL_2M:
1066 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1067 		/*
1068 		 * Clear PSE (aka _PAGE_PAT) and move
1069 		 * PAT bit to correct position.
1070 		 */
1071 		ref_prot = pgprot_large_2_4k(ref_prot);
1072 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1073 		lpaddr = address & PMD_MASK;
1074 		lpinc = PAGE_SIZE;
1075 		break;
1076 
1077 	case PG_LEVEL_1G:
1078 		ref_prot = pud_pgprot(*(pud_t *)kpte);
1079 		ref_pfn = pud_pfn(*(pud_t *)kpte);
1080 		pfninc = PMD_SIZE >> PAGE_SHIFT;
1081 		lpaddr = address & PUD_MASK;
1082 		lpinc = PMD_SIZE;
1083 		/*
1084 		 * Clear the PSE flags if the PRESENT flag is not set
1085 		 * otherwise pmd_present/pmd_huge will return true
1086 		 * even on a non present pmd.
1087 		 */
1088 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1089 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1090 		break;
1091 
1092 	default:
1093 		spin_unlock(&pgd_lock);
1094 		return 1;
1095 	}
1096 
1097 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1098 
1099 	/*
1100 	 * Get the target pfn from the original entry:
1101 	 */
1102 	pfn = ref_pfn;
1103 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1104 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1105 
1106 	if (virt_addr_valid(address)) {
1107 		unsigned long pfn = PFN_DOWN(__pa(address));
1108 
1109 		if (pfn_range_is_mapped(pfn, pfn + 1))
1110 			split_page_count(level);
1111 	}
1112 
1113 	/*
1114 	 * Install the new, split up pagetable.
1115 	 *
1116 	 * We use the standard kernel pagetable protections for the new
1117 	 * pagetable protections, the actual ptes set above control the
1118 	 * primary protection behavior:
1119 	 */
1120 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1121 
1122 	/*
1123 	 * Do a global flush tlb after splitting the large page
1124 	 * and before we do the actual change page attribute in the PTE.
1125 	 *
1126 	 * Without this, we violate the TLB application note, that says:
1127 	 * "The TLBs may contain both ordinary and large-page
1128 	 *  translations for a 4-KByte range of linear addresses. This
1129 	 *  may occur if software modifies the paging structures so that
1130 	 *  the page size used for the address range changes. If the two
1131 	 *  translations differ with respect to page frame or attributes
1132 	 *  (e.g., permissions), processor behavior is undefined and may
1133 	 *  be implementation-specific."
1134 	 *
1135 	 * We do this global tlb flush inside the cpa_lock, so that we
1136 	 * don't allow any other cpu, with stale tlb entries change the
1137 	 * page attribute in parallel, that also falls into the
1138 	 * just split large page entry.
1139 	 */
1140 	flush_tlb_all();
1141 	spin_unlock(&pgd_lock);
1142 
1143 	return 0;
1144 }
1145 
1146 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1147 			    unsigned long address)
1148 {
1149 	struct page *base;
1150 
1151 	if (!debug_pagealloc_enabled())
1152 		spin_unlock(&cpa_lock);
1153 	base = alloc_pages(GFP_KERNEL, 0);
1154 	if (!debug_pagealloc_enabled())
1155 		spin_lock(&cpa_lock);
1156 	if (!base)
1157 		return -ENOMEM;
1158 
1159 	if (__split_large_page(cpa, kpte, address, base))
1160 		__free_page(base);
1161 
1162 	return 0;
1163 }
1164 
1165 static bool try_to_free_pte_page(pte_t *pte)
1166 {
1167 	int i;
1168 
1169 	for (i = 0; i < PTRS_PER_PTE; i++)
1170 		if (!pte_none(pte[i]))
1171 			return false;
1172 
1173 	free_page((unsigned long)pte);
1174 	return true;
1175 }
1176 
1177 static bool try_to_free_pmd_page(pmd_t *pmd)
1178 {
1179 	int i;
1180 
1181 	for (i = 0; i < PTRS_PER_PMD; i++)
1182 		if (!pmd_none(pmd[i]))
1183 			return false;
1184 
1185 	free_page((unsigned long)pmd);
1186 	return true;
1187 }
1188 
1189 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1190 {
1191 	pte_t *pte = pte_offset_kernel(pmd, start);
1192 
1193 	while (start < end) {
1194 		set_pte(pte, __pte(0));
1195 
1196 		start += PAGE_SIZE;
1197 		pte++;
1198 	}
1199 
1200 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1201 		pmd_clear(pmd);
1202 		return true;
1203 	}
1204 	return false;
1205 }
1206 
1207 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1208 			      unsigned long start, unsigned long end)
1209 {
1210 	if (unmap_pte_range(pmd, start, end))
1211 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1212 			pud_clear(pud);
1213 }
1214 
1215 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1216 {
1217 	pmd_t *pmd = pmd_offset(pud, start);
1218 
1219 	/*
1220 	 * Not on a 2MB page boundary?
1221 	 */
1222 	if (start & (PMD_SIZE - 1)) {
1223 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1224 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1225 
1226 		__unmap_pmd_range(pud, pmd, start, pre_end);
1227 
1228 		start = pre_end;
1229 		pmd++;
1230 	}
1231 
1232 	/*
1233 	 * Try to unmap in 2M chunks.
1234 	 */
1235 	while (end - start >= PMD_SIZE) {
1236 		if (pmd_large(*pmd))
1237 			pmd_clear(pmd);
1238 		else
1239 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1240 
1241 		start += PMD_SIZE;
1242 		pmd++;
1243 	}
1244 
1245 	/*
1246 	 * 4K leftovers?
1247 	 */
1248 	if (start < end)
1249 		return __unmap_pmd_range(pud, pmd, start, end);
1250 
1251 	/*
1252 	 * Try again to free the PMD page if haven't succeeded above.
1253 	 */
1254 	if (!pud_none(*pud))
1255 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1256 			pud_clear(pud);
1257 }
1258 
1259 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1260 {
1261 	pud_t *pud = pud_offset(p4d, start);
1262 
1263 	/*
1264 	 * Not on a GB page boundary?
1265 	 */
1266 	if (start & (PUD_SIZE - 1)) {
1267 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1268 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1269 
1270 		unmap_pmd_range(pud, start, pre_end);
1271 
1272 		start = pre_end;
1273 		pud++;
1274 	}
1275 
1276 	/*
1277 	 * Try to unmap in 1G chunks?
1278 	 */
1279 	while (end - start >= PUD_SIZE) {
1280 
1281 		if (pud_large(*pud))
1282 			pud_clear(pud);
1283 		else
1284 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1285 
1286 		start += PUD_SIZE;
1287 		pud++;
1288 	}
1289 
1290 	/*
1291 	 * 2M leftovers?
1292 	 */
1293 	if (start < end)
1294 		unmap_pmd_range(pud, start, end);
1295 
1296 	/*
1297 	 * No need to try to free the PUD page because we'll free it in
1298 	 * populate_pgd's error path
1299 	 */
1300 }
1301 
1302 static int alloc_pte_page(pmd_t *pmd)
1303 {
1304 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1305 	if (!pte)
1306 		return -1;
1307 
1308 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1309 	return 0;
1310 }
1311 
1312 static int alloc_pmd_page(pud_t *pud)
1313 {
1314 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1315 	if (!pmd)
1316 		return -1;
1317 
1318 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1319 	return 0;
1320 }
1321 
1322 static void populate_pte(struct cpa_data *cpa,
1323 			 unsigned long start, unsigned long end,
1324 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1325 {
1326 	pte_t *pte;
1327 
1328 	pte = pte_offset_kernel(pmd, start);
1329 
1330 	pgprot = pgprot_clear_protnone_bits(pgprot);
1331 
1332 	while (num_pages-- && start < end) {
1333 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1334 
1335 		start	 += PAGE_SIZE;
1336 		cpa->pfn++;
1337 		pte++;
1338 	}
1339 }
1340 
1341 static long populate_pmd(struct cpa_data *cpa,
1342 			 unsigned long start, unsigned long end,
1343 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1344 {
1345 	long cur_pages = 0;
1346 	pmd_t *pmd;
1347 	pgprot_t pmd_pgprot;
1348 
1349 	/*
1350 	 * Not on a 2M boundary?
1351 	 */
1352 	if (start & (PMD_SIZE - 1)) {
1353 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1354 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1355 
1356 		pre_end   = min_t(unsigned long, pre_end, next_page);
1357 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1358 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1359 
1360 		/*
1361 		 * Need a PTE page?
1362 		 */
1363 		pmd = pmd_offset(pud, start);
1364 		if (pmd_none(*pmd))
1365 			if (alloc_pte_page(pmd))
1366 				return -1;
1367 
1368 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1369 
1370 		start = pre_end;
1371 	}
1372 
1373 	/*
1374 	 * We mapped them all?
1375 	 */
1376 	if (num_pages == cur_pages)
1377 		return cur_pages;
1378 
1379 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1380 
1381 	while (end - start >= PMD_SIZE) {
1382 
1383 		/*
1384 		 * We cannot use a 1G page so allocate a PMD page if needed.
1385 		 */
1386 		if (pud_none(*pud))
1387 			if (alloc_pmd_page(pud))
1388 				return -1;
1389 
1390 		pmd = pmd_offset(pud, start);
1391 
1392 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1393 					canon_pgprot(pmd_pgprot))));
1394 
1395 		start	  += PMD_SIZE;
1396 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1397 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1398 	}
1399 
1400 	/*
1401 	 * Map trailing 4K pages.
1402 	 */
1403 	if (start < end) {
1404 		pmd = pmd_offset(pud, start);
1405 		if (pmd_none(*pmd))
1406 			if (alloc_pte_page(pmd))
1407 				return -1;
1408 
1409 		populate_pte(cpa, start, end, num_pages - cur_pages,
1410 			     pmd, pgprot);
1411 	}
1412 	return num_pages;
1413 }
1414 
1415 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1416 			pgprot_t pgprot)
1417 {
1418 	pud_t *pud;
1419 	unsigned long end;
1420 	long cur_pages = 0;
1421 	pgprot_t pud_pgprot;
1422 
1423 	end = start + (cpa->numpages << PAGE_SHIFT);
1424 
1425 	/*
1426 	 * Not on a Gb page boundary? => map everything up to it with
1427 	 * smaller pages.
1428 	 */
1429 	if (start & (PUD_SIZE - 1)) {
1430 		unsigned long pre_end;
1431 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1432 
1433 		pre_end   = min_t(unsigned long, end, next_page);
1434 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1435 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1436 
1437 		pud = pud_offset(p4d, start);
1438 
1439 		/*
1440 		 * Need a PMD page?
1441 		 */
1442 		if (pud_none(*pud))
1443 			if (alloc_pmd_page(pud))
1444 				return -1;
1445 
1446 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1447 					 pud, pgprot);
1448 		if (cur_pages < 0)
1449 			return cur_pages;
1450 
1451 		start = pre_end;
1452 	}
1453 
1454 	/* We mapped them all? */
1455 	if (cpa->numpages == cur_pages)
1456 		return cur_pages;
1457 
1458 	pud = pud_offset(p4d, start);
1459 	pud_pgprot = pgprot_4k_2_large(pgprot);
1460 
1461 	/*
1462 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1463 	 */
1464 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1465 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1466 				   canon_pgprot(pud_pgprot))));
1467 
1468 		start	  += PUD_SIZE;
1469 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1470 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1471 		pud++;
1472 	}
1473 
1474 	/* Map trailing leftover */
1475 	if (start < end) {
1476 		long tmp;
1477 
1478 		pud = pud_offset(p4d, start);
1479 		if (pud_none(*pud))
1480 			if (alloc_pmd_page(pud))
1481 				return -1;
1482 
1483 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1484 				   pud, pgprot);
1485 		if (tmp < 0)
1486 			return cur_pages;
1487 
1488 		cur_pages += tmp;
1489 	}
1490 	return cur_pages;
1491 }
1492 
1493 /*
1494  * Restrictions for kernel page table do not necessarily apply when mapping in
1495  * an alternate PGD.
1496  */
1497 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1498 {
1499 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1500 	pud_t *pud = NULL;	/* shut up gcc */
1501 	p4d_t *p4d;
1502 	pgd_t *pgd_entry;
1503 	long ret;
1504 
1505 	pgd_entry = cpa->pgd + pgd_index(addr);
1506 
1507 	if (pgd_none(*pgd_entry)) {
1508 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1509 		if (!p4d)
1510 			return -1;
1511 
1512 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1513 	}
1514 
1515 	/*
1516 	 * Allocate a PUD page and hand it down for mapping.
1517 	 */
1518 	p4d = p4d_offset(pgd_entry, addr);
1519 	if (p4d_none(*p4d)) {
1520 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1521 		if (!pud)
1522 			return -1;
1523 
1524 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1525 	}
1526 
1527 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1528 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1529 
1530 	ret = populate_pud(cpa, addr, p4d, pgprot);
1531 	if (ret < 0) {
1532 		/*
1533 		 * Leave the PUD page in place in case some other CPU or thread
1534 		 * already found it, but remove any useless entries we just
1535 		 * added to it.
1536 		 */
1537 		unmap_pud_range(p4d, addr,
1538 				addr + (cpa->numpages << PAGE_SHIFT));
1539 		return ret;
1540 	}
1541 
1542 	cpa->numpages = ret;
1543 	return 0;
1544 }
1545 
1546 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1547 			       int primary)
1548 {
1549 	if (cpa->pgd) {
1550 		/*
1551 		 * Right now, we only execute this code path when mapping
1552 		 * the EFI virtual memory map regions, no other users
1553 		 * provide a ->pgd value. This may change in the future.
1554 		 */
1555 		return populate_pgd(cpa, vaddr);
1556 	}
1557 
1558 	/*
1559 	 * Ignore all non primary paths.
1560 	 */
1561 	if (!primary) {
1562 		cpa->numpages = 1;
1563 		return 0;
1564 	}
1565 
1566 	/*
1567 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1568 	 * to have holes.
1569 	 * Also set numpages to '1' indicating that we processed cpa req for
1570 	 * one virtual address page and its pfn. TBD: numpages can be set based
1571 	 * on the initial value and the level returned by lookup_address().
1572 	 */
1573 	if (within(vaddr, PAGE_OFFSET,
1574 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1575 		cpa->numpages = 1;
1576 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1577 		return 0;
1578 
1579 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1580 		/* Faults in the highmap are OK, so do not warn: */
1581 		return -EFAULT;
1582 	} else {
1583 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1584 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1585 			*cpa->vaddr);
1586 
1587 		return -EFAULT;
1588 	}
1589 }
1590 
1591 static int __change_page_attr(struct cpa_data *cpa, int primary)
1592 {
1593 	unsigned long address;
1594 	int do_split, err;
1595 	unsigned int level;
1596 	pte_t *kpte, old_pte;
1597 
1598 	address = __cpa_addr(cpa, cpa->curpage);
1599 repeat:
1600 	kpte = _lookup_address_cpa(cpa, address, &level);
1601 	if (!kpte)
1602 		return __cpa_process_fault(cpa, address, primary);
1603 
1604 	old_pte = *kpte;
1605 	if (pte_none(old_pte))
1606 		return __cpa_process_fault(cpa, address, primary);
1607 
1608 	if (level == PG_LEVEL_4K) {
1609 		pte_t new_pte;
1610 		pgprot_t old_prot = pte_pgprot(old_pte);
1611 		pgprot_t new_prot = pte_pgprot(old_pte);
1612 		unsigned long pfn = pte_pfn(old_pte);
1613 
1614 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1615 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1616 
1617 		cpa_inc_4k_install();
1618 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1619 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1620 					      CPA_PROTECT);
1621 
1622 		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1);
1623 
1624 		new_prot = pgprot_clear_protnone_bits(new_prot);
1625 
1626 		/*
1627 		 * We need to keep the pfn from the existing PTE,
1628 		 * after all we're only going to change its attributes
1629 		 * not the memory it points to
1630 		 */
1631 		new_pte = pfn_pte(pfn, new_prot);
1632 		cpa->pfn = pfn;
1633 		/*
1634 		 * Do we really change anything ?
1635 		 */
1636 		if (pte_val(old_pte) != pte_val(new_pte)) {
1637 			set_pte_atomic(kpte, new_pte);
1638 			cpa->flags |= CPA_FLUSHTLB;
1639 		}
1640 		cpa->numpages = 1;
1641 		return 0;
1642 	}
1643 
1644 	/*
1645 	 * Check, whether we can keep the large page intact
1646 	 * and just change the pte:
1647 	 */
1648 	do_split = should_split_large_page(kpte, address, cpa);
1649 	/*
1650 	 * When the range fits into the existing large page,
1651 	 * return. cp->numpages and cpa->tlbflush have been updated in
1652 	 * try_large_page:
1653 	 */
1654 	if (do_split <= 0)
1655 		return do_split;
1656 
1657 	/*
1658 	 * We have to split the large page:
1659 	 */
1660 	err = split_large_page(cpa, kpte, address);
1661 	if (!err)
1662 		goto repeat;
1663 
1664 	return err;
1665 }
1666 
1667 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1668 
1669 /*
1670  * Check the directmap and "high kernel map" 'aliases'.
1671  */
1672 static int cpa_process_alias(struct cpa_data *cpa)
1673 {
1674 	struct cpa_data alias_cpa;
1675 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1676 	unsigned long vaddr;
1677 	int ret;
1678 
1679 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1680 		return 0;
1681 
1682 	/*
1683 	 * No need to redo, when the primary call touched the direct
1684 	 * mapping already:
1685 	 */
1686 	vaddr = __cpa_addr(cpa, cpa->curpage);
1687 	if (!(within(vaddr, PAGE_OFFSET,
1688 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1689 
1690 		alias_cpa = *cpa;
1691 		alias_cpa.vaddr = &laddr;
1692 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1693 		alias_cpa.curpage = 0;
1694 
1695 		/* Directmap always has NX set, do not modify. */
1696 		if (__supported_pte_mask & _PAGE_NX) {
1697 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1698 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1699 		}
1700 
1701 		cpa->force_flush_all = 1;
1702 
1703 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1704 		if (ret)
1705 			return ret;
1706 	}
1707 
1708 #ifdef CONFIG_X86_64
1709 	/*
1710 	 * If the primary call didn't touch the high mapping already
1711 	 * and the physical address is inside the kernel map, we need
1712 	 * to touch the high mapped kernel as well:
1713 	 */
1714 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1715 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1716 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1717 					       __START_KERNEL_map - phys_base;
1718 		alias_cpa = *cpa;
1719 		alias_cpa.vaddr = &temp_cpa_vaddr;
1720 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1721 		alias_cpa.curpage = 0;
1722 
1723 		/*
1724 		 * [_text, _brk_end) also covers data, do not modify NX except
1725 		 * in cases where the highmap is the primary target.
1726 		 */
1727 		if (__supported_pte_mask & _PAGE_NX) {
1728 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1729 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1730 		}
1731 
1732 		cpa->force_flush_all = 1;
1733 		/*
1734 		 * The high mapping range is imprecise, so ignore the
1735 		 * return value.
1736 		 */
1737 		__change_page_attr_set_clr(&alias_cpa, 0);
1738 	}
1739 #endif
1740 
1741 	return 0;
1742 }
1743 
1744 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1745 {
1746 	unsigned long numpages = cpa->numpages;
1747 	unsigned long rempages = numpages;
1748 	int ret = 0;
1749 
1750 	/*
1751 	 * No changes, easy!
1752 	 */
1753 	if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1754 	    !cpa->force_split)
1755 		return ret;
1756 
1757 	while (rempages) {
1758 		/*
1759 		 * Store the remaining nr of pages for the large page
1760 		 * preservation check.
1761 		 */
1762 		cpa->numpages = rempages;
1763 		/* for array changes, we can't use large page */
1764 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1765 			cpa->numpages = 1;
1766 
1767 		if (!debug_pagealloc_enabled())
1768 			spin_lock(&cpa_lock);
1769 		ret = __change_page_attr(cpa, primary);
1770 		if (!debug_pagealloc_enabled())
1771 			spin_unlock(&cpa_lock);
1772 		if (ret)
1773 			goto out;
1774 
1775 		if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1776 			ret = cpa_process_alias(cpa);
1777 			if (ret)
1778 				goto out;
1779 		}
1780 
1781 		/*
1782 		 * Adjust the number of pages with the result of the
1783 		 * CPA operation. Either a large page has been
1784 		 * preserved or a single page update happened.
1785 		 */
1786 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1787 		rempages -= cpa->numpages;
1788 		cpa->curpage += cpa->numpages;
1789 	}
1790 
1791 out:
1792 	/* Restore the original numpages */
1793 	cpa->numpages = numpages;
1794 	return ret;
1795 }
1796 
1797 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1798 				    pgprot_t mask_set, pgprot_t mask_clr,
1799 				    int force_split, int in_flag,
1800 				    struct page **pages)
1801 {
1802 	struct cpa_data cpa;
1803 	int ret, cache;
1804 
1805 	memset(&cpa, 0, sizeof(cpa));
1806 
1807 	/*
1808 	 * Check, if we are requested to set a not supported
1809 	 * feature.  Clearing non-supported features is OK.
1810 	 */
1811 	mask_set = canon_pgprot(mask_set);
1812 
1813 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1814 		return 0;
1815 
1816 	/* Ensure we are PAGE_SIZE aligned */
1817 	if (in_flag & CPA_ARRAY) {
1818 		int i;
1819 		for (i = 0; i < numpages; i++) {
1820 			if (addr[i] & ~PAGE_MASK) {
1821 				addr[i] &= PAGE_MASK;
1822 				WARN_ON_ONCE(1);
1823 			}
1824 		}
1825 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1826 		/*
1827 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1828 		 * No need to check in that case
1829 		 */
1830 		if (*addr & ~PAGE_MASK) {
1831 			*addr &= PAGE_MASK;
1832 			/*
1833 			 * People should not be passing in unaligned addresses:
1834 			 */
1835 			WARN_ON_ONCE(1);
1836 		}
1837 	}
1838 
1839 	/* Must avoid aliasing mappings in the highmem code */
1840 	kmap_flush_unused();
1841 
1842 	vm_unmap_aliases();
1843 
1844 	cpa.vaddr = addr;
1845 	cpa.pages = pages;
1846 	cpa.numpages = numpages;
1847 	cpa.mask_set = mask_set;
1848 	cpa.mask_clr = mask_clr;
1849 	cpa.flags = in_flag;
1850 	cpa.curpage = 0;
1851 	cpa.force_split = force_split;
1852 
1853 	ret = __change_page_attr_set_clr(&cpa, 1);
1854 
1855 	/*
1856 	 * Check whether we really changed something:
1857 	 */
1858 	if (!(cpa.flags & CPA_FLUSHTLB))
1859 		goto out;
1860 
1861 	/*
1862 	 * No need to flush, when we did not set any of the caching
1863 	 * attributes:
1864 	 */
1865 	cache = !!pgprot2cachemode(mask_set);
1866 
1867 	/*
1868 	 * On error; flush everything to be sure.
1869 	 */
1870 	if (ret) {
1871 		cpa_flush_all(cache);
1872 		goto out;
1873 	}
1874 
1875 	cpa_flush(&cpa, cache);
1876 out:
1877 	return ret;
1878 }
1879 
1880 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1881 				       pgprot_t mask, int array)
1882 {
1883 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1884 		(array ? CPA_ARRAY : 0), NULL);
1885 }
1886 
1887 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1888 					 pgprot_t mask, int array)
1889 {
1890 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1891 		(array ? CPA_ARRAY : 0), NULL);
1892 }
1893 
1894 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1895 				       pgprot_t mask)
1896 {
1897 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1898 		CPA_PAGES_ARRAY, pages);
1899 }
1900 
1901 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1902 					 pgprot_t mask)
1903 {
1904 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1905 		CPA_PAGES_ARRAY, pages);
1906 }
1907 
1908 /*
1909  * __set_memory_prot is an internal helper for callers that have been passed
1910  * a pgprot_t value from upper layers and a reservation has already been taken.
1911  * If you want to set the pgprot to a specific page protocol, use the
1912  * set_memory_xx() functions.
1913  */
1914 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1915 {
1916 	return change_page_attr_set_clr(&addr, numpages, prot,
1917 					__pgprot(~pgprot_val(prot)), 0, 0,
1918 					NULL);
1919 }
1920 
1921 int _set_memory_uc(unsigned long addr, int numpages)
1922 {
1923 	/*
1924 	 * for now UC MINUS. see comments in ioremap()
1925 	 * If you really need strong UC use ioremap_uc(), but note
1926 	 * that you cannot override IO areas with set_memory_*() as
1927 	 * these helpers cannot work with IO memory.
1928 	 */
1929 	return change_page_attr_set(&addr, numpages,
1930 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1931 				    0);
1932 }
1933 
1934 int set_memory_uc(unsigned long addr, int numpages)
1935 {
1936 	int ret;
1937 
1938 	/*
1939 	 * for now UC MINUS. see comments in ioremap()
1940 	 */
1941 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1942 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1943 	if (ret)
1944 		goto out_err;
1945 
1946 	ret = _set_memory_uc(addr, numpages);
1947 	if (ret)
1948 		goto out_free;
1949 
1950 	return 0;
1951 
1952 out_free:
1953 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1954 out_err:
1955 	return ret;
1956 }
1957 EXPORT_SYMBOL(set_memory_uc);
1958 
1959 int _set_memory_wc(unsigned long addr, int numpages)
1960 {
1961 	int ret;
1962 
1963 	ret = change_page_attr_set(&addr, numpages,
1964 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1965 				   0);
1966 	if (!ret) {
1967 		ret = change_page_attr_set_clr(&addr, numpages,
1968 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1969 					       __pgprot(_PAGE_CACHE_MASK),
1970 					       0, 0, NULL);
1971 	}
1972 	return ret;
1973 }
1974 
1975 int set_memory_wc(unsigned long addr, int numpages)
1976 {
1977 	int ret;
1978 
1979 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1980 		_PAGE_CACHE_MODE_WC, NULL);
1981 	if (ret)
1982 		return ret;
1983 
1984 	ret = _set_memory_wc(addr, numpages);
1985 	if (ret)
1986 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1987 
1988 	return ret;
1989 }
1990 EXPORT_SYMBOL(set_memory_wc);
1991 
1992 int _set_memory_wt(unsigned long addr, int numpages)
1993 {
1994 	return change_page_attr_set(&addr, numpages,
1995 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1996 }
1997 
1998 int _set_memory_wb(unsigned long addr, int numpages)
1999 {
2000 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2001 	return change_page_attr_clear(&addr, numpages,
2002 				      __pgprot(_PAGE_CACHE_MASK), 0);
2003 }
2004 
2005 int set_memory_wb(unsigned long addr, int numpages)
2006 {
2007 	int ret;
2008 
2009 	ret = _set_memory_wb(addr, numpages);
2010 	if (ret)
2011 		return ret;
2012 
2013 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2014 	return 0;
2015 }
2016 EXPORT_SYMBOL(set_memory_wb);
2017 
2018 /* Prevent speculative access to a page by marking it not-present */
2019 #ifdef CONFIG_X86_64
2020 int set_mce_nospec(unsigned long pfn)
2021 {
2022 	unsigned long decoy_addr;
2023 	int rc;
2024 
2025 	/* SGX pages are not in the 1:1 map */
2026 	if (arch_is_platform_page(pfn << PAGE_SHIFT))
2027 		return 0;
2028 	/*
2029 	 * We would like to just call:
2030 	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2031 	 * but doing that would radically increase the odds of a
2032 	 * speculative access to the poison page because we'd have
2033 	 * the virtual address of the kernel 1:1 mapping sitting
2034 	 * around in registers.
2035 	 * Instead we get tricky.  We create a non-canonical address
2036 	 * that looks just like the one we want, but has bit 63 flipped.
2037 	 * This relies on set_memory_XX() properly sanitizing any __pa()
2038 	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2039 	 */
2040 	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2041 
2042 	rc = set_memory_np(decoy_addr, 1);
2043 	if (rc)
2044 		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2045 	return rc;
2046 }
2047 
2048 /* Restore full speculative operation to the pfn. */
2049 int clear_mce_nospec(unsigned long pfn)
2050 {
2051 	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2052 
2053 	return set_memory_p(addr, 1);
2054 }
2055 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2056 #endif /* CONFIG_X86_64 */
2057 
2058 int set_memory_x(unsigned long addr, int numpages)
2059 {
2060 	if (!(__supported_pte_mask & _PAGE_NX))
2061 		return 0;
2062 
2063 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2064 }
2065 
2066 int set_memory_nx(unsigned long addr, int numpages)
2067 {
2068 	if (!(__supported_pte_mask & _PAGE_NX))
2069 		return 0;
2070 
2071 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2072 }
2073 
2074 int set_memory_ro(unsigned long addr, int numpages)
2075 {
2076 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2077 }
2078 
2079 int set_memory_rox(unsigned long addr, int numpages)
2080 {
2081 	pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2082 
2083 	if (__supported_pte_mask & _PAGE_NX)
2084 		clr.pgprot |= _PAGE_NX;
2085 
2086 	return change_page_attr_clear(&addr, numpages, clr, 0);
2087 }
2088 
2089 int set_memory_rw(unsigned long addr, int numpages)
2090 {
2091 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2092 }
2093 
2094 int set_memory_np(unsigned long addr, int numpages)
2095 {
2096 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2097 }
2098 
2099 int set_memory_np_noalias(unsigned long addr, int numpages)
2100 {
2101 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2102 					__pgprot(_PAGE_PRESENT), 0,
2103 					CPA_NO_CHECK_ALIAS, NULL);
2104 }
2105 
2106 int set_memory_p(unsigned long addr, int numpages)
2107 {
2108 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2109 }
2110 
2111 int set_memory_4k(unsigned long addr, int numpages)
2112 {
2113 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2114 					__pgprot(0), 1, 0, NULL);
2115 }
2116 
2117 int set_memory_nonglobal(unsigned long addr, int numpages)
2118 {
2119 	return change_page_attr_clear(&addr, numpages,
2120 				      __pgprot(_PAGE_GLOBAL), 0);
2121 }
2122 
2123 int set_memory_global(unsigned long addr, int numpages)
2124 {
2125 	return change_page_attr_set(&addr, numpages,
2126 				    __pgprot(_PAGE_GLOBAL), 0);
2127 }
2128 
2129 /*
2130  * __set_memory_enc_pgtable() is used for the hypervisors that get
2131  * informed about "encryption" status via page tables.
2132  */
2133 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2134 {
2135 	pgprot_t empty = __pgprot(0);
2136 	struct cpa_data cpa;
2137 	int ret;
2138 
2139 	/* Should not be working on unaligned addresses */
2140 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2141 		addr &= PAGE_MASK;
2142 
2143 	memset(&cpa, 0, sizeof(cpa));
2144 	cpa.vaddr = &addr;
2145 	cpa.numpages = numpages;
2146 	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2147 	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2148 	cpa.pgd = init_mm.pgd;
2149 
2150 	/* Must avoid aliasing mappings in the highmem code */
2151 	kmap_flush_unused();
2152 	vm_unmap_aliases();
2153 
2154 	/* Flush the caches as needed before changing the encryption attribute. */
2155 	if (x86_platform.guest.enc_tlb_flush_required(enc))
2156 		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2157 
2158 	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2159 	if (!x86_platform.guest.enc_status_change_prepare(addr, numpages, enc))
2160 		goto vmm_fail;
2161 
2162 	ret = __change_page_attr_set_clr(&cpa, 1);
2163 
2164 	/*
2165 	 * After changing the encryption attribute, we need to flush TLBs again
2166 	 * in case any speculative TLB caching occurred (but no need to flush
2167 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2168 	 * flushing gets optimized in the cpa_flush() path use the same logic
2169 	 * as above.
2170 	 */
2171 	cpa_flush(&cpa, 0);
2172 
2173 	if (ret)
2174 		return ret;
2175 
2176 	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2177 	if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2178 		goto vmm_fail;
2179 
2180 	return 0;
2181 
2182 vmm_fail:
2183 	WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s.\n",
2184 		  (void *)addr, numpages, enc ? "private" : "shared");
2185 
2186 	return -EIO;
2187 }
2188 
2189 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2190 {
2191 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2192 		return __set_memory_enc_pgtable(addr, numpages, enc);
2193 
2194 	return 0;
2195 }
2196 
2197 int set_memory_encrypted(unsigned long addr, int numpages)
2198 {
2199 	return __set_memory_enc_dec(addr, numpages, true);
2200 }
2201 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2202 
2203 int set_memory_decrypted(unsigned long addr, int numpages)
2204 {
2205 	return __set_memory_enc_dec(addr, numpages, false);
2206 }
2207 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2208 
2209 int set_pages_uc(struct page *page, int numpages)
2210 {
2211 	unsigned long addr = (unsigned long)page_address(page);
2212 
2213 	return set_memory_uc(addr, numpages);
2214 }
2215 EXPORT_SYMBOL(set_pages_uc);
2216 
2217 static int _set_pages_array(struct page **pages, int numpages,
2218 		enum page_cache_mode new_type)
2219 {
2220 	unsigned long start;
2221 	unsigned long end;
2222 	enum page_cache_mode set_type;
2223 	int i;
2224 	int free_idx;
2225 	int ret;
2226 
2227 	for (i = 0; i < numpages; i++) {
2228 		if (PageHighMem(pages[i]))
2229 			continue;
2230 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2231 		end = start + PAGE_SIZE;
2232 		if (memtype_reserve(start, end, new_type, NULL))
2233 			goto err_out;
2234 	}
2235 
2236 	/* If WC, set to UC- first and then WC */
2237 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2238 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2239 
2240 	ret = cpa_set_pages_array(pages, numpages,
2241 				  cachemode2pgprot(set_type));
2242 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2243 		ret = change_page_attr_set_clr(NULL, numpages,
2244 					       cachemode2pgprot(
2245 						_PAGE_CACHE_MODE_WC),
2246 					       __pgprot(_PAGE_CACHE_MASK),
2247 					       0, CPA_PAGES_ARRAY, pages);
2248 	if (ret)
2249 		goto err_out;
2250 	return 0; /* Success */
2251 err_out:
2252 	free_idx = i;
2253 	for (i = 0; i < free_idx; i++) {
2254 		if (PageHighMem(pages[i]))
2255 			continue;
2256 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2257 		end = start + PAGE_SIZE;
2258 		memtype_free(start, end);
2259 	}
2260 	return -EINVAL;
2261 }
2262 
2263 int set_pages_array_uc(struct page **pages, int numpages)
2264 {
2265 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2266 }
2267 EXPORT_SYMBOL(set_pages_array_uc);
2268 
2269 int set_pages_array_wc(struct page **pages, int numpages)
2270 {
2271 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2272 }
2273 EXPORT_SYMBOL(set_pages_array_wc);
2274 
2275 int set_pages_wb(struct page *page, int numpages)
2276 {
2277 	unsigned long addr = (unsigned long)page_address(page);
2278 
2279 	return set_memory_wb(addr, numpages);
2280 }
2281 EXPORT_SYMBOL(set_pages_wb);
2282 
2283 int set_pages_array_wb(struct page **pages, int numpages)
2284 {
2285 	int retval;
2286 	unsigned long start;
2287 	unsigned long end;
2288 	int i;
2289 
2290 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2291 	retval = cpa_clear_pages_array(pages, numpages,
2292 			__pgprot(_PAGE_CACHE_MASK));
2293 	if (retval)
2294 		return retval;
2295 
2296 	for (i = 0; i < numpages; i++) {
2297 		if (PageHighMem(pages[i]))
2298 			continue;
2299 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2300 		end = start + PAGE_SIZE;
2301 		memtype_free(start, end);
2302 	}
2303 
2304 	return 0;
2305 }
2306 EXPORT_SYMBOL(set_pages_array_wb);
2307 
2308 int set_pages_ro(struct page *page, int numpages)
2309 {
2310 	unsigned long addr = (unsigned long)page_address(page);
2311 
2312 	return set_memory_ro(addr, numpages);
2313 }
2314 
2315 int set_pages_rw(struct page *page, int numpages)
2316 {
2317 	unsigned long addr = (unsigned long)page_address(page);
2318 
2319 	return set_memory_rw(addr, numpages);
2320 }
2321 
2322 static int __set_pages_p(struct page *page, int numpages)
2323 {
2324 	unsigned long tempaddr = (unsigned long) page_address(page);
2325 	struct cpa_data cpa = { .vaddr = &tempaddr,
2326 				.pgd = NULL,
2327 				.numpages = numpages,
2328 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2329 				.mask_clr = __pgprot(0),
2330 				.flags = CPA_NO_CHECK_ALIAS };
2331 
2332 	/*
2333 	 * No alias checking needed for setting present flag. otherwise,
2334 	 * we may need to break large pages for 64-bit kernel text
2335 	 * mappings (this adds to complexity if we want to do this from
2336 	 * atomic context especially). Let's keep it simple!
2337 	 */
2338 	return __change_page_attr_set_clr(&cpa, 1);
2339 }
2340 
2341 static int __set_pages_np(struct page *page, int numpages)
2342 {
2343 	unsigned long tempaddr = (unsigned long) page_address(page);
2344 	struct cpa_data cpa = { .vaddr = &tempaddr,
2345 				.pgd = NULL,
2346 				.numpages = numpages,
2347 				.mask_set = __pgprot(0),
2348 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2349 				.flags = CPA_NO_CHECK_ALIAS };
2350 
2351 	/*
2352 	 * No alias checking needed for setting not present flag. otherwise,
2353 	 * we may need to break large pages for 64-bit kernel text
2354 	 * mappings (this adds to complexity if we want to do this from
2355 	 * atomic context especially). Let's keep it simple!
2356 	 */
2357 	return __change_page_attr_set_clr(&cpa, 1);
2358 }
2359 
2360 int set_direct_map_invalid_noflush(struct page *page)
2361 {
2362 	return __set_pages_np(page, 1);
2363 }
2364 
2365 int set_direct_map_default_noflush(struct page *page)
2366 {
2367 	return __set_pages_p(page, 1);
2368 }
2369 
2370 #ifdef CONFIG_DEBUG_PAGEALLOC
2371 void __kernel_map_pages(struct page *page, int numpages, int enable)
2372 {
2373 	if (PageHighMem(page))
2374 		return;
2375 	if (!enable) {
2376 		debug_check_no_locks_freed(page_address(page),
2377 					   numpages * PAGE_SIZE);
2378 	}
2379 
2380 	/*
2381 	 * The return value is ignored as the calls cannot fail.
2382 	 * Large pages for identity mappings are not used at boot time
2383 	 * and hence no memory allocations during large page split.
2384 	 */
2385 	if (enable)
2386 		__set_pages_p(page, numpages);
2387 	else
2388 		__set_pages_np(page, numpages);
2389 
2390 	/*
2391 	 * We should perform an IPI and flush all tlbs,
2392 	 * but that can deadlock->flush only current cpu.
2393 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2394 	 * CR3 reload in __native_flush_tlb().
2395 	 */
2396 	preempt_disable();
2397 	__flush_tlb_all();
2398 	preempt_enable();
2399 
2400 	arch_flush_lazy_mmu_mode();
2401 }
2402 #endif /* CONFIG_DEBUG_PAGEALLOC */
2403 
2404 bool kernel_page_present(struct page *page)
2405 {
2406 	unsigned int level;
2407 	pte_t *pte;
2408 
2409 	if (PageHighMem(page))
2410 		return false;
2411 
2412 	pte = lookup_address((unsigned long)page_address(page), &level);
2413 	return (pte_val(*pte) & _PAGE_PRESENT);
2414 }
2415 
2416 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2417 				   unsigned numpages, unsigned long page_flags)
2418 {
2419 	int retval = -EINVAL;
2420 
2421 	struct cpa_data cpa = {
2422 		.vaddr = &address,
2423 		.pfn = pfn,
2424 		.pgd = pgd,
2425 		.numpages = numpages,
2426 		.mask_set = __pgprot(0),
2427 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2428 		.flags = CPA_NO_CHECK_ALIAS,
2429 	};
2430 
2431 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2432 
2433 	if (!(__supported_pte_mask & _PAGE_NX))
2434 		goto out;
2435 
2436 	if (!(page_flags & _PAGE_ENC))
2437 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2438 
2439 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2440 
2441 	retval = __change_page_attr_set_clr(&cpa, 1);
2442 	__flush_tlb_all();
2443 
2444 out:
2445 	return retval;
2446 }
2447 
2448 /*
2449  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2450  * function shouldn't be used in an SMP environment. Presently, it's used only
2451  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2452  */
2453 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2454 				     unsigned long numpages)
2455 {
2456 	int retval;
2457 
2458 	/*
2459 	 * The typical sequence for unmapping is to find a pte through
2460 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2461 	 * the address is already mapped) and change its protections. As pfn is
2462 	 * the *target* of a mapping, it's not useful while unmapping.
2463 	 */
2464 	struct cpa_data cpa = {
2465 		.vaddr		= &address,
2466 		.pfn		= 0,
2467 		.pgd		= pgd,
2468 		.numpages	= numpages,
2469 		.mask_set	= __pgprot(0),
2470 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2471 		.flags		= CPA_NO_CHECK_ALIAS,
2472 	};
2473 
2474 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2475 
2476 	retval = __change_page_attr_set_clr(&cpa, 1);
2477 	__flush_tlb_all();
2478 
2479 	return retval;
2480 }
2481 
2482 /*
2483  * The testcases use internal knowledge of the implementation that shouldn't
2484  * be exposed to the rest of the kernel. Include these directly here.
2485  */
2486 #ifdef CONFIG_CPA_DEBUG
2487 #include "cpa-test.c"
2488 #endif
2489