xref: /linux/arch/x86/mm/pat/set_memory.c (revision f14aa5ea415b8add245e976bfab96a12986c6843)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/proc_fs.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/vmalloc.h>
19 #include <linux/libnvdimm.h>
20 #include <linux/vmstat.h>
21 #include <linux/kernel.h>
22 #include <linux/cc_platform.h>
23 #include <linux/set_memory.h>
24 #include <linux/memregion.h>
25 
26 #include <asm/e820/api.h>
27 #include <asm/processor.h>
28 #include <asm/tlbflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 #include <linux/uaccess.h>
32 #include <asm/pgalloc.h>
33 #include <asm/proto.h>
34 #include <asm/memtype.h>
35 #include <asm/hyperv-tlfs.h>
36 #include <asm/mshyperv.h>
37 
38 #include "../mm_internal.h"
39 
40 /*
41  * The current flushing context - we pass it instead of 5 arguments:
42  */
43 struct cpa_data {
44 	unsigned long	*vaddr;
45 	pgd_t		*pgd;
46 	pgprot_t	mask_set;
47 	pgprot_t	mask_clr;
48 	unsigned long	numpages;
49 	unsigned long	curpage;
50 	unsigned long	pfn;
51 	unsigned int	flags;
52 	unsigned int	force_split		: 1,
53 			force_static_prot	: 1,
54 			force_flush_all		: 1;
55 	struct page	**pages;
56 };
57 
58 enum cpa_warn {
59 	CPA_CONFLICT,
60 	CPA_PROTECT,
61 	CPA_DETECT,
62 };
63 
64 static const int cpa_warn_level = CPA_PROTECT;
65 
66 /*
67  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
68  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
69  * entries change the page attribute in parallel to some other cpu
70  * splitting a large page entry along with changing the attribute.
71  */
72 static DEFINE_SPINLOCK(cpa_lock);
73 
74 #define CPA_FLUSHTLB 1
75 #define CPA_ARRAY 2
76 #define CPA_PAGES_ARRAY 4
77 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
78 
79 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
80 {
81 	return __pgprot(cachemode2protval(pcm));
82 }
83 
84 #ifdef CONFIG_PROC_FS
85 static unsigned long direct_pages_count[PG_LEVEL_NUM];
86 
87 void update_page_count(int level, unsigned long pages)
88 {
89 	/* Protect against CPA */
90 	spin_lock(&pgd_lock);
91 	direct_pages_count[level] += pages;
92 	spin_unlock(&pgd_lock);
93 }
94 
95 static void split_page_count(int level)
96 {
97 	if (direct_pages_count[level] == 0)
98 		return;
99 
100 	direct_pages_count[level]--;
101 	if (system_state == SYSTEM_RUNNING) {
102 		if (level == PG_LEVEL_2M)
103 			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
104 		else if (level == PG_LEVEL_1G)
105 			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
106 	}
107 	direct_pages_count[level - 1] += PTRS_PER_PTE;
108 }
109 
110 void arch_report_meminfo(struct seq_file *m)
111 {
112 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
113 			direct_pages_count[PG_LEVEL_4K] << 2);
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
116 			direct_pages_count[PG_LEVEL_2M] << 11);
117 #else
118 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
119 			direct_pages_count[PG_LEVEL_2M] << 12);
120 #endif
121 	if (direct_gbpages)
122 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
123 			direct_pages_count[PG_LEVEL_1G] << 20);
124 }
125 #else
126 static inline void split_page_count(int level) { }
127 #endif
128 
129 #ifdef CONFIG_X86_CPA_STATISTICS
130 
131 static unsigned long cpa_1g_checked;
132 static unsigned long cpa_1g_sameprot;
133 static unsigned long cpa_1g_preserved;
134 static unsigned long cpa_2m_checked;
135 static unsigned long cpa_2m_sameprot;
136 static unsigned long cpa_2m_preserved;
137 static unsigned long cpa_4k_install;
138 
139 static inline void cpa_inc_1g_checked(void)
140 {
141 	cpa_1g_checked++;
142 }
143 
144 static inline void cpa_inc_2m_checked(void)
145 {
146 	cpa_2m_checked++;
147 }
148 
149 static inline void cpa_inc_4k_install(void)
150 {
151 	data_race(cpa_4k_install++);
152 }
153 
154 static inline void cpa_inc_lp_sameprot(int level)
155 {
156 	if (level == PG_LEVEL_1G)
157 		cpa_1g_sameprot++;
158 	else
159 		cpa_2m_sameprot++;
160 }
161 
162 static inline void cpa_inc_lp_preserved(int level)
163 {
164 	if (level == PG_LEVEL_1G)
165 		cpa_1g_preserved++;
166 	else
167 		cpa_2m_preserved++;
168 }
169 
170 static int cpastats_show(struct seq_file *m, void *p)
171 {
172 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
173 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
174 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
175 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
176 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
177 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
178 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
179 	return 0;
180 }
181 
182 static int cpastats_open(struct inode *inode, struct file *file)
183 {
184 	return single_open(file, cpastats_show, NULL);
185 }
186 
187 static const struct file_operations cpastats_fops = {
188 	.open		= cpastats_open,
189 	.read		= seq_read,
190 	.llseek		= seq_lseek,
191 	.release	= single_release,
192 };
193 
194 static int __init cpa_stats_init(void)
195 {
196 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
197 			    &cpastats_fops);
198 	return 0;
199 }
200 late_initcall(cpa_stats_init);
201 #else
202 static inline void cpa_inc_1g_checked(void) { }
203 static inline void cpa_inc_2m_checked(void) { }
204 static inline void cpa_inc_4k_install(void) { }
205 static inline void cpa_inc_lp_sameprot(int level) { }
206 static inline void cpa_inc_lp_preserved(int level) { }
207 #endif
208 
209 
210 static inline int
211 within(unsigned long addr, unsigned long start, unsigned long end)
212 {
213 	return addr >= start && addr < end;
214 }
215 
216 static inline int
217 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
218 {
219 	return addr >= start && addr <= end;
220 }
221 
222 #ifdef CONFIG_X86_64
223 
224 /*
225  * The kernel image is mapped into two places in the virtual address space
226  * (addresses without KASLR, of course):
227  *
228  * 1. The kernel direct map (0xffff880000000000)
229  * 2. The "high kernel map" (0xffffffff81000000)
230  *
231  * We actually execute out of #2. If we get the address of a kernel symbol, it
232  * points to #2, but almost all physical-to-virtual translations point to #1.
233  *
234  * This is so that we can have both a directmap of all physical memory *and*
235  * take full advantage of the limited (s32) immediate addressing range (2G)
236  * of x86_64.
237  *
238  * See Documentation/arch/x86/x86_64/mm.rst for more detail.
239  */
240 
241 static inline unsigned long highmap_start_pfn(void)
242 {
243 	return __pa_symbol(_text) >> PAGE_SHIFT;
244 }
245 
246 static inline unsigned long highmap_end_pfn(void)
247 {
248 	/* Do not reference physical address outside the kernel. */
249 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
250 }
251 
252 static bool __cpa_pfn_in_highmap(unsigned long pfn)
253 {
254 	/*
255 	 * Kernel text has an alias mapping at a high address, known
256 	 * here as "highmap".
257 	 */
258 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
259 }
260 
261 #else
262 
263 static bool __cpa_pfn_in_highmap(unsigned long pfn)
264 {
265 	/* There is no highmap on 32-bit */
266 	return false;
267 }
268 
269 #endif
270 
271 /*
272  * See set_mce_nospec().
273  *
274  * Machine check recovery code needs to change cache mode of poisoned pages to
275  * UC to avoid speculative access logging another error. But passing the
276  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
277  * speculative access. So we cheat and flip the top bit of the address. This
278  * works fine for the code that updates the page tables. But at the end of the
279  * process we need to flush the TLB and cache and the non-canonical address
280  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
281  *
282  * But in the common case we already have a canonical address. This code
283  * will fix the top bit if needed and is a no-op otherwise.
284  */
285 static inline unsigned long fix_addr(unsigned long addr)
286 {
287 #ifdef CONFIG_X86_64
288 	return (long)(addr << 1) >> 1;
289 #else
290 	return addr;
291 #endif
292 }
293 
294 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
295 {
296 	if (cpa->flags & CPA_PAGES_ARRAY) {
297 		struct page *page = cpa->pages[idx];
298 
299 		if (unlikely(PageHighMem(page)))
300 			return 0;
301 
302 		return (unsigned long)page_address(page);
303 	}
304 
305 	if (cpa->flags & CPA_ARRAY)
306 		return cpa->vaddr[idx];
307 
308 	return *cpa->vaddr + idx * PAGE_SIZE;
309 }
310 
311 /*
312  * Flushing functions
313  */
314 
315 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
316 {
317 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
318 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
319 	void *vend = vaddr + size;
320 
321 	if (p >= vend)
322 		return;
323 
324 	for (; p < vend; p += clflush_size)
325 		clflushopt(p);
326 }
327 
328 /**
329  * clflush_cache_range - flush a cache range with clflush
330  * @vaddr:	virtual start address
331  * @size:	number of bytes to flush
332  *
333  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
334  * SFENCE to avoid ordering issues.
335  */
336 void clflush_cache_range(void *vaddr, unsigned int size)
337 {
338 	mb();
339 	clflush_cache_range_opt(vaddr, size);
340 	mb();
341 }
342 EXPORT_SYMBOL_GPL(clflush_cache_range);
343 
344 #ifdef CONFIG_ARCH_HAS_PMEM_API
345 void arch_invalidate_pmem(void *addr, size_t size)
346 {
347 	clflush_cache_range(addr, size);
348 }
349 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
350 #endif
351 
352 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
353 bool cpu_cache_has_invalidate_memregion(void)
354 {
355 	return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
356 }
357 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
358 
359 int cpu_cache_invalidate_memregion(int res_desc)
360 {
361 	if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
362 		return -ENXIO;
363 	wbinvd_on_all_cpus();
364 	return 0;
365 }
366 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
367 #endif
368 
369 static void __cpa_flush_all(void *arg)
370 {
371 	unsigned long cache = (unsigned long)arg;
372 
373 	/*
374 	 * Flush all to work around Errata in early athlons regarding
375 	 * large page flushing.
376 	 */
377 	__flush_tlb_all();
378 
379 	if (cache && boot_cpu_data.x86 >= 4)
380 		wbinvd();
381 }
382 
383 static void cpa_flush_all(unsigned long cache)
384 {
385 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
386 
387 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
388 }
389 
390 static void __cpa_flush_tlb(void *data)
391 {
392 	struct cpa_data *cpa = data;
393 	unsigned int i;
394 
395 	for (i = 0; i < cpa->numpages; i++)
396 		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
397 }
398 
399 static void cpa_flush(struct cpa_data *data, int cache)
400 {
401 	struct cpa_data *cpa = data;
402 	unsigned int i;
403 
404 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
405 
406 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
407 		cpa_flush_all(cache);
408 		return;
409 	}
410 
411 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
412 		flush_tlb_all();
413 	else
414 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
415 
416 	if (!cache)
417 		return;
418 
419 	mb();
420 	for (i = 0; i < cpa->numpages; i++) {
421 		unsigned long addr = __cpa_addr(cpa, i);
422 		unsigned int level;
423 
424 		pte_t *pte = lookup_address(addr, &level);
425 
426 		/*
427 		 * Only flush present addresses:
428 		 */
429 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
430 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
431 	}
432 	mb();
433 }
434 
435 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
436 		     unsigned long r2_start, unsigned long r2_end)
437 {
438 	return (r1_start <= r2_end && r1_end >= r2_start) ||
439 		(r2_start <= r1_end && r2_end >= r1_start);
440 }
441 
442 #ifdef CONFIG_PCI_BIOS
443 /*
444  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
445  * based config access (CONFIG_PCI_GOBIOS) support.
446  */
447 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
448 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
449 
450 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
451 {
452 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
453 		return _PAGE_NX;
454 	return 0;
455 }
456 #else
457 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
458 {
459 	return 0;
460 }
461 #endif
462 
463 /*
464  * The .rodata section needs to be read-only. Using the pfn catches all
465  * aliases.  This also includes __ro_after_init, so do not enforce until
466  * kernel_set_to_readonly is true.
467  */
468 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
469 {
470 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
471 
472 	/*
473 	 * Note: __end_rodata is at page aligned and not inclusive, so
474 	 * subtract 1 to get the last enforced PFN in the rodata area.
475 	 */
476 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
477 
478 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
479 		return _PAGE_RW;
480 	return 0;
481 }
482 
483 /*
484  * Protect kernel text against becoming non executable by forbidding
485  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
486  * out of which the kernel actually executes.  Do not protect the low
487  * mapping.
488  *
489  * This does not cover __inittext since that is gone after boot.
490  */
491 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
492 {
493 	unsigned long t_end = (unsigned long)_etext - 1;
494 	unsigned long t_start = (unsigned long)_text;
495 
496 	if (overlaps(start, end, t_start, t_end))
497 		return _PAGE_NX;
498 	return 0;
499 }
500 
501 #if defined(CONFIG_X86_64)
502 /*
503  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
504  * kernel text mappings for the large page aligned text, rodata sections
505  * will be always read-only. For the kernel identity mappings covering the
506  * holes caused by this alignment can be anything that user asks.
507  *
508  * This will preserve the large page mappings for kernel text/data at no
509  * extra cost.
510  */
511 static pgprotval_t protect_kernel_text_ro(unsigned long start,
512 					  unsigned long end)
513 {
514 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
515 	unsigned long t_start = (unsigned long)_text;
516 	unsigned int level;
517 
518 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
519 		return 0;
520 	/*
521 	 * Don't enforce the !RW mapping for the kernel text mapping, if
522 	 * the current mapping is already using small page mapping.  No
523 	 * need to work hard to preserve large page mappings in this case.
524 	 *
525 	 * This also fixes the Linux Xen paravirt guest boot failure caused
526 	 * by unexpected read-only mappings for kernel identity
527 	 * mappings. In this paravirt guest case, the kernel text mapping
528 	 * and the kernel identity mapping share the same page-table pages,
529 	 * so the protections for kernel text and identity mappings have to
530 	 * be the same.
531 	 */
532 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
533 		return _PAGE_RW;
534 	return 0;
535 }
536 #else
537 static pgprotval_t protect_kernel_text_ro(unsigned long start,
538 					  unsigned long end)
539 {
540 	return 0;
541 }
542 #endif
543 
544 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
545 {
546 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
547 }
548 
549 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
550 				  unsigned long start, unsigned long end,
551 				  unsigned long pfn, const char *txt)
552 {
553 	static const char *lvltxt[] = {
554 		[CPA_CONFLICT]	= "conflict",
555 		[CPA_PROTECT]	= "protect",
556 		[CPA_DETECT]	= "detect",
557 	};
558 
559 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
560 		return;
561 
562 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
563 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
564 		(unsigned long long)val);
565 }
566 
567 /*
568  * Certain areas of memory on x86 require very specific protection flags,
569  * for example the BIOS area or kernel text. Callers don't always get this
570  * right (again, ioremap() on BIOS memory is not uncommon) so this function
571  * checks and fixes these known static required protection bits.
572  */
573 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
574 					  unsigned long pfn, unsigned long npg,
575 					  unsigned long lpsize, int warnlvl)
576 {
577 	pgprotval_t forbidden, res;
578 	unsigned long end;
579 
580 	/*
581 	 * There is no point in checking RW/NX conflicts when the requested
582 	 * mapping is setting the page !PRESENT.
583 	 */
584 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
585 		return prot;
586 
587 	/* Operate on the virtual address */
588 	end = start + npg * PAGE_SIZE - 1;
589 
590 	res = protect_kernel_text(start, end);
591 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
592 	forbidden = res;
593 
594 	/*
595 	 * Special case to preserve a large page. If the change spawns the
596 	 * full large page mapping then there is no point to split it
597 	 * up. Happens with ftrace and is going to be removed once ftrace
598 	 * switched to text_poke().
599 	 */
600 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
601 		res = protect_kernel_text_ro(start, end);
602 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
603 		forbidden |= res;
604 	}
605 
606 	/* Check the PFN directly */
607 	res = protect_pci_bios(pfn, pfn + npg - 1);
608 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
609 	forbidden |= res;
610 
611 	res = protect_rodata(pfn, pfn + npg - 1);
612 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
613 	forbidden |= res;
614 
615 	return __pgprot(pgprot_val(prot) & ~forbidden);
616 }
617 
618 /*
619  * Validate strict W^X semantics.
620  */
621 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
622 				  unsigned long pfn, unsigned long npg,
623 				  bool nx, bool rw)
624 {
625 	unsigned long end;
626 
627 	/*
628 	 * 32-bit has some unfixable W+X issues, like EFI code
629 	 * and writeable data being in the same page.  Disable
630 	 * detection and enforcement there.
631 	 */
632 	if (IS_ENABLED(CONFIG_X86_32))
633 		return new;
634 
635 	/* Only verify when NX is supported: */
636 	if (!(__supported_pte_mask & _PAGE_NX))
637 		return new;
638 
639 	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
640 		return new;
641 
642 	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
643 		return new;
644 
645 	/* Non-leaf translation entries can disable writing or execution. */
646 	if (!rw || nx)
647 		return new;
648 
649 	end = start + npg * PAGE_SIZE - 1;
650 	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
651 		  (unsigned long long)pgprot_val(old),
652 		  (unsigned long long)pgprot_val(new),
653 		  start, end, pfn);
654 
655 	/*
656 	 * For now, allow all permission change attempts by returning the
657 	 * attempted permissions.  This can 'return old' to actively
658 	 * refuse the permission change at a later time.
659 	 */
660 	return new;
661 }
662 
663 /*
664  * Lookup the page table entry for a virtual address in a specific pgd.
665  * Return a pointer to the entry, the level of the mapping, and the effective
666  * NX and RW bits of all page table levels.
667  */
668 pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address,
669 				  unsigned int *level, bool *nx, bool *rw)
670 {
671 	p4d_t *p4d;
672 	pud_t *pud;
673 	pmd_t *pmd;
674 
675 	*level = PG_LEVEL_NONE;
676 	*nx = false;
677 	*rw = true;
678 
679 	if (pgd_none(*pgd))
680 		return NULL;
681 
682 	*nx |= pgd_flags(*pgd) & _PAGE_NX;
683 	*rw &= pgd_flags(*pgd) & _PAGE_RW;
684 
685 	p4d = p4d_offset(pgd, address);
686 	if (p4d_none(*p4d))
687 		return NULL;
688 
689 	*level = PG_LEVEL_512G;
690 	if (p4d_leaf(*p4d) || !p4d_present(*p4d))
691 		return (pte_t *)p4d;
692 
693 	*nx |= p4d_flags(*p4d) & _PAGE_NX;
694 	*rw &= p4d_flags(*p4d) & _PAGE_RW;
695 
696 	pud = pud_offset(p4d, address);
697 	if (pud_none(*pud))
698 		return NULL;
699 
700 	*level = PG_LEVEL_1G;
701 	if (pud_leaf(*pud) || !pud_present(*pud))
702 		return (pte_t *)pud;
703 
704 	*nx |= pud_flags(*pud) & _PAGE_NX;
705 	*rw &= pud_flags(*pud) & _PAGE_RW;
706 
707 	pmd = pmd_offset(pud, address);
708 	if (pmd_none(*pmd))
709 		return NULL;
710 
711 	*level = PG_LEVEL_2M;
712 	if (pmd_leaf(*pmd) || !pmd_present(*pmd))
713 		return (pte_t *)pmd;
714 
715 	*nx |= pmd_flags(*pmd) & _PAGE_NX;
716 	*rw &= pmd_flags(*pmd) & _PAGE_RW;
717 
718 	*level = PG_LEVEL_4K;
719 
720 	return pte_offset_kernel(pmd, address);
721 }
722 
723 /*
724  * Lookup the page table entry for a virtual address in a specific pgd.
725  * Return a pointer to the entry and the level of the mapping.
726  */
727 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
728 			     unsigned int *level)
729 {
730 	bool nx, rw;
731 
732 	return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw);
733 }
734 
735 /*
736  * Lookup the page table entry for a virtual address. Return a pointer
737  * to the entry and the level of the mapping.
738  *
739  * Note: We return pud and pmd either when the entry is marked large
740  * or when the present bit is not set. Otherwise we would return a
741  * pointer to a nonexisting mapping.
742  */
743 pte_t *lookup_address(unsigned long address, unsigned int *level)
744 {
745 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
746 }
747 EXPORT_SYMBOL_GPL(lookup_address);
748 
749 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
750 				  unsigned int *level, bool *nx, bool *rw)
751 {
752 	pgd_t *pgd;
753 
754 	if (!cpa->pgd)
755 		pgd = pgd_offset_k(address);
756 	else
757 		pgd = cpa->pgd + pgd_index(address);
758 
759 	return lookup_address_in_pgd_attr(pgd, address, level, nx, rw);
760 }
761 
762 /*
763  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
764  * or NULL if not present.
765  */
766 pmd_t *lookup_pmd_address(unsigned long address)
767 {
768 	pgd_t *pgd;
769 	p4d_t *p4d;
770 	pud_t *pud;
771 
772 	pgd = pgd_offset_k(address);
773 	if (pgd_none(*pgd))
774 		return NULL;
775 
776 	p4d = p4d_offset(pgd, address);
777 	if (p4d_none(*p4d) || p4d_leaf(*p4d) || !p4d_present(*p4d))
778 		return NULL;
779 
780 	pud = pud_offset(p4d, address);
781 	if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud))
782 		return NULL;
783 
784 	return pmd_offset(pud, address);
785 }
786 
787 /*
788  * This is necessary because __pa() does not work on some
789  * kinds of memory, like vmalloc() or the alloc_remap()
790  * areas on 32-bit NUMA systems.  The percpu areas can
791  * end up in this kind of memory, for instance.
792  *
793  * Note that as long as the PTEs are well-formed with correct PFNs, this
794  * works without checking the PRESENT bit in the leaf PTE.  This is unlike
795  * the similar vmalloc_to_page() and derivatives.  Callers may depend on
796  * this behavior.
797  *
798  * This could be optimized, but it is only used in paths that are not perf
799  * sensitive, and keeping it unoptimized should increase the testing coverage
800  * for the more obscure platforms.
801  */
802 phys_addr_t slow_virt_to_phys(void *__virt_addr)
803 {
804 	unsigned long virt_addr = (unsigned long)__virt_addr;
805 	phys_addr_t phys_addr;
806 	unsigned long offset;
807 	enum pg_level level;
808 	pte_t *pte;
809 
810 	pte = lookup_address(virt_addr, &level);
811 	BUG_ON(!pte);
812 
813 	/*
814 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
815 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
816 	 * make 32-PAE kernel work correctly.
817 	 */
818 	switch (level) {
819 	case PG_LEVEL_1G:
820 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
821 		offset = virt_addr & ~PUD_MASK;
822 		break;
823 	case PG_LEVEL_2M:
824 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
825 		offset = virt_addr & ~PMD_MASK;
826 		break;
827 	default:
828 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
829 		offset = virt_addr & ~PAGE_MASK;
830 	}
831 
832 	return (phys_addr_t)(phys_addr | offset);
833 }
834 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
835 
836 /*
837  * Set the new pmd in all the pgds we know about:
838  */
839 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
840 {
841 	/* change init_mm */
842 	set_pte_atomic(kpte, pte);
843 #ifdef CONFIG_X86_32
844 	if (!SHARED_KERNEL_PMD) {
845 		struct page *page;
846 
847 		list_for_each_entry(page, &pgd_list, lru) {
848 			pgd_t *pgd;
849 			p4d_t *p4d;
850 			pud_t *pud;
851 			pmd_t *pmd;
852 
853 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
854 			p4d = p4d_offset(pgd, address);
855 			pud = pud_offset(p4d, address);
856 			pmd = pmd_offset(pud, address);
857 			set_pte_atomic((pte_t *)pmd, pte);
858 		}
859 	}
860 #endif
861 }
862 
863 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
864 {
865 	/*
866 	 * _PAGE_GLOBAL means "global page" for present PTEs.
867 	 * But, it is also used to indicate _PAGE_PROTNONE
868 	 * for non-present PTEs.
869 	 *
870 	 * This ensures that a _PAGE_GLOBAL PTE going from
871 	 * present to non-present is not confused as
872 	 * _PAGE_PROTNONE.
873 	 */
874 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
875 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
876 
877 	return prot;
878 }
879 
880 static int __should_split_large_page(pte_t *kpte, unsigned long address,
881 				     struct cpa_data *cpa)
882 {
883 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
884 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
885 	pte_t new_pte, *tmp;
886 	enum pg_level level;
887 	bool nx, rw;
888 
889 	/*
890 	 * Check for races, another CPU might have split this page
891 	 * up already:
892 	 */
893 	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
894 	if (tmp != kpte)
895 		return 1;
896 
897 	switch (level) {
898 	case PG_LEVEL_2M:
899 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
900 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
901 		cpa_inc_2m_checked();
902 		break;
903 	case PG_LEVEL_1G:
904 		old_prot = pud_pgprot(*(pud_t *)kpte);
905 		old_pfn = pud_pfn(*(pud_t *)kpte);
906 		cpa_inc_1g_checked();
907 		break;
908 	default:
909 		return -EINVAL;
910 	}
911 
912 	psize = page_level_size(level);
913 	pmask = page_level_mask(level);
914 
915 	/*
916 	 * Calculate the number of pages, which fit into this large
917 	 * page starting at address:
918 	 */
919 	lpaddr = (address + psize) & pmask;
920 	numpages = (lpaddr - address) >> PAGE_SHIFT;
921 	if (numpages < cpa->numpages)
922 		cpa->numpages = numpages;
923 
924 	/*
925 	 * We are safe now. Check whether the new pgprot is the same:
926 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
927 	 * up accordingly.
928 	 */
929 
930 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
931 	req_prot = pgprot_large_2_4k(old_prot);
932 
933 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
934 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
935 
936 	/*
937 	 * req_prot is in format of 4k pages. It must be converted to large
938 	 * page format: the caching mode includes the PAT bit located at
939 	 * different bit positions in the two formats.
940 	 */
941 	req_prot = pgprot_4k_2_large(req_prot);
942 	req_prot = pgprot_clear_protnone_bits(req_prot);
943 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
944 		pgprot_val(req_prot) |= _PAGE_PSE;
945 
946 	/*
947 	 * old_pfn points to the large page base pfn. So we need to add the
948 	 * offset of the virtual address:
949 	 */
950 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
951 	cpa->pfn = pfn;
952 
953 	/*
954 	 * Calculate the large page base address and the number of 4K pages
955 	 * in the large page
956 	 */
957 	lpaddr = address & pmask;
958 	numpages = psize >> PAGE_SHIFT;
959 
960 	/*
961 	 * Sanity check that the existing mapping is correct versus the static
962 	 * protections. static_protections() guards against !PRESENT, so no
963 	 * extra conditional required here.
964 	 */
965 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
966 				      psize, CPA_CONFLICT);
967 
968 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
969 		/*
970 		 * Split the large page and tell the split code to
971 		 * enforce static protections.
972 		 */
973 		cpa->force_static_prot = 1;
974 		return 1;
975 	}
976 
977 	/*
978 	 * Optimization: If the requested pgprot is the same as the current
979 	 * pgprot, then the large page can be preserved and no updates are
980 	 * required independent of alignment and length of the requested
981 	 * range. The above already established that the current pgprot is
982 	 * correct, which in consequence makes the requested pgprot correct
983 	 * as well if it is the same. The static protection scan below will
984 	 * not come to a different conclusion.
985 	 */
986 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
987 		cpa_inc_lp_sameprot(level);
988 		return 0;
989 	}
990 
991 	/*
992 	 * If the requested range does not cover the full page, split it up
993 	 */
994 	if (address != lpaddr || cpa->numpages != numpages)
995 		return 1;
996 
997 	/*
998 	 * Check whether the requested pgprot is conflicting with a static
999 	 * protection requirement in the large page.
1000 	 */
1001 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
1002 				      psize, CPA_DETECT);
1003 
1004 	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages,
1005 			      nx, rw);
1006 
1007 	/*
1008 	 * If there is a conflict, split the large page.
1009 	 *
1010 	 * There used to be a 4k wise evaluation trying really hard to
1011 	 * preserve the large pages, but experimentation has shown, that this
1012 	 * does not help at all. There might be corner cases which would
1013 	 * preserve one large page occasionally, but it's really not worth the
1014 	 * extra code and cycles for the common case.
1015 	 */
1016 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
1017 		return 1;
1018 
1019 	/* All checks passed. Update the large page mapping. */
1020 	new_pte = pfn_pte(old_pfn, new_prot);
1021 	__set_pmd_pte(kpte, address, new_pte);
1022 	cpa->flags |= CPA_FLUSHTLB;
1023 	cpa_inc_lp_preserved(level);
1024 	return 0;
1025 }
1026 
1027 static int should_split_large_page(pte_t *kpte, unsigned long address,
1028 				   struct cpa_data *cpa)
1029 {
1030 	int do_split;
1031 
1032 	if (cpa->force_split)
1033 		return 1;
1034 
1035 	spin_lock(&pgd_lock);
1036 	do_split = __should_split_large_page(kpte, address, cpa);
1037 	spin_unlock(&pgd_lock);
1038 
1039 	return do_split;
1040 }
1041 
1042 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1043 			  pgprot_t ref_prot, unsigned long address,
1044 			  unsigned long size)
1045 {
1046 	unsigned int npg = PFN_DOWN(size);
1047 	pgprot_t prot;
1048 
1049 	/*
1050 	 * If should_split_large_page() discovered an inconsistent mapping,
1051 	 * remove the invalid protection in the split mapping.
1052 	 */
1053 	if (!cpa->force_static_prot)
1054 		goto set;
1055 
1056 	/* Hand in lpsize = 0 to enforce the protection mechanism */
1057 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1058 
1059 	if (pgprot_val(prot) == pgprot_val(ref_prot))
1060 		goto set;
1061 
1062 	/*
1063 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
1064 	 * fixed trivially as that would require to rescan the newly
1065 	 * installed PMD mappings after returning from split_large_page()
1066 	 * so an eventual further split can allocate the necessary PTE
1067 	 * pages. Warn for now and revisit it in case this actually
1068 	 * happens.
1069 	 */
1070 	if (size == PAGE_SIZE)
1071 		ref_prot = prot;
1072 	else
1073 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1074 set:
1075 	set_pte(pte, pfn_pte(pfn, ref_prot));
1076 }
1077 
1078 static int
1079 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1080 		   struct page *base)
1081 {
1082 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1083 	pte_t *pbase = (pte_t *)page_address(base);
1084 	unsigned int i, level;
1085 	pgprot_t ref_prot;
1086 	bool nx, rw;
1087 	pte_t *tmp;
1088 
1089 	spin_lock(&pgd_lock);
1090 	/*
1091 	 * Check for races, another CPU might have split this page
1092 	 * up for us already:
1093 	 */
1094 	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1095 	if (tmp != kpte) {
1096 		spin_unlock(&pgd_lock);
1097 		return 1;
1098 	}
1099 
1100 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1101 
1102 	switch (level) {
1103 	case PG_LEVEL_2M:
1104 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1105 		/*
1106 		 * Clear PSE (aka _PAGE_PAT) and move
1107 		 * PAT bit to correct position.
1108 		 */
1109 		ref_prot = pgprot_large_2_4k(ref_prot);
1110 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1111 		lpaddr = address & PMD_MASK;
1112 		lpinc = PAGE_SIZE;
1113 		break;
1114 
1115 	case PG_LEVEL_1G:
1116 		ref_prot = pud_pgprot(*(pud_t *)kpte);
1117 		ref_pfn = pud_pfn(*(pud_t *)kpte);
1118 		pfninc = PMD_SIZE >> PAGE_SHIFT;
1119 		lpaddr = address & PUD_MASK;
1120 		lpinc = PMD_SIZE;
1121 		/*
1122 		 * Clear the PSE flags if the PRESENT flag is not set
1123 		 * otherwise pmd_present/pmd_huge will return true
1124 		 * even on a non present pmd.
1125 		 */
1126 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1127 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1128 		break;
1129 
1130 	default:
1131 		spin_unlock(&pgd_lock);
1132 		return 1;
1133 	}
1134 
1135 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1136 
1137 	/*
1138 	 * Get the target pfn from the original entry:
1139 	 */
1140 	pfn = ref_pfn;
1141 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1142 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1143 
1144 	if (virt_addr_valid(address)) {
1145 		unsigned long pfn = PFN_DOWN(__pa(address));
1146 
1147 		if (pfn_range_is_mapped(pfn, pfn + 1))
1148 			split_page_count(level);
1149 	}
1150 
1151 	/*
1152 	 * Install the new, split up pagetable.
1153 	 *
1154 	 * We use the standard kernel pagetable protections for the new
1155 	 * pagetable protections, the actual ptes set above control the
1156 	 * primary protection behavior:
1157 	 */
1158 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1159 
1160 	/*
1161 	 * Do a global flush tlb after splitting the large page
1162 	 * and before we do the actual change page attribute in the PTE.
1163 	 *
1164 	 * Without this, we violate the TLB application note, that says:
1165 	 * "The TLBs may contain both ordinary and large-page
1166 	 *  translations for a 4-KByte range of linear addresses. This
1167 	 *  may occur if software modifies the paging structures so that
1168 	 *  the page size used for the address range changes. If the two
1169 	 *  translations differ with respect to page frame or attributes
1170 	 *  (e.g., permissions), processor behavior is undefined and may
1171 	 *  be implementation-specific."
1172 	 *
1173 	 * We do this global tlb flush inside the cpa_lock, so that we
1174 	 * don't allow any other cpu, with stale tlb entries change the
1175 	 * page attribute in parallel, that also falls into the
1176 	 * just split large page entry.
1177 	 */
1178 	flush_tlb_all();
1179 	spin_unlock(&pgd_lock);
1180 
1181 	return 0;
1182 }
1183 
1184 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1185 			    unsigned long address)
1186 {
1187 	struct page *base;
1188 
1189 	if (!debug_pagealloc_enabled())
1190 		spin_unlock(&cpa_lock);
1191 	base = alloc_pages(GFP_KERNEL, 0);
1192 	if (!debug_pagealloc_enabled())
1193 		spin_lock(&cpa_lock);
1194 	if (!base)
1195 		return -ENOMEM;
1196 
1197 	if (__split_large_page(cpa, kpte, address, base))
1198 		__free_page(base);
1199 
1200 	return 0;
1201 }
1202 
1203 static bool try_to_free_pte_page(pte_t *pte)
1204 {
1205 	int i;
1206 
1207 	for (i = 0; i < PTRS_PER_PTE; i++)
1208 		if (!pte_none(pte[i]))
1209 			return false;
1210 
1211 	free_page((unsigned long)pte);
1212 	return true;
1213 }
1214 
1215 static bool try_to_free_pmd_page(pmd_t *pmd)
1216 {
1217 	int i;
1218 
1219 	for (i = 0; i < PTRS_PER_PMD; i++)
1220 		if (!pmd_none(pmd[i]))
1221 			return false;
1222 
1223 	free_page((unsigned long)pmd);
1224 	return true;
1225 }
1226 
1227 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1228 {
1229 	pte_t *pte = pte_offset_kernel(pmd, start);
1230 
1231 	while (start < end) {
1232 		set_pte(pte, __pte(0));
1233 
1234 		start += PAGE_SIZE;
1235 		pte++;
1236 	}
1237 
1238 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1239 		pmd_clear(pmd);
1240 		return true;
1241 	}
1242 	return false;
1243 }
1244 
1245 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1246 			      unsigned long start, unsigned long end)
1247 {
1248 	if (unmap_pte_range(pmd, start, end))
1249 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1250 			pud_clear(pud);
1251 }
1252 
1253 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1254 {
1255 	pmd_t *pmd = pmd_offset(pud, start);
1256 
1257 	/*
1258 	 * Not on a 2MB page boundary?
1259 	 */
1260 	if (start & (PMD_SIZE - 1)) {
1261 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1262 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1263 
1264 		__unmap_pmd_range(pud, pmd, start, pre_end);
1265 
1266 		start = pre_end;
1267 		pmd++;
1268 	}
1269 
1270 	/*
1271 	 * Try to unmap in 2M chunks.
1272 	 */
1273 	while (end - start >= PMD_SIZE) {
1274 		if (pmd_leaf(*pmd))
1275 			pmd_clear(pmd);
1276 		else
1277 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1278 
1279 		start += PMD_SIZE;
1280 		pmd++;
1281 	}
1282 
1283 	/*
1284 	 * 4K leftovers?
1285 	 */
1286 	if (start < end)
1287 		return __unmap_pmd_range(pud, pmd, start, end);
1288 
1289 	/*
1290 	 * Try again to free the PMD page if haven't succeeded above.
1291 	 */
1292 	if (!pud_none(*pud))
1293 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1294 			pud_clear(pud);
1295 }
1296 
1297 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1298 {
1299 	pud_t *pud = pud_offset(p4d, start);
1300 
1301 	/*
1302 	 * Not on a GB page boundary?
1303 	 */
1304 	if (start & (PUD_SIZE - 1)) {
1305 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1306 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1307 
1308 		unmap_pmd_range(pud, start, pre_end);
1309 
1310 		start = pre_end;
1311 		pud++;
1312 	}
1313 
1314 	/*
1315 	 * Try to unmap in 1G chunks?
1316 	 */
1317 	while (end - start >= PUD_SIZE) {
1318 
1319 		if (pud_leaf(*pud))
1320 			pud_clear(pud);
1321 		else
1322 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1323 
1324 		start += PUD_SIZE;
1325 		pud++;
1326 	}
1327 
1328 	/*
1329 	 * 2M leftovers?
1330 	 */
1331 	if (start < end)
1332 		unmap_pmd_range(pud, start, end);
1333 
1334 	/*
1335 	 * No need to try to free the PUD page because we'll free it in
1336 	 * populate_pgd's error path
1337 	 */
1338 }
1339 
1340 static int alloc_pte_page(pmd_t *pmd)
1341 {
1342 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1343 	if (!pte)
1344 		return -1;
1345 
1346 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1347 	return 0;
1348 }
1349 
1350 static int alloc_pmd_page(pud_t *pud)
1351 {
1352 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1353 	if (!pmd)
1354 		return -1;
1355 
1356 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1357 	return 0;
1358 }
1359 
1360 static void populate_pte(struct cpa_data *cpa,
1361 			 unsigned long start, unsigned long end,
1362 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1363 {
1364 	pte_t *pte;
1365 
1366 	pte = pte_offset_kernel(pmd, start);
1367 
1368 	pgprot = pgprot_clear_protnone_bits(pgprot);
1369 
1370 	while (num_pages-- && start < end) {
1371 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1372 
1373 		start	 += PAGE_SIZE;
1374 		cpa->pfn++;
1375 		pte++;
1376 	}
1377 }
1378 
1379 static long populate_pmd(struct cpa_data *cpa,
1380 			 unsigned long start, unsigned long end,
1381 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1382 {
1383 	long cur_pages = 0;
1384 	pmd_t *pmd;
1385 	pgprot_t pmd_pgprot;
1386 
1387 	/*
1388 	 * Not on a 2M boundary?
1389 	 */
1390 	if (start & (PMD_SIZE - 1)) {
1391 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1392 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1393 
1394 		pre_end   = min_t(unsigned long, pre_end, next_page);
1395 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1396 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1397 
1398 		/*
1399 		 * Need a PTE page?
1400 		 */
1401 		pmd = pmd_offset(pud, start);
1402 		if (pmd_none(*pmd))
1403 			if (alloc_pte_page(pmd))
1404 				return -1;
1405 
1406 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1407 
1408 		start = pre_end;
1409 	}
1410 
1411 	/*
1412 	 * We mapped them all?
1413 	 */
1414 	if (num_pages == cur_pages)
1415 		return cur_pages;
1416 
1417 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1418 
1419 	while (end - start >= PMD_SIZE) {
1420 
1421 		/*
1422 		 * We cannot use a 1G page so allocate a PMD page if needed.
1423 		 */
1424 		if (pud_none(*pud))
1425 			if (alloc_pmd_page(pud))
1426 				return -1;
1427 
1428 		pmd = pmd_offset(pud, start);
1429 
1430 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1431 					canon_pgprot(pmd_pgprot))));
1432 
1433 		start	  += PMD_SIZE;
1434 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1435 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1436 	}
1437 
1438 	/*
1439 	 * Map trailing 4K pages.
1440 	 */
1441 	if (start < end) {
1442 		pmd = pmd_offset(pud, start);
1443 		if (pmd_none(*pmd))
1444 			if (alloc_pte_page(pmd))
1445 				return -1;
1446 
1447 		populate_pte(cpa, start, end, num_pages - cur_pages,
1448 			     pmd, pgprot);
1449 	}
1450 	return num_pages;
1451 }
1452 
1453 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1454 			pgprot_t pgprot)
1455 {
1456 	pud_t *pud;
1457 	unsigned long end;
1458 	long cur_pages = 0;
1459 	pgprot_t pud_pgprot;
1460 
1461 	end = start + (cpa->numpages << PAGE_SHIFT);
1462 
1463 	/*
1464 	 * Not on a Gb page boundary? => map everything up to it with
1465 	 * smaller pages.
1466 	 */
1467 	if (start & (PUD_SIZE - 1)) {
1468 		unsigned long pre_end;
1469 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1470 
1471 		pre_end   = min_t(unsigned long, end, next_page);
1472 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1473 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1474 
1475 		pud = pud_offset(p4d, start);
1476 
1477 		/*
1478 		 * Need a PMD page?
1479 		 */
1480 		if (pud_none(*pud))
1481 			if (alloc_pmd_page(pud))
1482 				return -1;
1483 
1484 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1485 					 pud, pgprot);
1486 		if (cur_pages < 0)
1487 			return cur_pages;
1488 
1489 		start = pre_end;
1490 	}
1491 
1492 	/* We mapped them all? */
1493 	if (cpa->numpages == cur_pages)
1494 		return cur_pages;
1495 
1496 	pud = pud_offset(p4d, start);
1497 	pud_pgprot = pgprot_4k_2_large(pgprot);
1498 
1499 	/*
1500 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1501 	 */
1502 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1503 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1504 				   canon_pgprot(pud_pgprot))));
1505 
1506 		start	  += PUD_SIZE;
1507 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1508 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1509 		pud++;
1510 	}
1511 
1512 	/* Map trailing leftover */
1513 	if (start < end) {
1514 		long tmp;
1515 
1516 		pud = pud_offset(p4d, start);
1517 		if (pud_none(*pud))
1518 			if (alloc_pmd_page(pud))
1519 				return -1;
1520 
1521 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1522 				   pud, pgprot);
1523 		if (tmp < 0)
1524 			return cur_pages;
1525 
1526 		cur_pages += tmp;
1527 	}
1528 	return cur_pages;
1529 }
1530 
1531 /*
1532  * Restrictions for kernel page table do not necessarily apply when mapping in
1533  * an alternate PGD.
1534  */
1535 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1536 {
1537 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1538 	pud_t *pud = NULL;	/* shut up gcc */
1539 	p4d_t *p4d;
1540 	pgd_t *pgd_entry;
1541 	long ret;
1542 
1543 	pgd_entry = cpa->pgd + pgd_index(addr);
1544 
1545 	if (pgd_none(*pgd_entry)) {
1546 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1547 		if (!p4d)
1548 			return -1;
1549 
1550 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1551 	}
1552 
1553 	/*
1554 	 * Allocate a PUD page and hand it down for mapping.
1555 	 */
1556 	p4d = p4d_offset(pgd_entry, addr);
1557 	if (p4d_none(*p4d)) {
1558 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1559 		if (!pud)
1560 			return -1;
1561 
1562 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1563 	}
1564 
1565 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1566 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1567 
1568 	ret = populate_pud(cpa, addr, p4d, pgprot);
1569 	if (ret < 0) {
1570 		/*
1571 		 * Leave the PUD page in place in case some other CPU or thread
1572 		 * already found it, but remove any useless entries we just
1573 		 * added to it.
1574 		 */
1575 		unmap_pud_range(p4d, addr,
1576 				addr + (cpa->numpages << PAGE_SHIFT));
1577 		return ret;
1578 	}
1579 
1580 	cpa->numpages = ret;
1581 	return 0;
1582 }
1583 
1584 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1585 			       int primary)
1586 {
1587 	if (cpa->pgd) {
1588 		/*
1589 		 * Right now, we only execute this code path when mapping
1590 		 * the EFI virtual memory map regions, no other users
1591 		 * provide a ->pgd value. This may change in the future.
1592 		 */
1593 		return populate_pgd(cpa, vaddr);
1594 	}
1595 
1596 	/*
1597 	 * Ignore all non primary paths.
1598 	 */
1599 	if (!primary) {
1600 		cpa->numpages = 1;
1601 		return 0;
1602 	}
1603 
1604 	/*
1605 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1606 	 * to have holes.
1607 	 * Also set numpages to '1' indicating that we processed cpa req for
1608 	 * one virtual address page and its pfn. TBD: numpages can be set based
1609 	 * on the initial value and the level returned by lookup_address().
1610 	 */
1611 	if (within(vaddr, PAGE_OFFSET,
1612 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1613 		cpa->numpages = 1;
1614 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1615 		return 0;
1616 
1617 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1618 		/* Faults in the highmap are OK, so do not warn: */
1619 		return -EFAULT;
1620 	} else {
1621 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1622 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1623 			*cpa->vaddr);
1624 
1625 		return -EFAULT;
1626 	}
1627 }
1628 
1629 static int __change_page_attr(struct cpa_data *cpa, int primary)
1630 {
1631 	unsigned long address;
1632 	int do_split, err;
1633 	unsigned int level;
1634 	pte_t *kpte, old_pte;
1635 	bool nx, rw;
1636 
1637 	address = __cpa_addr(cpa, cpa->curpage);
1638 repeat:
1639 	kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1640 	if (!kpte)
1641 		return __cpa_process_fault(cpa, address, primary);
1642 
1643 	old_pte = *kpte;
1644 	if (pte_none(old_pte))
1645 		return __cpa_process_fault(cpa, address, primary);
1646 
1647 	if (level == PG_LEVEL_4K) {
1648 		pte_t new_pte;
1649 		pgprot_t old_prot = pte_pgprot(old_pte);
1650 		pgprot_t new_prot = pte_pgprot(old_pte);
1651 		unsigned long pfn = pte_pfn(old_pte);
1652 
1653 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1654 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1655 
1656 		cpa_inc_4k_install();
1657 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1658 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1659 					      CPA_PROTECT);
1660 
1661 		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1,
1662 				      nx, rw);
1663 
1664 		new_prot = pgprot_clear_protnone_bits(new_prot);
1665 
1666 		/*
1667 		 * We need to keep the pfn from the existing PTE,
1668 		 * after all we're only going to change its attributes
1669 		 * not the memory it points to
1670 		 */
1671 		new_pte = pfn_pte(pfn, new_prot);
1672 		cpa->pfn = pfn;
1673 		/*
1674 		 * Do we really change anything ?
1675 		 */
1676 		if (pte_val(old_pte) != pte_val(new_pte)) {
1677 			set_pte_atomic(kpte, new_pte);
1678 			cpa->flags |= CPA_FLUSHTLB;
1679 		}
1680 		cpa->numpages = 1;
1681 		return 0;
1682 	}
1683 
1684 	/*
1685 	 * Check, whether we can keep the large page intact
1686 	 * and just change the pte:
1687 	 */
1688 	do_split = should_split_large_page(kpte, address, cpa);
1689 	/*
1690 	 * When the range fits into the existing large page,
1691 	 * return. cp->numpages and cpa->tlbflush have been updated in
1692 	 * try_large_page:
1693 	 */
1694 	if (do_split <= 0)
1695 		return do_split;
1696 
1697 	/*
1698 	 * We have to split the large page:
1699 	 */
1700 	err = split_large_page(cpa, kpte, address);
1701 	if (!err)
1702 		goto repeat;
1703 
1704 	return err;
1705 }
1706 
1707 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1708 
1709 /*
1710  * Check the directmap and "high kernel map" 'aliases'.
1711  */
1712 static int cpa_process_alias(struct cpa_data *cpa)
1713 {
1714 	struct cpa_data alias_cpa;
1715 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1716 	unsigned long vaddr;
1717 	int ret;
1718 
1719 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1720 		return 0;
1721 
1722 	/*
1723 	 * No need to redo, when the primary call touched the direct
1724 	 * mapping already:
1725 	 */
1726 	vaddr = __cpa_addr(cpa, cpa->curpage);
1727 	if (!(within(vaddr, PAGE_OFFSET,
1728 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1729 
1730 		alias_cpa = *cpa;
1731 		alias_cpa.vaddr = &laddr;
1732 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1733 		alias_cpa.curpage = 0;
1734 
1735 		/* Directmap always has NX set, do not modify. */
1736 		if (__supported_pte_mask & _PAGE_NX) {
1737 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1738 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1739 		}
1740 
1741 		cpa->force_flush_all = 1;
1742 
1743 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1744 		if (ret)
1745 			return ret;
1746 	}
1747 
1748 #ifdef CONFIG_X86_64
1749 	/*
1750 	 * If the primary call didn't touch the high mapping already
1751 	 * and the physical address is inside the kernel map, we need
1752 	 * to touch the high mapped kernel as well:
1753 	 */
1754 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1755 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1756 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1757 					       __START_KERNEL_map - phys_base;
1758 		alias_cpa = *cpa;
1759 		alias_cpa.vaddr = &temp_cpa_vaddr;
1760 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1761 		alias_cpa.curpage = 0;
1762 
1763 		/*
1764 		 * [_text, _brk_end) also covers data, do not modify NX except
1765 		 * in cases where the highmap is the primary target.
1766 		 */
1767 		if (__supported_pte_mask & _PAGE_NX) {
1768 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1769 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1770 		}
1771 
1772 		cpa->force_flush_all = 1;
1773 		/*
1774 		 * The high mapping range is imprecise, so ignore the
1775 		 * return value.
1776 		 */
1777 		__change_page_attr_set_clr(&alias_cpa, 0);
1778 	}
1779 #endif
1780 
1781 	return 0;
1782 }
1783 
1784 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1785 {
1786 	unsigned long numpages = cpa->numpages;
1787 	unsigned long rempages = numpages;
1788 	int ret = 0;
1789 
1790 	/*
1791 	 * No changes, easy!
1792 	 */
1793 	if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1794 	    !cpa->force_split)
1795 		return ret;
1796 
1797 	while (rempages) {
1798 		/*
1799 		 * Store the remaining nr of pages for the large page
1800 		 * preservation check.
1801 		 */
1802 		cpa->numpages = rempages;
1803 		/* for array changes, we can't use large page */
1804 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1805 			cpa->numpages = 1;
1806 
1807 		if (!debug_pagealloc_enabled())
1808 			spin_lock(&cpa_lock);
1809 		ret = __change_page_attr(cpa, primary);
1810 		if (!debug_pagealloc_enabled())
1811 			spin_unlock(&cpa_lock);
1812 		if (ret)
1813 			goto out;
1814 
1815 		if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1816 			ret = cpa_process_alias(cpa);
1817 			if (ret)
1818 				goto out;
1819 		}
1820 
1821 		/*
1822 		 * Adjust the number of pages with the result of the
1823 		 * CPA operation. Either a large page has been
1824 		 * preserved or a single page update happened.
1825 		 */
1826 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1827 		rempages -= cpa->numpages;
1828 		cpa->curpage += cpa->numpages;
1829 	}
1830 
1831 out:
1832 	/* Restore the original numpages */
1833 	cpa->numpages = numpages;
1834 	return ret;
1835 }
1836 
1837 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1838 				    pgprot_t mask_set, pgprot_t mask_clr,
1839 				    int force_split, int in_flag,
1840 				    struct page **pages)
1841 {
1842 	struct cpa_data cpa;
1843 	int ret, cache;
1844 
1845 	memset(&cpa, 0, sizeof(cpa));
1846 
1847 	/*
1848 	 * Check, if we are requested to set a not supported
1849 	 * feature.  Clearing non-supported features is OK.
1850 	 */
1851 	mask_set = canon_pgprot(mask_set);
1852 
1853 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1854 		return 0;
1855 
1856 	/* Ensure we are PAGE_SIZE aligned */
1857 	if (in_flag & CPA_ARRAY) {
1858 		int i;
1859 		for (i = 0; i < numpages; i++) {
1860 			if (addr[i] & ~PAGE_MASK) {
1861 				addr[i] &= PAGE_MASK;
1862 				WARN_ON_ONCE(1);
1863 			}
1864 		}
1865 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1866 		/*
1867 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1868 		 * No need to check in that case
1869 		 */
1870 		if (*addr & ~PAGE_MASK) {
1871 			*addr &= PAGE_MASK;
1872 			/*
1873 			 * People should not be passing in unaligned addresses:
1874 			 */
1875 			WARN_ON_ONCE(1);
1876 		}
1877 	}
1878 
1879 	/* Must avoid aliasing mappings in the highmem code */
1880 	kmap_flush_unused();
1881 
1882 	vm_unmap_aliases();
1883 
1884 	cpa.vaddr = addr;
1885 	cpa.pages = pages;
1886 	cpa.numpages = numpages;
1887 	cpa.mask_set = mask_set;
1888 	cpa.mask_clr = mask_clr;
1889 	cpa.flags = in_flag;
1890 	cpa.curpage = 0;
1891 	cpa.force_split = force_split;
1892 
1893 	ret = __change_page_attr_set_clr(&cpa, 1);
1894 
1895 	/*
1896 	 * Check whether we really changed something:
1897 	 */
1898 	if (!(cpa.flags & CPA_FLUSHTLB))
1899 		goto out;
1900 
1901 	/*
1902 	 * No need to flush, when we did not set any of the caching
1903 	 * attributes:
1904 	 */
1905 	cache = !!pgprot2cachemode(mask_set);
1906 
1907 	/*
1908 	 * On error; flush everything to be sure.
1909 	 */
1910 	if (ret) {
1911 		cpa_flush_all(cache);
1912 		goto out;
1913 	}
1914 
1915 	cpa_flush(&cpa, cache);
1916 out:
1917 	return ret;
1918 }
1919 
1920 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1921 				       pgprot_t mask, int array)
1922 {
1923 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1924 		(array ? CPA_ARRAY : 0), NULL);
1925 }
1926 
1927 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1928 					 pgprot_t mask, int array)
1929 {
1930 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1931 		(array ? CPA_ARRAY : 0), NULL);
1932 }
1933 
1934 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1935 				       pgprot_t mask)
1936 {
1937 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1938 		CPA_PAGES_ARRAY, pages);
1939 }
1940 
1941 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1942 					 pgprot_t mask)
1943 {
1944 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1945 		CPA_PAGES_ARRAY, pages);
1946 }
1947 
1948 /*
1949  * __set_memory_prot is an internal helper for callers that have been passed
1950  * a pgprot_t value from upper layers and a reservation has already been taken.
1951  * If you want to set the pgprot to a specific page protocol, use the
1952  * set_memory_xx() functions.
1953  */
1954 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1955 {
1956 	return change_page_attr_set_clr(&addr, numpages, prot,
1957 					__pgprot(~pgprot_val(prot)), 0, 0,
1958 					NULL);
1959 }
1960 
1961 int _set_memory_uc(unsigned long addr, int numpages)
1962 {
1963 	/*
1964 	 * for now UC MINUS. see comments in ioremap()
1965 	 * If you really need strong UC use ioremap_uc(), but note
1966 	 * that you cannot override IO areas with set_memory_*() as
1967 	 * these helpers cannot work with IO memory.
1968 	 */
1969 	return change_page_attr_set(&addr, numpages,
1970 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1971 				    0);
1972 }
1973 
1974 int set_memory_uc(unsigned long addr, int numpages)
1975 {
1976 	int ret;
1977 
1978 	/*
1979 	 * for now UC MINUS. see comments in ioremap()
1980 	 */
1981 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1982 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1983 	if (ret)
1984 		goto out_err;
1985 
1986 	ret = _set_memory_uc(addr, numpages);
1987 	if (ret)
1988 		goto out_free;
1989 
1990 	return 0;
1991 
1992 out_free:
1993 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1994 out_err:
1995 	return ret;
1996 }
1997 EXPORT_SYMBOL(set_memory_uc);
1998 
1999 int _set_memory_wc(unsigned long addr, int numpages)
2000 {
2001 	int ret;
2002 
2003 	ret = change_page_attr_set(&addr, numpages,
2004 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
2005 				   0);
2006 	if (!ret) {
2007 		ret = change_page_attr_set_clr(&addr, numpages,
2008 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
2009 					       __pgprot(_PAGE_CACHE_MASK),
2010 					       0, 0, NULL);
2011 	}
2012 	return ret;
2013 }
2014 
2015 int set_memory_wc(unsigned long addr, int numpages)
2016 {
2017 	int ret;
2018 
2019 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
2020 		_PAGE_CACHE_MODE_WC, NULL);
2021 	if (ret)
2022 		return ret;
2023 
2024 	ret = _set_memory_wc(addr, numpages);
2025 	if (ret)
2026 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2027 
2028 	return ret;
2029 }
2030 EXPORT_SYMBOL(set_memory_wc);
2031 
2032 int _set_memory_wt(unsigned long addr, int numpages)
2033 {
2034 	return change_page_attr_set(&addr, numpages,
2035 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
2036 }
2037 
2038 int _set_memory_wb(unsigned long addr, int numpages)
2039 {
2040 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2041 	return change_page_attr_clear(&addr, numpages,
2042 				      __pgprot(_PAGE_CACHE_MASK), 0);
2043 }
2044 
2045 int set_memory_wb(unsigned long addr, int numpages)
2046 {
2047 	int ret;
2048 
2049 	ret = _set_memory_wb(addr, numpages);
2050 	if (ret)
2051 		return ret;
2052 
2053 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL(set_memory_wb);
2057 
2058 /* Prevent speculative access to a page by marking it not-present */
2059 #ifdef CONFIG_X86_64
2060 int set_mce_nospec(unsigned long pfn)
2061 {
2062 	unsigned long decoy_addr;
2063 	int rc;
2064 
2065 	/* SGX pages are not in the 1:1 map */
2066 	if (arch_is_platform_page(pfn << PAGE_SHIFT))
2067 		return 0;
2068 	/*
2069 	 * We would like to just call:
2070 	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2071 	 * but doing that would radically increase the odds of a
2072 	 * speculative access to the poison page because we'd have
2073 	 * the virtual address of the kernel 1:1 mapping sitting
2074 	 * around in registers.
2075 	 * Instead we get tricky.  We create a non-canonical address
2076 	 * that looks just like the one we want, but has bit 63 flipped.
2077 	 * This relies on set_memory_XX() properly sanitizing any __pa()
2078 	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2079 	 */
2080 	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2081 
2082 	rc = set_memory_np(decoy_addr, 1);
2083 	if (rc)
2084 		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2085 	return rc;
2086 }
2087 
2088 /* Restore full speculative operation to the pfn. */
2089 int clear_mce_nospec(unsigned long pfn)
2090 {
2091 	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2092 
2093 	return set_memory_p(addr, 1);
2094 }
2095 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2096 #endif /* CONFIG_X86_64 */
2097 
2098 int set_memory_x(unsigned long addr, int numpages)
2099 {
2100 	if (!(__supported_pte_mask & _PAGE_NX))
2101 		return 0;
2102 
2103 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2104 }
2105 
2106 int set_memory_nx(unsigned long addr, int numpages)
2107 {
2108 	if (!(__supported_pte_mask & _PAGE_NX))
2109 		return 0;
2110 
2111 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2112 }
2113 
2114 int set_memory_ro(unsigned long addr, int numpages)
2115 {
2116 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2117 }
2118 
2119 int set_memory_rox(unsigned long addr, int numpages)
2120 {
2121 	pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2122 
2123 	if (__supported_pte_mask & _PAGE_NX)
2124 		clr.pgprot |= _PAGE_NX;
2125 
2126 	return change_page_attr_clear(&addr, numpages, clr, 0);
2127 }
2128 
2129 int set_memory_rw(unsigned long addr, int numpages)
2130 {
2131 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2132 }
2133 
2134 int set_memory_np(unsigned long addr, int numpages)
2135 {
2136 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2137 }
2138 
2139 int set_memory_np_noalias(unsigned long addr, int numpages)
2140 {
2141 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2142 					__pgprot(_PAGE_PRESENT), 0,
2143 					CPA_NO_CHECK_ALIAS, NULL);
2144 }
2145 
2146 int set_memory_p(unsigned long addr, int numpages)
2147 {
2148 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2149 }
2150 
2151 int set_memory_4k(unsigned long addr, int numpages)
2152 {
2153 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2154 					__pgprot(0), 1, 0, NULL);
2155 }
2156 
2157 int set_memory_nonglobal(unsigned long addr, int numpages)
2158 {
2159 	return change_page_attr_clear(&addr, numpages,
2160 				      __pgprot(_PAGE_GLOBAL), 0);
2161 }
2162 
2163 int set_memory_global(unsigned long addr, int numpages)
2164 {
2165 	return change_page_attr_set(&addr, numpages,
2166 				    __pgprot(_PAGE_GLOBAL), 0);
2167 }
2168 
2169 /*
2170  * __set_memory_enc_pgtable() is used for the hypervisors that get
2171  * informed about "encryption" status via page tables.
2172  */
2173 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2174 {
2175 	pgprot_t empty = __pgprot(0);
2176 	struct cpa_data cpa;
2177 	int ret;
2178 
2179 	/* Should not be working on unaligned addresses */
2180 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2181 		addr &= PAGE_MASK;
2182 
2183 	memset(&cpa, 0, sizeof(cpa));
2184 	cpa.vaddr = &addr;
2185 	cpa.numpages = numpages;
2186 	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2187 	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2188 	cpa.pgd = init_mm.pgd;
2189 
2190 	/* Must avoid aliasing mappings in the highmem code */
2191 	kmap_flush_unused();
2192 	vm_unmap_aliases();
2193 
2194 	/* Flush the caches as needed before changing the encryption attribute. */
2195 	if (x86_platform.guest.enc_tlb_flush_required(enc))
2196 		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2197 
2198 	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2199 	if (!x86_platform.guest.enc_status_change_prepare(addr, numpages, enc))
2200 		goto vmm_fail;
2201 
2202 	ret = __change_page_attr_set_clr(&cpa, 1);
2203 
2204 	/*
2205 	 * After changing the encryption attribute, we need to flush TLBs again
2206 	 * in case any speculative TLB caching occurred (but no need to flush
2207 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2208 	 * flushing gets optimized in the cpa_flush() path use the same logic
2209 	 * as above.
2210 	 */
2211 	cpa_flush(&cpa, 0);
2212 
2213 	if (ret)
2214 		return ret;
2215 
2216 	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2217 	if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2218 		goto vmm_fail;
2219 
2220 	return 0;
2221 
2222 vmm_fail:
2223 	WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s.\n",
2224 		  (void *)addr, numpages, enc ? "private" : "shared");
2225 
2226 	return -EIO;
2227 }
2228 
2229 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2230 {
2231 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2232 		return __set_memory_enc_pgtable(addr, numpages, enc);
2233 
2234 	return 0;
2235 }
2236 
2237 int set_memory_encrypted(unsigned long addr, int numpages)
2238 {
2239 	return __set_memory_enc_dec(addr, numpages, true);
2240 }
2241 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2242 
2243 int set_memory_decrypted(unsigned long addr, int numpages)
2244 {
2245 	return __set_memory_enc_dec(addr, numpages, false);
2246 }
2247 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2248 
2249 int set_pages_uc(struct page *page, int numpages)
2250 {
2251 	unsigned long addr = (unsigned long)page_address(page);
2252 
2253 	return set_memory_uc(addr, numpages);
2254 }
2255 EXPORT_SYMBOL(set_pages_uc);
2256 
2257 static int _set_pages_array(struct page **pages, int numpages,
2258 		enum page_cache_mode new_type)
2259 {
2260 	unsigned long start;
2261 	unsigned long end;
2262 	enum page_cache_mode set_type;
2263 	int i;
2264 	int free_idx;
2265 	int ret;
2266 
2267 	for (i = 0; i < numpages; i++) {
2268 		if (PageHighMem(pages[i]))
2269 			continue;
2270 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2271 		end = start + PAGE_SIZE;
2272 		if (memtype_reserve(start, end, new_type, NULL))
2273 			goto err_out;
2274 	}
2275 
2276 	/* If WC, set to UC- first and then WC */
2277 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2278 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2279 
2280 	ret = cpa_set_pages_array(pages, numpages,
2281 				  cachemode2pgprot(set_type));
2282 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2283 		ret = change_page_attr_set_clr(NULL, numpages,
2284 					       cachemode2pgprot(
2285 						_PAGE_CACHE_MODE_WC),
2286 					       __pgprot(_PAGE_CACHE_MASK),
2287 					       0, CPA_PAGES_ARRAY, pages);
2288 	if (ret)
2289 		goto err_out;
2290 	return 0; /* Success */
2291 err_out:
2292 	free_idx = i;
2293 	for (i = 0; i < free_idx; i++) {
2294 		if (PageHighMem(pages[i]))
2295 			continue;
2296 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2297 		end = start + PAGE_SIZE;
2298 		memtype_free(start, end);
2299 	}
2300 	return -EINVAL;
2301 }
2302 
2303 int set_pages_array_uc(struct page **pages, int numpages)
2304 {
2305 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2306 }
2307 EXPORT_SYMBOL(set_pages_array_uc);
2308 
2309 int set_pages_array_wc(struct page **pages, int numpages)
2310 {
2311 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2312 }
2313 EXPORT_SYMBOL(set_pages_array_wc);
2314 
2315 int set_pages_wb(struct page *page, int numpages)
2316 {
2317 	unsigned long addr = (unsigned long)page_address(page);
2318 
2319 	return set_memory_wb(addr, numpages);
2320 }
2321 EXPORT_SYMBOL(set_pages_wb);
2322 
2323 int set_pages_array_wb(struct page **pages, int numpages)
2324 {
2325 	int retval;
2326 	unsigned long start;
2327 	unsigned long end;
2328 	int i;
2329 
2330 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2331 	retval = cpa_clear_pages_array(pages, numpages,
2332 			__pgprot(_PAGE_CACHE_MASK));
2333 	if (retval)
2334 		return retval;
2335 
2336 	for (i = 0; i < numpages; i++) {
2337 		if (PageHighMem(pages[i]))
2338 			continue;
2339 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2340 		end = start + PAGE_SIZE;
2341 		memtype_free(start, end);
2342 	}
2343 
2344 	return 0;
2345 }
2346 EXPORT_SYMBOL(set_pages_array_wb);
2347 
2348 int set_pages_ro(struct page *page, int numpages)
2349 {
2350 	unsigned long addr = (unsigned long)page_address(page);
2351 
2352 	return set_memory_ro(addr, numpages);
2353 }
2354 
2355 int set_pages_rw(struct page *page, int numpages)
2356 {
2357 	unsigned long addr = (unsigned long)page_address(page);
2358 
2359 	return set_memory_rw(addr, numpages);
2360 }
2361 
2362 static int __set_pages_p(struct page *page, int numpages)
2363 {
2364 	unsigned long tempaddr = (unsigned long) page_address(page);
2365 	struct cpa_data cpa = { .vaddr = &tempaddr,
2366 				.pgd = NULL,
2367 				.numpages = numpages,
2368 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2369 				.mask_clr = __pgprot(0),
2370 				.flags = CPA_NO_CHECK_ALIAS };
2371 
2372 	/*
2373 	 * No alias checking needed for setting present flag. otherwise,
2374 	 * we may need to break large pages for 64-bit kernel text
2375 	 * mappings (this adds to complexity if we want to do this from
2376 	 * atomic context especially). Let's keep it simple!
2377 	 */
2378 	return __change_page_attr_set_clr(&cpa, 1);
2379 }
2380 
2381 static int __set_pages_np(struct page *page, int numpages)
2382 {
2383 	unsigned long tempaddr = (unsigned long) page_address(page);
2384 	struct cpa_data cpa = { .vaddr = &tempaddr,
2385 				.pgd = NULL,
2386 				.numpages = numpages,
2387 				.mask_set = __pgprot(0),
2388 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2389 				.flags = CPA_NO_CHECK_ALIAS };
2390 
2391 	/*
2392 	 * No alias checking needed for setting not present flag. otherwise,
2393 	 * we may need to break large pages for 64-bit kernel text
2394 	 * mappings (this adds to complexity if we want to do this from
2395 	 * atomic context especially). Let's keep it simple!
2396 	 */
2397 	return __change_page_attr_set_clr(&cpa, 1);
2398 }
2399 
2400 int set_direct_map_invalid_noflush(struct page *page)
2401 {
2402 	return __set_pages_np(page, 1);
2403 }
2404 
2405 int set_direct_map_default_noflush(struct page *page)
2406 {
2407 	return __set_pages_p(page, 1);
2408 }
2409 
2410 #ifdef CONFIG_DEBUG_PAGEALLOC
2411 void __kernel_map_pages(struct page *page, int numpages, int enable)
2412 {
2413 	if (PageHighMem(page))
2414 		return;
2415 	if (!enable) {
2416 		debug_check_no_locks_freed(page_address(page),
2417 					   numpages * PAGE_SIZE);
2418 	}
2419 
2420 	/*
2421 	 * The return value is ignored as the calls cannot fail.
2422 	 * Large pages for identity mappings are not used at boot time
2423 	 * and hence no memory allocations during large page split.
2424 	 */
2425 	if (enable)
2426 		__set_pages_p(page, numpages);
2427 	else
2428 		__set_pages_np(page, numpages);
2429 
2430 	/*
2431 	 * We should perform an IPI and flush all tlbs,
2432 	 * but that can deadlock->flush only current cpu.
2433 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2434 	 * CR3 reload in __native_flush_tlb().
2435 	 */
2436 	preempt_disable();
2437 	__flush_tlb_all();
2438 	preempt_enable();
2439 
2440 	arch_flush_lazy_mmu_mode();
2441 }
2442 #endif /* CONFIG_DEBUG_PAGEALLOC */
2443 
2444 bool kernel_page_present(struct page *page)
2445 {
2446 	unsigned int level;
2447 	pte_t *pte;
2448 
2449 	if (PageHighMem(page))
2450 		return false;
2451 
2452 	pte = lookup_address((unsigned long)page_address(page), &level);
2453 	return (pte_val(*pte) & _PAGE_PRESENT);
2454 }
2455 
2456 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2457 				   unsigned numpages, unsigned long page_flags)
2458 {
2459 	int retval = -EINVAL;
2460 
2461 	struct cpa_data cpa = {
2462 		.vaddr = &address,
2463 		.pfn = pfn,
2464 		.pgd = pgd,
2465 		.numpages = numpages,
2466 		.mask_set = __pgprot(0),
2467 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2468 		.flags = CPA_NO_CHECK_ALIAS,
2469 	};
2470 
2471 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2472 
2473 	if (!(__supported_pte_mask & _PAGE_NX))
2474 		goto out;
2475 
2476 	if (!(page_flags & _PAGE_ENC))
2477 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2478 
2479 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2480 
2481 	retval = __change_page_attr_set_clr(&cpa, 1);
2482 	__flush_tlb_all();
2483 
2484 out:
2485 	return retval;
2486 }
2487 
2488 /*
2489  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2490  * function shouldn't be used in an SMP environment. Presently, it's used only
2491  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2492  */
2493 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2494 				     unsigned long numpages)
2495 {
2496 	int retval;
2497 
2498 	/*
2499 	 * The typical sequence for unmapping is to find a pte through
2500 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2501 	 * the address is already mapped) and change its protections. As pfn is
2502 	 * the *target* of a mapping, it's not useful while unmapping.
2503 	 */
2504 	struct cpa_data cpa = {
2505 		.vaddr		= &address,
2506 		.pfn		= 0,
2507 		.pgd		= pgd,
2508 		.numpages	= numpages,
2509 		.mask_set	= __pgprot(0),
2510 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2511 		.flags		= CPA_NO_CHECK_ALIAS,
2512 	};
2513 
2514 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2515 
2516 	retval = __change_page_attr_set_clr(&cpa, 1);
2517 	__flush_tlb_all();
2518 
2519 	return retval;
2520 }
2521 
2522 /*
2523  * The testcases use internal knowledge of the implementation that shouldn't
2524  * be exposed to the rest of the kernel. Include these directly here.
2525  */
2526 #ifdef CONFIG_CPA_DEBUG
2527 #include "cpa-test.c"
2528 #endif
2529