1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002 Andi Kleen, SuSE Labs. 4 * Thanks to Ben LaHaise for precious feedback. 5 */ 6 #include <linux/highmem.h> 7 #include <linux/memblock.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/interrupt.h> 11 #include <linux/seq_file.h> 12 #include <linux/debugfs.h> 13 #include <linux/pfn.h> 14 #include <linux/percpu.h> 15 #include <linux/gfp.h> 16 #include <linux/pci.h> 17 #include <linux/vmalloc.h> 18 #include <linux/libnvdimm.h> 19 #include <linux/vmstat.h> 20 #include <linux/kernel.h> 21 #include <linux/cc_platform.h> 22 #include <linux/set_memory.h> 23 24 #include <asm/e820/api.h> 25 #include <asm/processor.h> 26 #include <asm/tlbflush.h> 27 #include <asm/sections.h> 28 #include <asm/setup.h> 29 #include <linux/uaccess.h> 30 #include <asm/pgalloc.h> 31 #include <asm/proto.h> 32 #include <asm/memtype.h> 33 #include <asm/hyperv-tlfs.h> 34 #include <asm/mshyperv.h> 35 36 #include "../mm_internal.h" 37 38 /* 39 * The current flushing context - we pass it instead of 5 arguments: 40 */ 41 struct cpa_data { 42 unsigned long *vaddr; 43 pgd_t *pgd; 44 pgprot_t mask_set; 45 pgprot_t mask_clr; 46 unsigned long numpages; 47 unsigned long curpage; 48 unsigned long pfn; 49 unsigned int flags; 50 unsigned int force_split : 1, 51 force_static_prot : 1, 52 force_flush_all : 1; 53 struct page **pages; 54 }; 55 56 enum cpa_warn { 57 CPA_CONFLICT, 58 CPA_PROTECT, 59 CPA_DETECT, 60 }; 61 62 static const int cpa_warn_level = CPA_PROTECT; 63 64 /* 65 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) 66 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb 67 * entries change the page attribute in parallel to some other cpu 68 * splitting a large page entry along with changing the attribute. 69 */ 70 static DEFINE_SPINLOCK(cpa_lock); 71 72 #define CPA_FLUSHTLB 1 73 #define CPA_ARRAY 2 74 #define CPA_PAGES_ARRAY 4 75 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ 76 77 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm) 78 { 79 return __pgprot(cachemode2protval(pcm)); 80 } 81 82 #ifdef CONFIG_PROC_FS 83 static unsigned long direct_pages_count[PG_LEVEL_NUM]; 84 85 void update_page_count(int level, unsigned long pages) 86 { 87 /* Protect against CPA */ 88 spin_lock(&pgd_lock); 89 direct_pages_count[level] += pages; 90 spin_unlock(&pgd_lock); 91 } 92 93 static void split_page_count(int level) 94 { 95 if (direct_pages_count[level] == 0) 96 return; 97 98 direct_pages_count[level]--; 99 if (system_state == SYSTEM_RUNNING) { 100 if (level == PG_LEVEL_2M) 101 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT); 102 else if (level == PG_LEVEL_1G) 103 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT); 104 } 105 direct_pages_count[level - 1] += PTRS_PER_PTE; 106 } 107 108 void arch_report_meminfo(struct seq_file *m) 109 { 110 seq_printf(m, "DirectMap4k: %8lu kB\n", 111 direct_pages_count[PG_LEVEL_4K] << 2); 112 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 113 seq_printf(m, "DirectMap2M: %8lu kB\n", 114 direct_pages_count[PG_LEVEL_2M] << 11); 115 #else 116 seq_printf(m, "DirectMap4M: %8lu kB\n", 117 direct_pages_count[PG_LEVEL_2M] << 12); 118 #endif 119 if (direct_gbpages) 120 seq_printf(m, "DirectMap1G: %8lu kB\n", 121 direct_pages_count[PG_LEVEL_1G] << 20); 122 } 123 #else 124 static inline void split_page_count(int level) { } 125 #endif 126 127 #ifdef CONFIG_X86_CPA_STATISTICS 128 129 static unsigned long cpa_1g_checked; 130 static unsigned long cpa_1g_sameprot; 131 static unsigned long cpa_1g_preserved; 132 static unsigned long cpa_2m_checked; 133 static unsigned long cpa_2m_sameprot; 134 static unsigned long cpa_2m_preserved; 135 static unsigned long cpa_4k_install; 136 137 static inline void cpa_inc_1g_checked(void) 138 { 139 cpa_1g_checked++; 140 } 141 142 static inline void cpa_inc_2m_checked(void) 143 { 144 cpa_2m_checked++; 145 } 146 147 static inline void cpa_inc_4k_install(void) 148 { 149 data_race(cpa_4k_install++); 150 } 151 152 static inline void cpa_inc_lp_sameprot(int level) 153 { 154 if (level == PG_LEVEL_1G) 155 cpa_1g_sameprot++; 156 else 157 cpa_2m_sameprot++; 158 } 159 160 static inline void cpa_inc_lp_preserved(int level) 161 { 162 if (level == PG_LEVEL_1G) 163 cpa_1g_preserved++; 164 else 165 cpa_2m_preserved++; 166 } 167 168 static int cpastats_show(struct seq_file *m, void *p) 169 { 170 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); 171 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); 172 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); 173 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); 174 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); 175 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); 176 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); 177 return 0; 178 } 179 180 static int cpastats_open(struct inode *inode, struct file *file) 181 { 182 return single_open(file, cpastats_show, NULL); 183 } 184 185 static const struct file_operations cpastats_fops = { 186 .open = cpastats_open, 187 .read = seq_read, 188 .llseek = seq_lseek, 189 .release = single_release, 190 }; 191 192 static int __init cpa_stats_init(void) 193 { 194 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, 195 &cpastats_fops); 196 return 0; 197 } 198 late_initcall(cpa_stats_init); 199 #else 200 static inline void cpa_inc_1g_checked(void) { } 201 static inline void cpa_inc_2m_checked(void) { } 202 static inline void cpa_inc_4k_install(void) { } 203 static inline void cpa_inc_lp_sameprot(int level) { } 204 static inline void cpa_inc_lp_preserved(int level) { } 205 #endif 206 207 208 static inline int 209 within(unsigned long addr, unsigned long start, unsigned long end) 210 { 211 return addr >= start && addr < end; 212 } 213 214 static inline int 215 within_inclusive(unsigned long addr, unsigned long start, unsigned long end) 216 { 217 return addr >= start && addr <= end; 218 } 219 220 #ifdef CONFIG_X86_64 221 222 static inline unsigned long highmap_start_pfn(void) 223 { 224 return __pa_symbol(_text) >> PAGE_SHIFT; 225 } 226 227 static inline unsigned long highmap_end_pfn(void) 228 { 229 /* Do not reference physical address outside the kernel. */ 230 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; 231 } 232 233 static bool __cpa_pfn_in_highmap(unsigned long pfn) 234 { 235 /* 236 * Kernel text has an alias mapping at a high address, known 237 * here as "highmap". 238 */ 239 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); 240 } 241 242 #else 243 244 static bool __cpa_pfn_in_highmap(unsigned long pfn) 245 { 246 /* There is no highmap on 32-bit */ 247 return false; 248 } 249 250 #endif 251 252 /* 253 * See set_mce_nospec(). 254 * 255 * Machine check recovery code needs to change cache mode of poisoned pages to 256 * UC to avoid speculative access logging another error. But passing the 257 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a 258 * speculative access. So we cheat and flip the top bit of the address. This 259 * works fine for the code that updates the page tables. But at the end of the 260 * process we need to flush the TLB and cache and the non-canonical address 261 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. 262 * 263 * But in the common case we already have a canonical address. This code 264 * will fix the top bit if needed and is a no-op otherwise. 265 */ 266 static inline unsigned long fix_addr(unsigned long addr) 267 { 268 #ifdef CONFIG_X86_64 269 return (long)(addr << 1) >> 1; 270 #else 271 return addr; 272 #endif 273 } 274 275 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) 276 { 277 if (cpa->flags & CPA_PAGES_ARRAY) { 278 struct page *page = cpa->pages[idx]; 279 280 if (unlikely(PageHighMem(page))) 281 return 0; 282 283 return (unsigned long)page_address(page); 284 } 285 286 if (cpa->flags & CPA_ARRAY) 287 return cpa->vaddr[idx]; 288 289 return *cpa->vaddr + idx * PAGE_SIZE; 290 } 291 292 /* 293 * Flushing functions 294 */ 295 296 static void clflush_cache_range_opt(void *vaddr, unsigned int size) 297 { 298 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; 299 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); 300 void *vend = vaddr + size; 301 302 if (p >= vend) 303 return; 304 305 for (; p < vend; p += clflush_size) 306 clflushopt(p); 307 } 308 309 /** 310 * clflush_cache_range - flush a cache range with clflush 311 * @vaddr: virtual start address 312 * @size: number of bytes to flush 313 * 314 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or 315 * SFENCE to avoid ordering issues. 316 */ 317 void clflush_cache_range(void *vaddr, unsigned int size) 318 { 319 mb(); 320 clflush_cache_range_opt(vaddr, size); 321 mb(); 322 } 323 EXPORT_SYMBOL_GPL(clflush_cache_range); 324 325 #ifdef CONFIG_ARCH_HAS_PMEM_API 326 void arch_invalidate_pmem(void *addr, size_t size) 327 { 328 clflush_cache_range(addr, size); 329 } 330 EXPORT_SYMBOL_GPL(arch_invalidate_pmem); 331 #endif 332 333 static void __cpa_flush_all(void *arg) 334 { 335 unsigned long cache = (unsigned long)arg; 336 337 /* 338 * Flush all to work around Errata in early athlons regarding 339 * large page flushing. 340 */ 341 __flush_tlb_all(); 342 343 if (cache && boot_cpu_data.x86 >= 4) 344 wbinvd(); 345 } 346 347 static void cpa_flush_all(unsigned long cache) 348 { 349 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 350 351 on_each_cpu(__cpa_flush_all, (void *) cache, 1); 352 } 353 354 static void __cpa_flush_tlb(void *data) 355 { 356 struct cpa_data *cpa = data; 357 unsigned int i; 358 359 for (i = 0; i < cpa->numpages; i++) 360 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); 361 } 362 363 static void cpa_flush(struct cpa_data *data, int cache) 364 { 365 struct cpa_data *cpa = data; 366 unsigned int i; 367 368 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 369 370 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { 371 cpa_flush_all(cache); 372 return; 373 } 374 375 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling) 376 flush_tlb_all(); 377 else 378 on_each_cpu(__cpa_flush_tlb, cpa, 1); 379 380 if (!cache) 381 return; 382 383 mb(); 384 for (i = 0; i < cpa->numpages; i++) { 385 unsigned long addr = __cpa_addr(cpa, i); 386 unsigned int level; 387 388 pte_t *pte = lookup_address(addr, &level); 389 390 /* 391 * Only flush present addresses: 392 */ 393 if (pte && (pte_val(*pte) & _PAGE_PRESENT)) 394 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); 395 } 396 mb(); 397 } 398 399 static bool overlaps(unsigned long r1_start, unsigned long r1_end, 400 unsigned long r2_start, unsigned long r2_end) 401 { 402 return (r1_start <= r2_end && r1_end >= r2_start) || 403 (r2_start <= r1_end && r2_end >= r1_start); 404 } 405 406 #ifdef CONFIG_PCI_BIOS 407 /* 408 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS 409 * based config access (CONFIG_PCI_GOBIOS) support. 410 */ 411 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN) 412 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) 413 414 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 415 { 416 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) 417 return _PAGE_NX; 418 return 0; 419 } 420 #else 421 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 422 { 423 return 0; 424 } 425 #endif 426 427 /* 428 * The .rodata section needs to be read-only. Using the pfn catches all 429 * aliases. This also includes __ro_after_init, so do not enforce until 430 * kernel_set_to_readonly is true. 431 */ 432 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) 433 { 434 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); 435 436 /* 437 * Note: __end_rodata is at page aligned and not inclusive, so 438 * subtract 1 to get the last enforced PFN in the rodata area. 439 */ 440 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; 441 442 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) 443 return _PAGE_RW; 444 return 0; 445 } 446 447 /* 448 * Protect kernel text against becoming non executable by forbidding 449 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) 450 * out of which the kernel actually executes. Do not protect the low 451 * mapping. 452 * 453 * This does not cover __inittext since that is gone after boot. 454 */ 455 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) 456 { 457 unsigned long t_end = (unsigned long)_etext - 1; 458 unsigned long t_start = (unsigned long)_text; 459 460 if (overlaps(start, end, t_start, t_end)) 461 return _PAGE_NX; 462 return 0; 463 } 464 465 #if defined(CONFIG_X86_64) 466 /* 467 * Once the kernel maps the text as RO (kernel_set_to_readonly is set), 468 * kernel text mappings for the large page aligned text, rodata sections 469 * will be always read-only. For the kernel identity mappings covering the 470 * holes caused by this alignment can be anything that user asks. 471 * 472 * This will preserve the large page mappings for kernel text/data at no 473 * extra cost. 474 */ 475 static pgprotval_t protect_kernel_text_ro(unsigned long start, 476 unsigned long end) 477 { 478 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; 479 unsigned long t_start = (unsigned long)_text; 480 unsigned int level; 481 482 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) 483 return 0; 484 /* 485 * Don't enforce the !RW mapping for the kernel text mapping, if 486 * the current mapping is already using small page mapping. No 487 * need to work hard to preserve large page mappings in this case. 488 * 489 * This also fixes the Linux Xen paravirt guest boot failure caused 490 * by unexpected read-only mappings for kernel identity 491 * mappings. In this paravirt guest case, the kernel text mapping 492 * and the kernel identity mapping share the same page-table pages, 493 * so the protections for kernel text and identity mappings have to 494 * be the same. 495 */ 496 if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) 497 return _PAGE_RW; 498 return 0; 499 } 500 #else 501 static pgprotval_t protect_kernel_text_ro(unsigned long start, 502 unsigned long end) 503 { 504 return 0; 505 } 506 #endif 507 508 static inline bool conflicts(pgprot_t prot, pgprotval_t val) 509 { 510 return (pgprot_val(prot) & ~val) != pgprot_val(prot); 511 } 512 513 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, 514 unsigned long start, unsigned long end, 515 unsigned long pfn, const char *txt) 516 { 517 static const char *lvltxt[] = { 518 [CPA_CONFLICT] = "conflict", 519 [CPA_PROTECT] = "protect", 520 [CPA_DETECT] = "detect", 521 }; 522 523 if (warnlvl > cpa_warn_level || !conflicts(prot, val)) 524 return; 525 526 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", 527 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), 528 (unsigned long long)val); 529 } 530 531 /* 532 * Certain areas of memory on x86 require very specific protection flags, 533 * for example the BIOS area or kernel text. Callers don't always get this 534 * right (again, ioremap() on BIOS memory is not uncommon) so this function 535 * checks and fixes these known static required protection bits. 536 */ 537 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, 538 unsigned long pfn, unsigned long npg, 539 unsigned long lpsize, int warnlvl) 540 { 541 pgprotval_t forbidden, res; 542 unsigned long end; 543 544 /* 545 * There is no point in checking RW/NX conflicts when the requested 546 * mapping is setting the page !PRESENT. 547 */ 548 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 549 return prot; 550 551 /* Operate on the virtual address */ 552 end = start + npg * PAGE_SIZE - 1; 553 554 res = protect_kernel_text(start, end); 555 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); 556 forbidden = res; 557 558 /* 559 * Special case to preserve a large page. If the change spawns the 560 * full large page mapping then there is no point to split it 561 * up. Happens with ftrace and is going to be removed once ftrace 562 * switched to text_poke(). 563 */ 564 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { 565 res = protect_kernel_text_ro(start, end); 566 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); 567 forbidden |= res; 568 } 569 570 /* Check the PFN directly */ 571 res = protect_pci_bios(pfn, pfn + npg - 1); 572 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); 573 forbidden |= res; 574 575 res = protect_rodata(pfn, pfn + npg - 1); 576 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); 577 forbidden |= res; 578 579 return __pgprot(pgprot_val(prot) & ~forbidden); 580 } 581 582 /* 583 * Validate strict W^X semantics. 584 */ 585 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start, 586 unsigned long pfn, unsigned long npg) 587 { 588 unsigned long end; 589 590 /* 591 * 32-bit has some unfixable W+X issues, like EFI code 592 * and writeable data being in the same page. Disable 593 * detection and enforcement there. 594 */ 595 if (IS_ENABLED(CONFIG_X86_32)) 596 return new; 597 598 /* Only verify when NX is supported: */ 599 if (!(__supported_pte_mask & _PAGE_NX)) 600 return new; 601 602 if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX))) 603 return new; 604 605 if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW) 606 return new; 607 608 end = start + npg * PAGE_SIZE - 1; 609 WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n", 610 (unsigned long long)pgprot_val(old), 611 (unsigned long long)pgprot_val(new), 612 start, end, pfn); 613 614 /* 615 * For now, allow all permission change attempts by returning the 616 * attempted permissions. This can 'return old' to actively 617 * refuse the permission change at a later time. 618 */ 619 return new; 620 } 621 622 /* 623 * Lookup the page table entry for a virtual address in a specific pgd. 624 * Return a pointer to the entry and the level of the mapping. 625 */ 626 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, 627 unsigned int *level) 628 { 629 p4d_t *p4d; 630 pud_t *pud; 631 pmd_t *pmd; 632 633 *level = PG_LEVEL_NONE; 634 635 if (pgd_none(*pgd)) 636 return NULL; 637 638 p4d = p4d_offset(pgd, address); 639 if (p4d_none(*p4d)) 640 return NULL; 641 642 *level = PG_LEVEL_512G; 643 if (p4d_large(*p4d) || !p4d_present(*p4d)) 644 return (pte_t *)p4d; 645 646 pud = pud_offset(p4d, address); 647 if (pud_none(*pud)) 648 return NULL; 649 650 *level = PG_LEVEL_1G; 651 if (pud_large(*pud) || !pud_present(*pud)) 652 return (pte_t *)pud; 653 654 pmd = pmd_offset(pud, address); 655 if (pmd_none(*pmd)) 656 return NULL; 657 658 *level = PG_LEVEL_2M; 659 if (pmd_large(*pmd) || !pmd_present(*pmd)) 660 return (pte_t *)pmd; 661 662 *level = PG_LEVEL_4K; 663 664 return pte_offset_kernel(pmd, address); 665 } 666 667 /* 668 * Lookup the page table entry for a virtual address. Return a pointer 669 * to the entry and the level of the mapping. 670 * 671 * Note: We return pud and pmd either when the entry is marked large 672 * or when the present bit is not set. Otherwise we would return a 673 * pointer to a nonexisting mapping. 674 */ 675 pte_t *lookup_address(unsigned long address, unsigned int *level) 676 { 677 return lookup_address_in_pgd(pgd_offset_k(address), address, level); 678 } 679 EXPORT_SYMBOL_GPL(lookup_address); 680 681 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, 682 unsigned int *level) 683 { 684 if (cpa->pgd) 685 return lookup_address_in_pgd(cpa->pgd + pgd_index(address), 686 address, level); 687 688 return lookup_address(address, level); 689 } 690 691 /* 692 * Lookup the PMD entry for a virtual address. Return a pointer to the entry 693 * or NULL if not present. 694 */ 695 pmd_t *lookup_pmd_address(unsigned long address) 696 { 697 pgd_t *pgd; 698 p4d_t *p4d; 699 pud_t *pud; 700 701 pgd = pgd_offset_k(address); 702 if (pgd_none(*pgd)) 703 return NULL; 704 705 p4d = p4d_offset(pgd, address); 706 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) 707 return NULL; 708 709 pud = pud_offset(p4d, address); 710 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud)) 711 return NULL; 712 713 return pmd_offset(pud, address); 714 } 715 716 /* 717 * This is necessary because __pa() does not work on some 718 * kinds of memory, like vmalloc() or the alloc_remap() 719 * areas on 32-bit NUMA systems. The percpu areas can 720 * end up in this kind of memory, for instance. 721 * 722 * This could be optimized, but it is only intended to be 723 * used at initialization time, and keeping it 724 * unoptimized should increase the testing coverage for 725 * the more obscure platforms. 726 */ 727 phys_addr_t slow_virt_to_phys(void *__virt_addr) 728 { 729 unsigned long virt_addr = (unsigned long)__virt_addr; 730 phys_addr_t phys_addr; 731 unsigned long offset; 732 enum pg_level level; 733 pte_t *pte; 734 735 pte = lookup_address(virt_addr, &level); 736 BUG_ON(!pte); 737 738 /* 739 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t 740 * before being left-shifted PAGE_SHIFT bits -- this trick is to 741 * make 32-PAE kernel work correctly. 742 */ 743 switch (level) { 744 case PG_LEVEL_1G: 745 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; 746 offset = virt_addr & ~PUD_PAGE_MASK; 747 break; 748 case PG_LEVEL_2M: 749 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; 750 offset = virt_addr & ~PMD_PAGE_MASK; 751 break; 752 default: 753 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; 754 offset = virt_addr & ~PAGE_MASK; 755 } 756 757 return (phys_addr_t)(phys_addr | offset); 758 } 759 EXPORT_SYMBOL_GPL(slow_virt_to_phys); 760 761 /* 762 * Set the new pmd in all the pgds we know about: 763 */ 764 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) 765 { 766 /* change init_mm */ 767 set_pte_atomic(kpte, pte); 768 #ifdef CONFIG_X86_32 769 if (!SHARED_KERNEL_PMD) { 770 struct page *page; 771 772 list_for_each_entry(page, &pgd_list, lru) { 773 pgd_t *pgd; 774 p4d_t *p4d; 775 pud_t *pud; 776 pmd_t *pmd; 777 778 pgd = (pgd_t *)page_address(page) + pgd_index(address); 779 p4d = p4d_offset(pgd, address); 780 pud = pud_offset(p4d, address); 781 pmd = pmd_offset(pud, address); 782 set_pte_atomic((pte_t *)pmd, pte); 783 } 784 } 785 #endif 786 } 787 788 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) 789 { 790 /* 791 * _PAGE_GLOBAL means "global page" for present PTEs. 792 * But, it is also used to indicate _PAGE_PROTNONE 793 * for non-present PTEs. 794 * 795 * This ensures that a _PAGE_GLOBAL PTE going from 796 * present to non-present is not confused as 797 * _PAGE_PROTNONE. 798 */ 799 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 800 pgprot_val(prot) &= ~_PAGE_GLOBAL; 801 802 return prot; 803 } 804 805 static int __should_split_large_page(pte_t *kpte, unsigned long address, 806 struct cpa_data *cpa) 807 { 808 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; 809 pgprot_t old_prot, new_prot, req_prot, chk_prot; 810 pte_t new_pte, *tmp; 811 enum pg_level level; 812 813 /* 814 * Check for races, another CPU might have split this page 815 * up already: 816 */ 817 tmp = _lookup_address_cpa(cpa, address, &level); 818 if (tmp != kpte) 819 return 1; 820 821 switch (level) { 822 case PG_LEVEL_2M: 823 old_prot = pmd_pgprot(*(pmd_t *)kpte); 824 old_pfn = pmd_pfn(*(pmd_t *)kpte); 825 cpa_inc_2m_checked(); 826 break; 827 case PG_LEVEL_1G: 828 old_prot = pud_pgprot(*(pud_t *)kpte); 829 old_pfn = pud_pfn(*(pud_t *)kpte); 830 cpa_inc_1g_checked(); 831 break; 832 default: 833 return -EINVAL; 834 } 835 836 psize = page_level_size(level); 837 pmask = page_level_mask(level); 838 839 /* 840 * Calculate the number of pages, which fit into this large 841 * page starting at address: 842 */ 843 lpaddr = (address + psize) & pmask; 844 numpages = (lpaddr - address) >> PAGE_SHIFT; 845 if (numpages < cpa->numpages) 846 cpa->numpages = numpages; 847 848 /* 849 * We are safe now. Check whether the new pgprot is the same: 850 * Convert protection attributes to 4k-format, as cpa->mask* are set 851 * up accordingly. 852 */ 853 854 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ 855 req_prot = pgprot_large_2_4k(old_prot); 856 857 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); 858 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); 859 860 /* 861 * req_prot is in format of 4k pages. It must be converted to large 862 * page format: the caching mode includes the PAT bit located at 863 * different bit positions in the two formats. 864 */ 865 req_prot = pgprot_4k_2_large(req_prot); 866 req_prot = pgprot_clear_protnone_bits(req_prot); 867 if (pgprot_val(req_prot) & _PAGE_PRESENT) 868 pgprot_val(req_prot) |= _PAGE_PSE; 869 870 /* 871 * old_pfn points to the large page base pfn. So we need to add the 872 * offset of the virtual address: 873 */ 874 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); 875 cpa->pfn = pfn; 876 877 /* 878 * Calculate the large page base address and the number of 4K pages 879 * in the large page 880 */ 881 lpaddr = address & pmask; 882 numpages = psize >> PAGE_SHIFT; 883 884 /* 885 * Sanity check that the existing mapping is correct versus the static 886 * protections. static_protections() guards against !PRESENT, so no 887 * extra conditional required here. 888 */ 889 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, 890 psize, CPA_CONFLICT); 891 892 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { 893 /* 894 * Split the large page and tell the split code to 895 * enforce static protections. 896 */ 897 cpa->force_static_prot = 1; 898 return 1; 899 } 900 901 /* 902 * Optimization: If the requested pgprot is the same as the current 903 * pgprot, then the large page can be preserved and no updates are 904 * required independent of alignment and length of the requested 905 * range. The above already established that the current pgprot is 906 * correct, which in consequence makes the requested pgprot correct 907 * as well if it is the same. The static protection scan below will 908 * not come to a different conclusion. 909 */ 910 if (pgprot_val(req_prot) == pgprot_val(old_prot)) { 911 cpa_inc_lp_sameprot(level); 912 return 0; 913 } 914 915 /* 916 * If the requested range does not cover the full page, split it up 917 */ 918 if (address != lpaddr || cpa->numpages != numpages) 919 return 1; 920 921 /* 922 * Check whether the requested pgprot is conflicting with a static 923 * protection requirement in the large page. 924 */ 925 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, 926 psize, CPA_DETECT); 927 928 new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages); 929 930 /* 931 * If there is a conflict, split the large page. 932 * 933 * There used to be a 4k wise evaluation trying really hard to 934 * preserve the large pages, but experimentation has shown, that this 935 * does not help at all. There might be corner cases which would 936 * preserve one large page occasionally, but it's really not worth the 937 * extra code and cycles for the common case. 938 */ 939 if (pgprot_val(req_prot) != pgprot_val(new_prot)) 940 return 1; 941 942 /* All checks passed. Update the large page mapping. */ 943 new_pte = pfn_pte(old_pfn, new_prot); 944 __set_pmd_pte(kpte, address, new_pte); 945 cpa->flags |= CPA_FLUSHTLB; 946 cpa_inc_lp_preserved(level); 947 return 0; 948 } 949 950 static int should_split_large_page(pte_t *kpte, unsigned long address, 951 struct cpa_data *cpa) 952 { 953 int do_split; 954 955 if (cpa->force_split) 956 return 1; 957 958 spin_lock(&pgd_lock); 959 do_split = __should_split_large_page(kpte, address, cpa); 960 spin_unlock(&pgd_lock); 961 962 return do_split; 963 } 964 965 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, 966 pgprot_t ref_prot, unsigned long address, 967 unsigned long size) 968 { 969 unsigned int npg = PFN_DOWN(size); 970 pgprot_t prot; 971 972 /* 973 * If should_split_large_page() discovered an inconsistent mapping, 974 * remove the invalid protection in the split mapping. 975 */ 976 if (!cpa->force_static_prot) 977 goto set; 978 979 /* Hand in lpsize = 0 to enforce the protection mechanism */ 980 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); 981 982 if (pgprot_val(prot) == pgprot_val(ref_prot)) 983 goto set; 984 985 /* 986 * If this is splitting a PMD, fix it up. PUD splits cannot be 987 * fixed trivially as that would require to rescan the newly 988 * installed PMD mappings after returning from split_large_page() 989 * so an eventual further split can allocate the necessary PTE 990 * pages. Warn for now and revisit it in case this actually 991 * happens. 992 */ 993 if (size == PAGE_SIZE) 994 ref_prot = prot; 995 else 996 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); 997 set: 998 set_pte(pte, pfn_pte(pfn, ref_prot)); 999 } 1000 1001 static int 1002 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, 1003 struct page *base) 1004 { 1005 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; 1006 pte_t *pbase = (pte_t *)page_address(base); 1007 unsigned int i, level; 1008 pgprot_t ref_prot; 1009 pte_t *tmp; 1010 1011 spin_lock(&pgd_lock); 1012 /* 1013 * Check for races, another CPU might have split this page 1014 * up for us already: 1015 */ 1016 tmp = _lookup_address_cpa(cpa, address, &level); 1017 if (tmp != kpte) { 1018 spin_unlock(&pgd_lock); 1019 return 1; 1020 } 1021 1022 paravirt_alloc_pte(&init_mm, page_to_pfn(base)); 1023 1024 switch (level) { 1025 case PG_LEVEL_2M: 1026 ref_prot = pmd_pgprot(*(pmd_t *)kpte); 1027 /* 1028 * Clear PSE (aka _PAGE_PAT) and move 1029 * PAT bit to correct position. 1030 */ 1031 ref_prot = pgprot_large_2_4k(ref_prot); 1032 ref_pfn = pmd_pfn(*(pmd_t *)kpte); 1033 lpaddr = address & PMD_MASK; 1034 lpinc = PAGE_SIZE; 1035 break; 1036 1037 case PG_LEVEL_1G: 1038 ref_prot = pud_pgprot(*(pud_t *)kpte); 1039 ref_pfn = pud_pfn(*(pud_t *)kpte); 1040 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; 1041 lpaddr = address & PUD_MASK; 1042 lpinc = PMD_SIZE; 1043 /* 1044 * Clear the PSE flags if the PRESENT flag is not set 1045 * otherwise pmd_present/pmd_huge will return true 1046 * even on a non present pmd. 1047 */ 1048 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) 1049 pgprot_val(ref_prot) &= ~_PAGE_PSE; 1050 break; 1051 1052 default: 1053 spin_unlock(&pgd_lock); 1054 return 1; 1055 } 1056 1057 ref_prot = pgprot_clear_protnone_bits(ref_prot); 1058 1059 /* 1060 * Get the target pfn from the original entry: 1061 */ 1062 pfn = ref_pfn; 1063 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) 1064 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); 1065 1066 if (virt_addr_valid(address)) { 1067 unsigned long pfn = PFN_DOWN(__pa(address)); 1068 1069 if (pfn_range_is_mapped(pfn, pfn + 1)) 1070 split_page_count(level); 1071 } 1072 1073 /* 1074 * Install the new, split up pagetable. 1075 * 1076 * We use the standard kernel pagetable protections for the new 1077 * pagetable protections, the actual ptes set above control the 1078 * primary protection behavior: 1079 */ 1080 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); 1081 1082 /* 1083 * Do a global flush tlb after splitting the large page 1084 * and before we do the actual change page attribute in the PTE. 1085 * 1086 * Without this, we violate the TLB application note, that says: 1087 * "The TLBs may contain both ordinary and large-page 1088 * translations for a 4-KByte range of linear addresses. This 1089 * may occur if software modifies the paging structures so that 1090 * the page size used for the address range changes. If the two 1091 * translations differ with respect to page frame or attributes 1092 * (e.g., permissions), processor behavior is undefined and may 1093 * be implementation-specific." 1094 * 1095 * We do this global tlb flush inside the cpa_lock, so that we 1096 * don't allow any other cpu, with stale tlb entries change the 1097 * page attribute in parallel, that also falls into the 1098 * just split large page entry. 1099 */ 1100 flush_tlb_all(); 1101 spin_unlock(&pgd_lock); 1102 1103 return 0; 1104 } 1105 1106 static int split_large_page(struct cpa_data *cpa, pte_t *kpte, 1107 unsigned long address) 1108 { 1109 struct page *base; 1110 1111 if (!debug_pagealloc_enabled()) 1112 spin_unlock(&cpa_lock); 1113 base = alloc_pages(GFP_KERNEL, 0); 1114 if (!debug_pagealloc_enabled()) 1115 spin_lock(&cpa_lock); 1116 if (!base) 1117 return -ENOMEM; 1118 1119 if (__split_large_page(cpa, kpte, address, base)) 1120 __free_page(base); 1121 1122 return 0; 1123 } 1124 1125 static bool try_to_free_pte_page(pte_t *pte) 1126 { 1127 int i; 1128 1129 for (i = 0; i < PTRS_PER_PTE; i++) 1130 if (!pte_none(pte[i])) 1131 return false; 1132 1133 free_page((unsigned long)pte); 1134 return true; 1135 } 1136 1137 static bool try_to_free_pmd_page(pmd_t *pmd) 1138 { 1139 int i; 1140 1141 for (i = 0; i < PTRS_PER_PMD; i++) 1142 if (!pmd_none(pmd[i])) 1143 return false; 1144 1145 free_page((unsigned long)pmd); 1146 return true; 1147 } 1148 1149 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) 1150 { 1151 pte_t *pte = pte_offset_kernel(pmd, start); 1152 1153 while (start < end) { 1154 set_pte(pte, __pte(0)); 1155 1156 start += PAGE_SIZE; 1157 pte++; 1158 } 1159 1160 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { 1161 pmd_clear(pmd); 1162 return true; 1163 } 1164 return false; 1165 } 1166 1167 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, 1168 unsigned long start, unsigned long end) 1169 { 1170 if (unmap_pte_range(pmd, start, end)) 1171 if (try_to_free_pmd_page(pud_pgtable(*pud))) 1172 pud_clear(pud); 1173 } 1174 1175 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) 1176 { 1177 pmd_t *pmd = pmd_offset(pud, start); 1178 1179 /* 1180 * Not on a 2MB page boundary? 1181 */ 1182 if (start & (PMD_SIZE - 1)) { 1183 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1184 unsigned long pre_end = min_t(unsigned long, end, next_page); 1185 1186 __unmap_pmd_range(pud, pmd, start, pre_end); 1187 1188 start = pre_end; 1189 pmd++; 1190 } 1191 1192 /* 1193 * Try to unmap in 2M chunks. 1194 */ 1195 while (end - start >= PMD_SIZE) { 1196 if (pmd_large(*pmd)) 1197 pmd_clear(pmd); 1198 else 1199 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); 1200 1201 start += PMD_SIZE; 1202 pmd++; 1203 } 1204 1205 /* 1206 * 4K leftovers? 1207 */ 1208 if (start < end) 1209 return __unmap_pmd_range(pud, pmd, start, end); 1210 1211 /* 1212 * Try again to free the PMD page if haven't succeeded above. 1213 */ 1214 if (!pud_none(*pud)) 1215 if (try_to_free_pmd_page(pud_pgtable(*pud))) 1216 pud_clear(pud); 1217 } 1218 1219 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) 1220 { 1221 pud_t *pud = pud_offset(p4d, start); 1222 1223 /* 1224 * Not on a GB page boundary? 1225 */ 1226 if (start & (PUD_SIZE - 1)) { 1227 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1228 unsigned long pre_end = min_t(unsigned long, end, next_page); 1229 1230 unmap_pmd_range(pud, start, pre_end); 1231 1232 start = pre_end; 1233 pud++; 1234 } 1235 1236 /* 1237 * Try to unmap in 1G chunks? 1238 */ 1239 while (end - start >= PUD_SIZE) { 1240 1241 if (pud_large(*pud)) 1242 pud_clear(pud); 1243 else 1244 unmap_pmd_range(pud, start, start + PUD_SIZE); 1245 1246 start += PUD_SIZE; 1247 pud++; 1248 } 1249 1250 /* 1251 * 2M leftovers? 1252 */ 1253 if (start < end) 1254 unmap_pmd_range(pud, start, end); 1255 1256 /* 1257 * No need to try to free the PUD page because we'll free it in 1258 * populate_pgd's error path 1259 */ 1260 } 1261 1262 static int alloc_pte_page(pmd_t *pmd) 1263 { 1264 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 1265 if (!pte) 1266 return -1; 1267 1268 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 1269 return 0; 1270 } 1271 1272 static int alloc_pmd_page(pud_t *pud) 1273 { 1274 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 1275 if (!pmd) 1276 return -1; 1277 1278 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 1279 return 0; 1280 } 1281 1282 static void populate_pte(struct cpa_data *cpa, 1283 unsigned long start, unsigned long end, 1284 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) 1285 { 1286 pte_t *pte; 1287 1288 pte = pte_offset_kernel(pmd, start); 1289 1290 pgprot = pgprot_clear_protnone_bits(pgprot); 1291 1292 while (num_pages-- && start < end) { 1293 set_pte(pte, pfn_pte(cpa->pfn, pgprot)); 1294 1295 start += PAGE_SIZE; 1296 cpa->pfn++; 1297 pte++; 1298 } 1299 } 1300 1301 static long populate_pmd(struct cpa_data *cpa, 1302 unsigned long start, unsigned long end, 1303 unsigned num_pages, pud_t *pud, pgprot_t pgprot) 1304 { 1305 long cur_pages = 0; 1306 pmd_t *pmd; 1307 pgprot_t pmd_pgprot; 1308 1309 /* 1310 * Not on a 2M boundary? 1311 */ 1312 if (start & (PMD_SIZE - 1)) { 1313 unsigned long pre_end = start + (num_pages << PAGE_SHIFT); 1314 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1315 1316 pre_end = min_t(unsigned long, pre_end, next_page); 1317 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1318 cur_pages = min_t(unsigned int, num_pages, cur_pages); 1319 1320 /* 1321 * Need a PTE page? 1322 */ 1323 pmd = pmd_offset(pud, start); 1324 if (pmd_none(*pmd)) 1325 if (alloc_pte_page(pmd)) 1326 return -1; 1327 1328 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); 1329 1330 start = pre_end; 1331 } 1332 1333 /* 1334 * We mapped them all? 1335 */ 1336 if (num_pages == cur_pages) 1337 return cur_pages; 1338 1339 pmd_pgprot = pgprot_4k_2_large(pgprot); 1340 1341 while (end - start >= PMD_SIZE) { 1342 1343 /* 1344 * We cannot use a 1G page so allocate a PMD page if needed. 1345 */ 1346 if (pud_none(*pud)) 1347 if (alloc_pmd_page(pud)) 1348 return -1; 1349 1350 pmd = pmd_offset(pud, start); 1351 1352 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, 1353 canon_pgprot(pmd_pgprot)))); 1354 1355 start += PMD_SIZE; 1356 cpa->pfn += PMD_SIZE >> PAGE_SHIFT; 1357 cur_pages += PMD_SIZE >> PAGE_SHIFT; 1358 } 1359 1360 /* 1361 * Map trailing 4K pages. 1362 */ 1363 if (start < end) { 1364 pmd = pmd_offset(pud, start); 1365 if (pmd_none(*pmd)) 1366 if (alloc_pte_page(pmd)) 1367 return -1; 1368 1369 populate_pte(cpa, start, end, num_pages - cur_pages, 1370 pmd, pgprot); 1371 } 1372 return num_pages; 1373 } 1374 1375 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, 1376 pgprot_t pgprot) 1377 { 1378 pud_t *pud; 1379 unsigned long end; 1380 long cur_pages = 0; 1381 pgprot_t pud_pgprot; 1382 1383 end = start + (cpa->numpages << PAGE_SHIFT); 1384 1385 /* 1386 * Not on a Gb page boundary? => map everything up to it with 1387 * smaller pages. 1388 */ 1389 if (start & (PUD_SIZE - 1)) { 1390 unsigned long pre_end; 1391 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1392 1393 pre_end = min_t(unsigned long, end, next_page); 1394 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1395 cur_pages = min_t(int, (int)cpa->numpages, cur_pages); 1396 1397 pud = pud_offset(p4d, start); 1398 1399 /* 1400 * Need a PMD page? 1401 */ 1402 if (pud_none(*pud)) 1403 if (alloc_pmd_page(pud)) 1404 return -1; 1405 1406 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, 1407 pud, pgprot); 1408 if (cur_pages < 0) 1409 return cur_pages; 1410 1411 start = pre_end; 1412 } 1413 1414 /* We mapped them all? */ 1415 if (cpa->numpages == cur_pages) 1416 return cur_pages; 1417 1418 pud = pud_offset(p4d, start); 1419 pud_pgprot = pgprot_4k_2_large(pgprot); 1420 1421 /* 1422 * Map everything starting from the Gb boundary, possibly with 1G pages 1423 */ 1424 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { 1425 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, 1426 canon_pgprot(pud_pgprot)))); 1427 1428 start += PUD_SIZE; 1429 cpa->pfn += PUD_SIZE >> PAGE_SHIFT; 1430 cur_pages += PUD_SIZE >> PAGE_SHIFT; 1431 pud++; 1432 } 1433 1434 /* Map trailing leftover */ 1435 if (start < end) { 1436 long tmp; 1437 1438 pud = pud_offset(p4d, start); 1439 if (pud_none(*pud)) 1440 if (alloc_pmd_page(pud)) 1441 return -1; 1442 1443 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, 1444 pud, pgprot); 1445 if (tmp < 0) 1446 return cur_pages; 1447 1448 cur_pages += tmp; 1449 } 1450 return cur_pages; 1451 } 1452 1453 /* 1454 * Restrictions for kernel page table do not necessarily apply when mapping in 1455 * an alternate PGD. 1456 */ 1457 static int populate_pgd(struct cpa_data *cpa, unsigned long addr) 1458 { 1459 pgprot_t pgprot = __pgprot(_KERNPG_TABLE); 1460 pud_t *pud = NULL; /* shut up gcc */ 1461 p4d_t *p4d; 1462 pgd_t *pgd_entry; 1463 long ret; 1464 1465 pgd_entry = cpa->pgd + pgd_index(addr); 1466 1467 if (pgd_none(*pgd_entry)) { 1468 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 1469 if (!p4d) 1470 return -1; 1471 1472 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); 1473 } 1474 1475 /* 1476 * Allocate a PUD page and hand it down for mapping. 1477 */ 1478 p4d = p4d_offset(pgd_entry, addr); 1479 if (p4d_none(*p4d)) { 1480 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 1481 if (!pud) 1482 return -1; 1483 1484 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 1485 } 1486 1487 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); 1488 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); 1489 1490 ret = populate_pud(cpa, addr, p4d, pgprot); 1491 if (ret < 0) { 1492 /* 1493 * Leave the PUD page in place in case some other CPU or thread 1494 * already found it, but remove any useless entries we just 1495 * added to it. 1496 */ 1497 unmap_pud_range(p4d, addr, 1498 addr + (cpa->numpages << PAGE_SHIFT)); 1499 return ret; 1500 } 1501 1502 cpa->numpages = ret; 1503 return 0; 1504 } 1505 1506 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, 1507 int primary) 1508 { 1509 if (cpa->pgd) { 1510 /* 1511 * Right now, we only execute this code path when mapping 1512 * the EFI virtual memory map regions, no other users 1513 * provide a ->pgd value. This may change in the future. 1514 */ 1515 return populate_pgd(cpa, vaddr); 1516 } 1517 1518 /* 1519 * Ignore all non primary paths. 1520 */ 1521 if (!primary) { 1522 cpa->numpages = 1; 1523 return 0; 1524 } 1525 1526 /* 1527 * Ignore the NULL PTE for kernel identity mapping, as it is expected 1528 * to have holes. 1529 * Also set numpages to '1' indicating that we processed cpa req for 1530 * one virtual address page and its pfn. TBD: numpages can be set based 1531 * on the initial value and the level returned by lookup_address(). 1532 */ 1533 if (within(vaddr, PAGE_OFFSET, 1534 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { 1535 cpa->numpages = 1; 1536 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; 1537 return 0; 1538 1539 } else if (__cpa_pfn_in_highmap(cpa->pfn)) { 1540 /* Faults in the highmap are OK, so do not warn: */ 1541 return -EFAULT; 1542 } else { 1543 WARN(1, KERN_WARNING "CPA: called for zero pte. " 1544 "vaddr = %lx cpa->vaddr = %lx\n", vaddr, 1545 *cpa->vaddr); 1546 1547 return -EFAULT; 1548 } 1549 } 1550 1551 static int __change_page_attr(struct cpa_data *cpa, int primary) 1552 { 1553 unsigned long address; 1554 int do_split, err; 1555 unsigned int level; 1556 pte_t *kpte, old_pte; 1557 1558 address = __cpa_addr(cpa, cpa->curpage); 1559 repeat: 1560 kpte = _lookup_address_cpa(cpa, address, &level); 1561 if (!kpte) 1562 return __cpa_process_fault(cpa, address, primary); 1563 1564 old_pte = *kpte; 1565 if (pte_none(old_pte)) 1566 return __cpa_process_fault(cpa, address, primary); 1567 1568 if (level == PG_LEVEL_4K) { 1569 pte_t new_pte; 1570 pgprot_t old_prot = pte_pgprot(old_pte); 1571 pgprot_t new_prot = pte_pgprot(old_pte); 1572 unsigned long pfn = pte_pfn(old_pte); 1573 1574 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); 1575 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); 1576 1577 cpa_inc_4k_install(); 1578 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1579 new_prot = static_protections(new_prot, address, pfn, 1, 0, 1580 CPA_PROTECT); 1581 1582 new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1); 1583 1584 new_prot = pgprot_clear_protnone_bits(new_prot); 1585 1586 /* 1587 * We need to keep the pfn from the existing PTE, 1588 * after all we're only going to change it's attributes 1589 * not the memory it points to 1590 */ 1591 new_pte = pfn_pte(pfn, new_prot); 1592 cpa->pfn = pfn; 1593 /* 1594 * Do we really change anything ? 1595 */ 1596 if (pte_val(old_pte) != pte_val(new_pte)) { 1597 set_pte_atomic(kpte, new_pte); 1598 cpa->flags |= CPA_FLUSHTLB; 1599 } 1600 cpa->numpages = 1; 1601 return 0; 1602 } 1603 1604 /* 1605 * Check, whether we can keep the large page intact 1606 * and just change the pte: 1607 */ 1608 do_split = should_split_large_page(kpte, address, cpa); 1609 /* 1610 * When the range fits into the existing large page, 1611 * return. cp->numpages and cpa->tlbflush have been updated in 1612 * try_large_page: 1613 */ 1614 if (do_split <= 0) 1615 return do_split; 1616 1617 /* 1618 * We have to split the large page: 1619 */ 1620 err = split_large_page(cpa, kpte, address); 1621 if (!err) 1622 goto repeat; 1623 1624 return err; 1625 } 1626 1627 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias); 1628 1629 static int cpa_process_alias(struct cpa_data *cpa) 1630 { 1631 struct cpa_data alias_cpa; 1632 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); 1633 unsigned long vaddr; 1634 int ret; 1635 1636 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) 1637 return 0; 1638 1639 /* 1640 * No need to redo, when the primary call touched the direct 1641 * mapping already: 1642 */ 1643 vaddr = __cpa_addr(cpa, cpa->curpage); 1644 if (!(within(vaddr, PAGE_OFFSET, 1645 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { 1646 1647 alias_cpa = *cpa; 1648 alias_cpa.vaddr = &laddr; 1649 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1650 alias_cpa.curpage = 0; 1651 1652 cpa->force_flush_all = 1; 1653 1654 ret = __change_page_attr_set_clr(&alias_cpa, 0); 1655 if (ret) 1656 return ret; 1657 } 1658 1659 #ifdef CONFIG_X86_64 1660 /* 1661 * If the primary call didn't touch the high mapping already 1662 * and the physical address is inside the kernel map, we need 1663 * to touch the high mapped kernel as well: 1664 */ 1665 if (!within(vaddr, (unsigned long)_text, _brk_end) && 1666 __cpa_pfn_in_highmap(cpa->pfn)) { 1667 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + 1668 __START_KERNEL_map - phys_base; 1669 alias_cpa = *cpa; 1670 alias_cpa.vaddr = &temp_cpa_vaddr; 1671 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1672 alias_cpa.curpage = 0; 1673 1674 cpa->force_flush_all = 1; 1675 /* 1676 * The high mapping range is imprecise, so ignore the 1677 * return value. 1678 */ 1679 __change_page_attr_set_clr(&alias_cpa, 0); 1680 } 1681 #endif 1682 1683 return 0; 1684 } 1685 1686 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) 1687 { 1688 unsigned long numpages = cpa->numpages; 1689 unsigned long rempages = numpages; 1690 int ret = 0; 1691 1692 while (rempages) { 1693 /* 1694 * Store the remaining nr of pages for the large page 1695 * preservation check. 1696 */ 1697 cpa->numpages = rempages; 1698 /* for array changes, we can't use large page */ 1699 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1700 cpa->numpages = 1; 1701 1702 if (!debug_pagealloc_enabled()) 1703 spin_lock(&cpa_lock); 1704 ret = __change_page_attr(cpa, checkalias); 1705 if (!debug_pagealloc_enabled()) 1706 spin_unlock(&cpa_lock); 1707 if (ret) 1708 goto out; 1709 1710 if (checkalias) { 1711 ret = cpa_process_alias(cpa); 1712 if (ret) 1713 goto out; 1714 } 1715 1716 /* 1717 * Adjust the number of pages with the result of the 1718 * CPA operation. Either a large page has been 1719 * preserved or a single page update happened. 1720 */ 1721 BUG_ON(cpa->numpages > rempages || !cpa->numpages); 1722 rempages -= cpa->numpages; 1723 cpa->curpage += cpa->numpages; 1724 } 1725 1726 out: 1727 /* Restore the original numpages */ 1728 cpa->numpages = numpages; 1729 return ret; 1730 } 1731 1732 static int change_page_attr_set_clr(unsigned long *addr, int numpages, 1733 pgprot_t mask_set, pgprot_t mask_clr, 1734 int force_split, int in_flag, 1735 struct page **pages) 1736 { 1737 struct cpa_data cpa; 1738 int ret, cache, checkalias; 1739 1740 memset(&cpa, 0, sizeof(cpa)); 1741 1742 /* 1743 * Check, if we are requested to set a not supported 1744 * feature. Clearing non-supported features is OK. 1745 */ 1746 mask_set = canon_pgprot(mask_set); 1747 1748 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) 1749 return 0; 1750 1751 /* Ensure we are PAGE_SIZE aligned */ 1752 if (in_flag & CPA_ARRAY) { 1753 int i; 1754 for (i = 0; i < numpages; i++) { 1755 if (addr[i] & ~PAGE_MASK) { 1756 addr[i] &= PAGE_MASK; 1757 WARN_ON_ONCE(1); 1758 } 1759 } 1760 } else if (!(in_flag & CPA_PAGES_ARRAY)) { 1761 /* 1762 * in_flag of CPA_PAGES_ARRAY implies it is aligned. 1763 * No need to check in that case 1764 */ 1765 if (*addr & ~PAGE_MASK) { 1766 *addr &= PAGE_MASK; 1767 /* 1768 * People should not be passing in unaligned addresses: 1769 */ 1770 WARN_ON_ONCE(1); 1771 } 1772 } 1773 1774 /* Must avoid aliasing mappings in the highmem code */ 1775 kmap_flush_unused(); 1776 1777 vm_unmap_aliases(); 1778 1779 cpa.vaddr = addr; 1780 cpa.pages = pages; 1781 cpa.numpages = numpages; 1782 cpa.mask_set = mask_set; 1783 cpa.mask_clr = mask_clr; 1784 cpa.flags = 0; 1785 cpa.curpage = 0; 1786 cpa.force_split = force_split; 1787 1788 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1789 cpa.flags |= in_flag; 1790 1791 /* No alias checking for _NX bit modifications */ 1792 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX; 1793 /* Has caller explicitly disabled alias checking? */ 1794 if (in_flag & CPA_NO_CHECK_ALIAS) 1795 checkalias = 0; 1796 1797 ret = __change_page_attr_set_clr(&cpa, checkalias); 1798 1799 /* 1800 * Check whether we really changed something: 1801 */ 1802 if (!(cpa.flags & CPA_FLUSHTLB)) 1803 goto out; 1804 1805 /* 1806 * No need to flush, when we did not set any of the caching 1807 * attributes: 1808 */ 1809 cache = !!pgprot2cachemode(mask_set); 1810 1811 /* 1812 * On error; flush everything to be sure. 1813 */ 1814 if (ret) { 1815 cpa_flush_all(cache); 1816 goto out; 1817 } 1818 1819 cpa_flush(&cpa, cache); 1820 out: 1821 return ret; 1822 } 1823 1824 static inline int change_page_attr_set(unsigned long *addr, int numpages, 1825 pgprot_t mask, int array) 1826 { 1827 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, 1828 (array ? CPA_ARRAY : 0), NULL); 1829 } 1830 1831 static inline int change_page_attr_clear(unsigned long *addr, int numpages, 1832 pgprot_t mask, int array) 1833 { 1834 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, 1835 (array ? CPA_ARRAY : 0), NULL); 1836 } 1837 1838 static inline int cpa_set_pages_array(struct page **pages, int numpages, 1839 pgprot_t mask) 1840 { 1841 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, 1842 CPA_PAGES_ARRAY, pages); 1843 } 1844 1845 static inline int cpa_clear_pages_array(struct page **pages, int numpages, 1846 pgprot_t mask) 1847 { 1848 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, 1849 CPA_PAGES_ARRAY, pages); 1850 } 1851 1852 /* 1853 * __set_memory_prot is an internal helper for callers that have been passed 1854 * a pgprot_t value from upper layers and a reservation has already been taken. 1855 * If you want to set the pgprot to a specific page protocol, use the 1856 * set_memory_xx() functions. 1857 */ 1858 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot) 1859 { 1860 return change_page_attr_set_clr(&addr, numpages, prot, 1861 __pgprot(~pgprot_val(prot)), 0, 0, 1862 NULL); 1863 } 1864 1865 int _set_memory_uc(unsigned long addr, int numpages) 1866 { 1867 /* 1868 * for now UC MINUS. see comments in ioremap() 1869 * If you really need strong UC use ioremap_uc(), but note 1870 * that you cannot override IO areas with set_memory_*() as 1871 * these helpers cannot work with IO memory. 1872 */ 1873 return change_page_attr_set(&addr, numpages, 1874 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1875 0); 1876 } 1877 1878 int set_memory_uc(unsigned long addr, int numpages) 1879 { 1880 int ret; 1881 1882 /* 1883 * for now UC MINUS. see comments in ioremap() 1884 */ 1885 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1886 _PAGE_CACHE_MODE_UC_MINUS, NULL); 1887 if (ret) 1888 goto out_err; 1889 1890 ret = _set_memory_uc(addr, numpages); 1891 if (ret) 1892 goto out_free; 1893 1894 return 0; 1895 1896 out_free: 1897 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1898 out_err: 1899 return ret; 1900 } 1901 EXPORT_SYMBOL(set_memory_uc); 1902 1903 int _set_memory_wc(unsigned long addr, int numpages) 1904 { 1905 int ret; 1906 1907 ret = change_page_attr_set(&addr, numpages, 1908 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1909 0); 1910 if (!ret) { 1911 ret = change_page_attr_set_clr(&addr, numpages, 1912 cachemode2pgprot(_PAGE_CACHE_MODE_WC), 1913 __pgprot(_PAGE_CACHE_MASK), 1914 0, 0, NULL); 1915 } 1916 return ret; 1917 } 1918 1919 int set_memory_wc(unsigned long addr, int numpages) 1920 { 1921 int ret; 1922 1923 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1924 _PAGE_CACHE_MODE_WC, NULL); 1925 if (ret) 1926 return ret; 1927 1928 ret = _set_memory_wc(addr, numpages); 1929 if (ret) 1930 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1931 1932 return ret; 1933 } 1934 EXPORT_SYMBOL(set_memory_wc); 1935 1936 int _set_memory_wt(unsigned long addr, int numpages) 1937 { 1938 return change_page_attr_set(&addr, numpages, 1939 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); 1940 } 1941 1942 int _set_memory_wb(unsigned long addr, int numpages) 1943 { 1944 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 1945 return change_page_attr_clear(&addr, numpages, 1946 __pgprot(_PAGE_CACHE_MASK), 0); 1947 } 1948 1949 int set_memory_wb(unsigned long addr, int numpages) 1950 { 1951 int ret; 1952 1953 ret = _set_memory_wb(addr, numpages); 1954 if (ret) 1955 return ret; 1956 1957 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1958 return 0; 1959 } 1960 EXPORT_SYMBOL(set_memory_wb); 1961 1962 /* Prevent speculative access to a page by marking it not-present */ 1963 #ifdef CONFIG_X86_64 1964 int set_mce_nospec(unsigned long pfn) 1965 { 1966 unsigned long decoy_addr; 1967 int rc; 1968 1969 /* SGX pages are not in the 1:1 map */ 1970 if (arch_is_platform_page(pfn << PAGE_SHIFT)) 1971 return 0; 1972 /* 1973 * We would like to just call: 1974 * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1); 1975 * but doing that would radically increase the odds of a 1976 * speculative access to the poison page because we'd have 1977 * the virtual address of the kernel 1:1 mapping sitting 1978 * around in registers. 1979 * Instead we get tricky. We create a non-canonical address 1980 * that looks just like the one we want, but has bit 63 flipped. 1981 * This relies on set_memory_XX() properly sanitizing any __pa() 1982 * results with __PHYSICAL_MASK or PTE_PFN_MASK. 1983 */ 1984 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63)); 1985 1986 rc = set_memory_np(decoy_addr, 1); 1987 if (rc) 1988 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn); 1989 return rc; 1990 } 1991 1992 static int set_memory_p(unsigned long *addr, int numpages) 1993 { 1994 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0); 1995 } 1996 1997 /* Restore full speculative operation to the pfn. */ 1998 int clear_mce_nospec(unsigned long pfn) 1999 { 2000 unsigned long addr = (unsigned long) pfn_to_kaddr(pfn); 2001 2002 return set_memory_p(&addr, 1); 2003 } 2004 EXPORT_SYMBOL_GPL(clear_mce_nospec); 2005 #endif /* CONFIG_X86_64 */ 2006 2007 int set_memory_x(unsigned long addr, int numpages) 2008 { 2009 if (!(__supported_pte_mask & _PAGE_NX)) 2010 return 0; 2011 2012 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); 2013 } 2014 2015 int set_memory_nx(unsigned long addr, int numpages) 2016 { 2017 if (!(__supported_pte_mask & _PAGE_NX)) 2018 return 0; 2019 2020 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); 2021 } 2022 2023 int set_memory_ro(unsigned long addr, int numpages) 2024 { 2025 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); 2026 } 2027 2028 int set_memory_rw(unsigned long addr, int numpages) 2029 { 2030 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); 2031 } 2032 2033 int set_memory_np(unsigned long addr, int numpages) 2034 { 2035 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); 2036 } 2037 2038 int set_memory_np_noalias(unsigned long addr, int numpages) 2039 { 2040 int cpa_flags = CPA_NO_CHECK_ALIAS; 2041 2042 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 2043 __pgprot(_PAGE_PRESENT), 0, 2044 cpa_flags, NULL); 2045 } 2046 2047 int set_memory_4k(unsigned long addr, int numpages) 2048 { 2049 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 2050 __pgprot(0), 1, 0, NULL); 2051 } 2052 2053 int set_memory_nonglobal(unsigned long addr, int numpages) 2054 { 2055 return change_page_attr_clear(&addr, numpages, 2056 __pgprot(_PAGE_GLOBAL), 0); 2057 } 2058 2059 int set_memory_global(unsigned long addr, int numpages) 2060 { 2061 return change_page_attr_set(&addr, numpages, 2062 __pgprot(_PAGE_GLOBAL), 0); 2063 } 2064 2065 /* 2066 * __set_memory_enc_pgtable() is used for the hypervisors that get 2067 * informed about "encryption" status via page tables. 2068 */ 2069 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc) 2070 { 2071 pgprot_t empty = __pgprot(0); 2072 struct cpa_data cpa; 2073 int ret; 2074 2075 /* Should not be working on unaligned addresses */ 2076 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) 2077 addr &= PAGE_MASK; 2078 2079 memset(&cpa, 0, sizeof(cpa)); 2080 cpa.vaddr = &addr; 2081 cpa.numpages = numpages; 2082 cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty); 2083 cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty); 2084 cpa.pgd = init_mm.pgd; 2085 2086 /* Must avoid aliasing mappings in the highmem code */ 2087 kmap_flush_unused(); 2088 vm_unmap_aliases(); 2089 2090 /* Flush the caches as needed before changing the encryption attribute. */ 2091 if (x86_platform.guest.enc_tlb_flush_required(enc)) 2092 cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required()); 2093 2094 /* Notify hypervisor that we are about to set/clr encryption attribute. */ 2095 x86_platform.guest.enc_status_change_prepare(addr, numpages, enc); 2096 2097 ret = __change_page_attr_set_clr(&cpa, 1); 2098 2099 /* 2100 * After changing the encryption attribute, we need to flush TLBs again 2101 * in case any speculative TLB caching occurred (but no need to flush 2102 * caches again). We could just use cpa_flush_all(), but in case TLB 2103 * flushing gets optimized in the cpa_flush() path use the same logic 2104 * as above. 2105 */ 2106 cpa_flush(&cpa, 0); 2107 2108 /* Notify hypervisor that we have successfully set/clr encryption attribute. */ 2109 if (!ret) { 2110 if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc)) 2111 ret = -EIO; 2112 } 2113 2114 return ret; 2115 } 2116 2117 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) 2118 { 2119 if (hv_is_isolation_supported()) 2120 return hv_set_mem_host_visibility(addr, numpages, !enc); 2121 2122 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 2123 return __set_memory_enc_pgtable(addr, numpages, enc); 2124 2125 return 0; 2126 } 2127 2128 int set_memory_encrypted(unsigned long addr, int numpages) 2129 { 2130 return __set_memory_enc_dec(addr, numpages, true); 2131 } 2132 EXPORT_SYMBOL_GPL(set_memory_encrypted); 2133 2134 int set_memory_decrypted(unsigned long addr, int numpages) 2135 { 2136 return __set_memory_enc_dec(addr, numpages, false); 2137 } 2138 EXPORT_SYMBOL_GPL(set_memory_decrypted); 2139 2140 int set_pages_uc(struct page *page, int numpages) 2141 { 2142 unsigned long addr = (unsigned long)page_address(page); 2143 2144 return set_memory_uc(addr, numpages); 2145 } 2146 EXPORT_SYMBOL(set_pages_uc); 2147 2148 static int _set_pages_array(struct page **pages, int numpages, 2149 enum page_cache_mode new_type) 2150 { 2151 unsigned long start; 2152 unsigned long end; 2153 enum page_cache_mode set_type; 2154 int i; 2155 int free_idx; 2156 int ret; 2157 2158 for (i = 0; i < numpages; i++) { 2159 if (PageHighMem(pages[i])) 2160 continue; 2161 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2162 end = start + PAGE_SIZE; 2163 if (memtype_reserve(start, end, new_type, NULL)) 2164 goto err_out; 2165 } 2166 2167 /* If WC, set to UC- first and then WC */ 2168 set_type = (new_type == _PAGE_CACHE_MODE_WC) ? 2169 _PAGE_CACHE_MODE_UC_MINUS : new_type; 2170 2171 ret = cpa_set_pages_array(pages, numpages, 2172 cachemode2pgprot(set_type)); 2173 if (!ret && new_type == _PAGE_CACHE_MODE_WC) 2174 ret = change_page_attr_set_clr(NULL, numpages, 2175 cachemode2pgprot( 2176 _PAGE_CACHE_MODE_WC), 2177 __pgprot(_PAGE_CACHE_MASK), 2178 0, CPA_PAGES_ARRAY, pages); 2179 if (ret) 2180 goto err_out; 2181 return 0; /* Success */ 2182 err_out: 2183 free_idx = i; 2184 for (i = 0; i < free_idx; i++) { 2185 if (PageHighMem(pages[i])) 2186 continue; 2187 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2188 end = start + PAGE_SIZE; 2189 memtype_free(start, end); 2190 } 2191 return -EINVAL; 2192 } 2193 2194 int set_pages_array_uc(struct page **pages, int numpages) 2195 { 2196 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); 2197 } 2198 EXPORT_SYMBOL(set_pages_array_uc); 2199 2200 int set_pages_array_wc(struct page **pages, int numpages) 2201 { 2202 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); 2203 } 2204 EXPORT_SYMBOL(set_pages_array_wc); 2205 2206 int set_pages_wb(struct page *page, int numpages) 2207 { 2208 unsigned long addr = (unsigned long)page_address(page); 2209 2210 return set_memory_wb(addr, numpages); 2211 } 2212 EXPORT_SYMBOL(set_pages_wb); 2213 2214 int set_pages_array_wb(struct page **pages, int numpages) 2215 { 2216 int retval; 2217 unsigned long start; 2218 unsigned long end; 2219 int i; 2220 2221 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 2222 retval = cpa_clear_pages_array(pages, numpages, 2223 __pgprot(_PAGE_CACHE_MASK)); 2224 if (retval) 2225 return retval; 2226 2227 for (i = 0; i < numpages; i++) { 2228 if (PageHighMem(pages[i])) 2229 continue; 2230 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2231 end = start + PAGE_SIZE; 2232 memtype_free(start, end); 2233 } 2234 2235 return 0; 2236 } 2237 EXPORT_SYMBOL(set_pages_array_wb); 2238 2239 int set_pages_ro(struct page *page, int numpages) 2240 { 2241 unsigned long addr = (unsigned long)page_address(page); 2242 2243 return set_memory_ro(addr, numpages); 2244 } 2245 2246 int set_pages_rw(struct page *page, int numpages) 2247 { 2248 unsigned long addr = (unsigned long)page_address(page); 2249 2250 return set_memory_rw(addr, numpages); 2251 } 2252 2253 static int __set_pages_p(struct page *page, int numpages) 2254 { 2255 unsigned long tempaddr = (unsigned long) page_address(page); 2256 struct cpa_data cpa = { .vaddr = &tempaddr, 2257 .pgd = NULL, 2258 .numpages = numpages, 2259 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2260 .mask_clr = __pgprot(0), 2261 .flags = 0}; 2262 2263 /* 2264 * No alias checking needed for setting present flag. otherwise, 2265 * we may need to break large pages for 64-bit kernel text 2266 * mappings (this adds to complexity if we want to do this from 2267 * atomic context especially). Let's keep it simple! 2268 */ 2269 return __change_page_attr_set_clr(&cpa, 0); 2270 } 2271 2272 static int __set_pages_np(struct page *page, int numpages) 2273 { 2274 unsigned long tempaddr = (unsigned long) page_address(page); 2275 struct cpa_data cpa = { .vaddr = &tempaddr, 2276 .pgd = NULL, 2277 .numpages = numpages, 2278 .mask_set = __pgprot(0), 2279 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2280 .flags = 0}; 2281 2282 /* 2283 * No alias checking needed for setting not present flag. otherwise, 2284 * we may need to break large pages for 64-bit kernel text 2285 * mappings (this adds to complexity if we want to do this from 2286 * atomic context especially). Let's keep it simple! 2287 */ 2288 return __change_page_attr_set_clr(&cpa, 0); 2289 } 2290 2291 int set_direct_map_invalid_noflush(struct page *page) 2292 { 2293 return __set_pages_np(page, 1); 2294 } 2295 2296 int set_direct_map_default_noflush(struct page *page) 2297 { 2298 return __set_pages_p(page, 1); 2299 } 2300 2301 #ifdef CONFIG_DEBUG_PAGEALLOC 2302 void __kernel_map_pages(struct page *page, int numpages, int enable) 2303 { 2304 if (PageHighMem(page)) 2305 return; 2306 if (!enable) { 2307 debug_check_no_locks_freed(page_address(page), 2308 numpages * PAGE_SIZE); 2309 } 2310 2311 /* 2312 * The return value is ignored as the calls cannot fail. 2313 * Large pages for identity mappings are not used at boot time 2314 * and hence no memory allocations during large page split. 2315 */ 2316 if (enable) 2317 __set_pages_p(page, numpages); 2318 else 2319 __set_pages_np(page, numpages); 2320 2321 /* 2322 * We should perform an IPI and flush all tlbs, 2323 * but that can deadlock->flush only current cpu. 2324 * Preemption needs to be disabled around __flush_tlb_all() due to 2325 * CR3 reload in __native_flush_tlb(). 2326 */ 2327 preempt_disable(); 2328 __flush_tlb_all(); 2329 preempt_enable(); 2330 2331 arch_flush_lazy_mmu_mode(); 2332 } 2333 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2334 2335 bool kernel_page_present(struct page *page) 2336 { 2337 unsigned int level; 2338 pte_t *pte; 2339 2340 if (PageHighMem(page)) 2341 return false; 2342 2343 pte = lookup_address((unsigned long)page_address(page), &level); 2344 return (pte_val(*pte) & _PAGE_PRESENT); 2345 } 2346 2347 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, 2348 unsigned numpages, unsigned long page_flags) 2349 { 2350 int retval = -EINVAL; 2351 2352 struct cpa_data cpa = { 2353 .vaddr = &address, 2354 .pfn = pfn, 2355 .pgd = pgd, 2356 .numpages = numpages, 2357 .mask_set = __pgprot(0), 2358 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), 2359 .flags = 0, 2360 }; 2361 2362 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2363 2364 if (!(__supported_pte_mask & _PAGE_NX)) 2365 goto out; 2366 2367 if (!(page_flags & _PAGE_ENC)) 2368 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); 2369 2370 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); 2371 2372 retval = __change_page_attr_set_clr(&cpa, 0); 2373 __flush_tlb_all(); 2374 2375 out: 2376 return retval; 2377 } 2378 2379 /* 2380 * __flush_tlb_all() flushes mappings only on current CPU and hence this 2381 * function shouldn't be used in an SMP environment. Presently, it's used only 2382 * during boot (way before smp_init()) by EFI subsystem and hence is ok. 2383 */ 2384 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, 2385 unsigned long numpages) 2386 { 2387 int retval; 2388 2389 /* 2390 * The typical sequence for unmapping is to find a pte through 2391 * lookup_address_in_pgd() (ideally, it should never return NULL because 2392 * the address is already mapped) and change it's protections. As pfn is 2393 * the *target* of a mapping, it's not useful while unmapping. 2394 */ 2395 struct cpa_data cpa = { 2396 .vaddr = &address, 2397 .pfn = 0, 2398 .pgd = pgd, 2399 .numpages = numpages, 2400 .mask_set = __pgprot(0), 2401 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2402 .flags = 0, 2403 }; 2404 2405 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2406 2407 retval = __change_page_attr_set_clr(&cpa, 0); 2408 __flush_tlb_all(); 2409 2410 return retval; 2411 } 2412 2413 /* 2414 * The testcases use internal knowledge of the implementation that shouldn't 2415 * be exposed to the rest of the kernel. Include these directly here. 2416 */ 2417 #ifdef CONFIG_CPA_DEBUG 2418 #include "cpa-test.c" 2419 #endif 2420