xref: /linux/arch/x86/mm/pat/set_memory.c (revision 51a8f9d7f587290944d6fc733d1f897091c63159)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
19 #include <linux/vmstat.h>
20 #include <linux/kernel.h>
21 #include <linux/cc_platform.h>
22 #include <linux/set_memory.h>
23 #include <linux/memregion.h>
24 
25 #include <asm/e820/api.h>
26 #include <asm/processor.h>
27 #include <asm/tlbflush.h>
28 #include <asm/sections.h>
29 #include <asm/setup.h>
30 #include <linux/uaccess.h>
31 #include <asm/pgalloc.h>
32 #include <asm/proto.h>
33 #include <asm/memtype.h>
34 #include <asm/hyperv-tlfs.h>
35 #include <asm/mshyperv.h>
36 
37 #include "../mm_internal.h"
38 
39 /*
40  * The current flushing context - we pass it instead of 5 arguments:
41  */
42 struct cpa_data {
43 	unsigned long	*vaddr;
44 	pgd_t		*pgd;
45 	pgprot_t	mask_set;
46 	pgprot_t	mask_clr;
47 	unsigned long	numpages;
48 	unsigned long	curpage;
49 	unsigned long	pfn;
50 	unsigned int	flags;
51 	unsigned int	force_split		: 1,
52 			force_static_prot	: 1,
53 			force_flush_all		: 1;
54 	struct page	**pages;
55 };
56 
57 enum cpa_warn {
58 	CPA_CONFLICT,
59 	CPA_PROTECT,
60 	CPA_DETECT,
61 };
62 
63 static const int cpa_warn_level = CPA_PROTECT;
64 
65 /*
66  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
67  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
68  * entries change the page attribute in parallel to some other cpu
69  * splitting a large page entry along with changing the attribute.
70  */
71 static DEFINE_SPINLOCK(cpa_lock);
72 
73 #define CPA_FLUSHTLB 1
74 #define CPA_ARRAY 2
75 #define CPA_PAGES_ARRAY 4
76 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
77 
78 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
79 {
80 	return __pgprot(cachemode2protval(pcm));
81 }
82 
83 #ifdef CONFIG_PROC_FS
84 static unsigned long direct_pages_count[PG_LEVEL_NUM];
85 
86 void update_page_count(int level, unsigned long pages)
87 {
88 	/* Protect against CPA */
89 	spin_lock(&pgd_lock);
90 	direct_pages_count[level] += pages;
91 	spin_unlock(&pgd_lock);
92 }
93 
94 static void split_page_count(int level)
95 {
96 	if (direct_pages_count[level] == 0)
97 		return;
98 
99 	direct_pages_count[level]--;
100 	if (system_state == SYSTEM_RUNNING) {
101 		if (level == PG_LEVEL_2M)
102 			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
103 		else if (level == PG_LEVEL_1G)
104 			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
105 	}
106 	direct_pages_count[level - 1] += PTRS_PER_PTE;
107 }
108 
109 void arch_report_meminfo(struct seq_file *m)
110 {
111 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
112 			direct_pages_count[PG_LEVEL_4K] << 2);
113 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
114 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
115 			direct_pages_count[PG_LEVEL_2M] << 11);
116 #else
117 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
118 			direct_pages_count[PG_LEVEL_2M] << 12);
119 #endif
120 	if (direct_gbpages)
121 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
122 			direct_pages_count[PG_LEVEL_1G] << 20);
123 }
124 #else
125 static inline void split_page_count(int level) { }
126 #endif
127 
128 #ifdef CONFIG_X86_CPA_STATISTICS
129 
130 static unsigned long cpa_1g_checked;
131 static unsigned long cpa_1g_sameprot;
132 static unsigned long cpa_1g_preserved;
133 static unsigned long cpa_2m_checked;
134 static unsigned long cpa_2m_sameprot;
135 static unsigned long cpa_2m_preserved;
136 static unsigned long cpa_4k_install;
137 
138 static inline void cpa_inc_1g_checked(void)
139 {
140 	cpa_1g_checked++;
141 }
142 
143 static inline void cpa_inc_2m_checked(void)
144 {
145 	cpa_2m_checked++;
146 }
147 
148 static inline void cpa_inc_4k_install(void)
149 {
150 	data_race(cpa_4k_install++);
151 }
152 
153 static inline void cpa_inc_lp_sameprot(int level)
154 {
155 	if (level == PG_LEVEL_1G)
156 		cpa_1g_sameprot++;
157 	else
158 		cpa_2m_sameprot++;
159 }
160 
161 static inline void cpa_inc_lp_preserved(int level)
162 {
163 	if (level == PG_LEVEL_1G)
164 		cpa_1g_preserved++;
165 	else
166 		cpa_2m_preserved++;
167 }
168 
169 static int cpastats_show(struct seq_file *m, void *p)
170 {
171 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
172 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
173 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
174 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
175 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
176 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
177 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
178 	return 0;
179 }
180 
181 static int cpastats_open(struct inode *inode, struct file *file)
182 {
183 	return single_open(file, cpastats_show, NULL);
184 }
185 
186 static const struct file_operations cpastats_fops = {
187 	.open		= cpastats_open,
188 	.read		= seq_read,
189 	.llseek		= seq_lseek,
190 	.release	= single_release,
191 };
192 
193 static int __init cpa_stats_init(void)
194 {
195 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
196 			    &cpastats_fops);
197 	return 0;
198 }
199 late_initcall(cpa_stats_init);
200 #else
201 static inline void cpa_inc_1g_checked(void) { }
202 static inline void cpa_inc_2m_checked(void) { }
203 static inline void cpa_inc_4k_install(void) { }
204 static inline void cpa_inc_lp_sameprot(int level) { }
205 static inline void cpa_inc_lp_preserved(int level) { }
206 #endif
207 
208 
209 static inline int
210 within(unsigned long addr, unsigned long start, unsigned long end)
211 {
212 	return addr >= start && addr < end;
213 }
214 
215 static inline int
216 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
217 {
218 	return addr >= start && addr <= end;
219 }
220 
221 #ifdef CONFIG_X86_64
222 
223 /*
224  * The kernel image is mapped into two places in the virtual address space
225  * (addresses without KASLR, of course):
226  *
227  * 1. The kernel direct map (0xffff880000000000)
228  * 2. The "high kernel map" (0xffffffff81000000)
229  *
230  * We actually execute out of #2. If we get the address of a kernel symbol, it
231  * points to #2, but almost all physical-to-virtual translations point to #1.
232  *
233  * This is so that we can have both a directmap of all physical memory *and*
234  * take full advantage of the the limited (s32) immediate addressing range (2G)
235  * of x86_64.
236  *
237  * See Documentation/x86/x86_64/mm.rst for more detail.
238  */
239 
240 static inline unsigned long highmap_start_pfn(void)
241 {
242 	return __pa_symbol(_text) >> PAGE_SHIFT;
243 }
244 
245 static inline unsigned long highmap_end_pfn(void)
246 {
247 	/* Do not reference physical address outside the kernel. */
248 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
249 }
250 
251 static bool __cpa_pfn_in_highmap(unsigned long pfn)
252 {
253 	/*
254 	 * Kernel text has an alias mapping at a high address, known
255 	 * here as "highmap".
256 	 */
257 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
258 }
259 
260 #else
261 
262 static bool __cpa_pfn_in_highmap(unsigned long pfn)
263 {
264 	/* There is no highmap on 32-bit */
265 	return false;
266 }
267 
268 #endif
269 
270 /*
271  * See set_mce_nospec().
272  *
273  * Machine check recovery code needs to change cache mode of poisoned pages to
274  * UC to avoid speculative access logging another error. But passing the
275  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
276  * speculative access. So we cheat and flip the top bit of the address. This
277  * works fine for the code that updates the page tables. But at the end of the
278  * process we need to flush the TLB and cache and the non-canonical address
279  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
280  *
281  * But in the common case we already have a canonical address. This code
282  * will fix the top bit if needed and is a no-op otherwise.
283  */
284 static inline unsigned long fix_addr(unsigned long addr)
285 {
286 #ifdef CONFIG_X86_64
287 	return (long)(addr << 1) >> 1;
288 #else
289 	return addr;
290 #endif
291 }
292 
293 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
294 {
295 	if (cpa->flags & CPA_PAGES_ARRAY) {
296 		struct page *page = cpa->pages[idx];
297 
298 		if (unlikely(PageHighMem(page)))
299 			return 0;
300 
301 		return (unsigned long)page_address(page);
302 	}
303 
304 	if (cpa->flags & CPA_ARRAY)
305 		return cpa->vaddr[idx];
306 
307 	return *cpa->vaddr + idx * PAGE_SIZE;
308 }
309 
310 /*
311  * Flushing functions
312  */
313 
314 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
315 {
316 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
317 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
318 	void *vend = vaddr + size;
319 
320 	if (p >= vend)
321 		return;
322 
323 	for (; p < vend; p += clflush_size)
324 		clflushopt(p);
325 }
326 
327 /**
328  * clflush_cache_range - flush a cache range with clflush
329  * @vaddr:	virtual start address
330  * @size:	number of bytes to flush
331  *
332  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
333  * SFENCE to avoid ordering issues.
334  */
335 void clflush_cache_range(void *vaddr, unsigned int size)
336 {
337 	mb();
338 	clflush_cache_range_opt(vaddr, size);
339 	mb();
340 }
341 EXPORT_SYMBOL_GPL(clflush_cache_range);
342 
343 #ifdef CONFIG_ARCH_HAS_PMEM_API
344 void arch_invalidate_pmem(void *addr, size_t size)
345 {
346 	clflush_cache_range(addr, size);
347 }
348 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
349 #endif
350 
351 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
352 bool cpu_cache_has_invalidate_memregion(void)
353 {
354 	return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
355 }
356 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
357 
358 int cpu_cache_invalidate_memregion(int res_desc)
359 {
360 	if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
361 		return -ENXIO;
362 	wbinvd_on_all_cpus();
363 	return 0;
364 }
365 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
366 #endif
367 
368 static void __cpa_flush_all(void *arg)
369 {
370 	unsigned long cache = (unsigned long)arg;
371 
372 	/*
373 	 * Flush all to work around Errata in early athlons regarding
374 	 * large page flushing.
375 	 */
376 	__flush_tlb_all();
377 
378 	if (cache && boot_cpu_data.x86 >= 4)
379 		wbinvd();
380 }
381 
382 static void cpa_flush_all(unsigned long cache)
383 {
384 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
385 
386 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
387 }
388 
389 static void __cpa_flush_tlb(void *data)
390 {
391 	struct cpa_data *cpa = data;
392 	unsigned int i;
393 
394 	for (i = 0; i < cpa->numpages; i++)
395 		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
396 }
397 
398 static void cpa_flush(struct cpa_data *data, int cache)
399 {
400 	struct cpa_data *cpa = data;
401 	unsigned int i;
402 
403 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
404 
405 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
406 		cpa_flush_all(cache);
407 		return;
408 	}
409 
410 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
411 		flush_tlb_all();
412 	else
413 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
414 
415 	if (!cache)
416 		return;
417 
418 	mb();
419 	for (i = 0; i < cpa->numpages; i++) {
420 		unsigned long addr = __cpa_addr(cpa, i);
421 		unsigned int level;
422 
423 		pte_t *pte = lookup_address(addr, &level);
424 
425 		/*
426 		 * Only flush present addresses:
427 		 */
428 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
429 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
430 	}
431 	mb();
432 }
433 
434 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
435 		     unsigned long r2_start, unsigned long r2_end)
436 {
437 	return (r1_start <= r2_end && r1_end >= r2_start) ||
438 		(r2_start <= r1_end && r2_end >= r1_start);
439 }
440 
441 #ifdef CONFIG_PCI_BIOS
442 /*
443  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
444  * based config access (CONFIG_PCI_GOBIOS) support.
445  */
446 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
447 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
448 
449 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
450 {
451 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
452 		return _PAGE_NX;
453 	return 0;
454 }
455 #else
456 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
457 {
458 	return 0;
459 }
460 #endif
461 
462 /*
463  * The .rodata section needs to be read-only. Using the pfn catches all
464  * aliases.  This also includes __ro_after_init, so do not enforce until
465  * kernel_set_to_readonly is true.
466  */
467 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
468 {
469 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
470 
471 	/*
472 	 * Note: __end_rodata is at page aligned and not inclusive, so
473 	 * subtract 1 to get the last enforced PFN in the rodata area.
474 	 */
475 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
476 
477 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
478 		return _PAGE_RW;
479 	return 0;
480 }
481 
482 /*
483  * Protect kernel text against becoming non executable by forbidding
484  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
485  * out of which the kernel actually executes.  Do not protect the low
486  * mapping.
487  *
488  * This does not cover __inittext since that is gone after boot.
489  */
490 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
491 {
492 	unsigned long t_end = (unsigned long)_etext - 1;
493 	unsigned long t_start = (unsigned long)_text;
494 
495 	if (overlaps(start, end, t_start, t_end))
496 		return _PAGE_NX;
497 	return 0;
498 }
499 
500 #if defined(CONFIG_X86_64)
501 /*
502  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
503  * kernel text mappings for the large page aligned text, rodata sections
504  * will be always read-only. For the kernel identity mappings covering the
505  * holes caused by this alignment can be anything that user asks.
506  *
507  * This will preserve the large page mappings for kernel text/data at no
508  * extra cost.
509  */
510 static pgprotval_t protect_kernel_text_ro(unsigned long start,
511 					  unsigned long end)
512 {
513 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
514 	unsigned long t_start = (unsigned long)_text;
515 	unsigned int level;
516 
517 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
518 		return 0;
519 	/*
520 	 * Don't enforce the !RW mapping for the kernel text mapping, if
521 	 * the current mapping is already using small page mapping.  No
522 	 * need to work hard to preserve large page mappings in this case.
523 	 *
524 	 * This also fixes the Linux Xen paravirt guest boot failure caused
525 	 * by unexpected read-only mappings for kernel identity
526 	 * mappings. In this paravirt guest case, the kernel text mapping
527 	 * and the kernel identity mapping share the same page-table pages,
528 	 * so the protections for kernel text and identity mappings have to
529 	 * be the same.
530 	 */
531 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
532 		return _PAGE_RW;
533 	return 0;
534 }
535 #else
536 static pgprotval_t protect_kernel_text_ro(unsigned long start,
537 					  unsigned long end)
538 {
539 	return 0;
540 }
541 #endif
542 
543 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
544 {
545 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
546 }
547 
548 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
549 				  unsigned long start, unsigned long end,
550 				  unsigned long pfn, const char *txt)
551 {
552 	static const char *lvltxt[] = {
553 		[CPA_CONFLICT]	= "conflict",
554 		[CPA_PROTECT]	= "protect",
555 		[CPA_DETECT]	= "detect",
556 	};
557 
558 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
559 		return;
560 
561 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
562 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
563 		(unsigned long long)val);
564 }
565 
566 /*
567  * Certain areas of memory on x86 require very specific protection flags,
568  * for example the BIOS area or kernel text. Callers don't always get this
569  * right (again, ioremap() on BIOS memory is not uncommon) so this function
570  * checks and fixes these known static required protection bits.
571  */
572 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
573 					  unsigned long pfn, unsigned long npg,
574 					  unsigned long lpsize, int warnlvl)
575 {
576 	pgprotval_t forbidden, res;
577 	unsigned long end;
578 
579 	/*
580 	 * There is no point in checking RW/NX conflicts when the requested
581 	 * mapping is setting the page !PRESENT.
582 	 */
583 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
584 		return prot;
585 
586 	/* Operate on the virtual address */
587 	end = start + npg * PAGE_SIZE - 1;
588 
589 	res = protect_kernel_text(start, end);
590 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
591 	forbidden = res;
592 
593 	/*
594 	 * Special case to preserve a large page. If the change spawns the
595 	 * full large page mapping then there is no point to split it
596 	 * up. Happens with ftrace and is going to be removed once ftrace
597 	 * switched to text_poke().
598 	 */
599 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
600 		res = protect_kernel_text_ro(start, end);
601 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
602 		forbidden |= res;
603 	}
604 
605 	/* Check the PFN directly */
606 	res = protect_pci_bios(pfn, pfn + npg - 1);
607 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
608 	forbidden |= res;
609 
610 	res = protect_rodata(pfn, pfn + npg - 1);
611 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
612 	forbidden |= res;
613 
614 	return __pgprot(pgprot_val(prot) & ~forbidden);
615 }
616 
617 /*
618  * Validate strict W^X semantics.
619  */
620 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
621 				  unsigned long pfn, unsigned long npg)
622 {
623 	unsigned long end;
624 
625 	/*
626 	 * 32-bit has some unfixable W+X issues, like EFI code
627 	 * and writeable data being in the same page.  Disable
628 	 * detection and enforcement there.
629 	 */
630 	if (IS_ENABLED(CONFIG_X86_32))
631 		return new;
632 
633 	/* Only verify when NX is supported: */
634 	if (!(__supported_pte_mask & _PAGE_NX))
635 		return new;
636 
637 	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
638 		return new;
639 
640 	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
641 		return new;
642 
643 	end = start + npg * PAGE_SIZE - 1;
644 	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
645 		  (unsigned long long)pgprot_val(old),
646 		  (unsigned long long)pgprot_val(new),
647 		  start, end, pfn);
648 
649 	/*
650 	 * For now, allow all permission change attempts by returning the
651 	 * attempted permissions.  This can 'return old' to actively
652 	 * refuse the permission change at a later time.
653 	 */
654 	return new;
655 }
656 
657 /*
658  * Lookup the page table entry for a virtual address in a specific pgd.
659  * Return a pointer to the entry and the level of the mapping.
660  */
661 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
662 			     unsigned int *level)
663 {
664 	p4d_t *p4d;
665 	pud_t *pud;
666 	pmd_t *pmd;
667 
668 	*level = PG_LEVEL_NONE;
669 
670 	if (pgd_none(*pgd))
671 		return NULL;
672 
673 	p4d = p4d_offset(pgd, address);
674 	if (p4d_none(*p4d))
675 		return NULL;
676 
677 	*level = PG_LEVEL_512G;
678 	if (p4d_large(*p4d) || !p4d_present(*p4d))
679 		return (pte_t *)p4d;
680 
681 	pud = pud_offset(p4d, address);
682 	if (pud_none(*pud))
683 		return NULL;
684 
685 	*level = PG_LEVEL_1G;
686 	if (pud_large(*pud) || !pud_present(*pud))
687 		return (pte_t *)pud;
688 
689 	pmd = pmd_offset(pud, address);
690 	if (pmd_none(*pmd))
691 		return NULL;
692 
693 	*level = PG_LEVEL_2M;
694 	if (pmd_large(*pmd) || !pmd_present(*pmd))
695 		return (pte_t *)pmd;
696 
697 	*level = PG_LEVEL_4K;
698 
699 	return pte_offset_kernel(pmd, address);
700 }
701 
702 /*
703  * Lookup the page table entry for a virtual address. Return a pointer
704  * to the entry and the level of the mapping.
705  *
706  * Note: We return pud and pmd either when the entry is marked large
707  * or when the present bit is not set. Otherwise we would return a
708  * pointer to a nonexisting mapping.
709  */
710 pte_t *lookup_address(unsigned long address, unsigned int *level)
711 {
712 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
713 }
714 EXPORT_SYMBOL_GPL(lookup_address);
715 
716 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
717 				  unsigned int *level)
718 {
719 	if (cpa->pgd)
720 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
721 					       address, level);
722 
723 	return lookup_address(address, level);
724 }
725 
726 /*
727  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
728  * or NULL if not present.
729  */
730 pmd_t *lookup_pmd_address(unsigned long address)
731 {
732 	pgd_t *pgd;
733 	p4d_t *p4d;
734 	pud_t *pud;
735 
736 	pgd = pgd_offset_k(address);
737 	if (pgd_none(*pgd))
738 		return NULL;
739 
740 	p4d = p4d_offset(pgd, address);
741 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
742 		return NULL;
743 
744 	pud = pud_offset(p4d, address);
745 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
746 		return NULL;
747 
748 	return pmd_offset(pud, address);
749 }
750 
751 /*
752  * This is necessary because __pa() does not work on some
753  * kinds of memory, like vmalloc() or the alloc_remap()
754  * areas on 32-bit NUMA systems.  The percpu areas can
755  * end up in this kind of memory, for instance.
756  *
757  * This could be optimized, but it is only intended to be
758  * used at initialization time, and keeping it
759  * unoptimized should increase the testing coverage for
760  * the more obscure platforms.
761  */
762 phys_addr_t slow_virt_to_phys(void *__virt_addr)
763 {
764 	unsigned long virt_addr = (unsigned long)__virt_addr;
765 	phys_addr_t phys_addr;
766 	unsigned long offset;
767 	enum pg_level level;
768 	pte_t *pte;
769 
770 	pte = lookup_address(virt_addr, &level);
771 	BUG_ON(!pte);
772 
773 	/*
774 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
775 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
776 	 * make 32-PAE kernel work correctly.
777 	 */
778 	switch (level) {
779 	case PG_LEVEL_1G:
780 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
781 		offset = virt_addr & ~PUD_MASK;
782 		break;
783 	case PG_LEVEL_2M:
784 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
785 		offset = virt_addr & ~PMD_MASK;
786 		break;
787 	default:
788 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
789 		offset = virt_addr & ~PAGE_MASK;
790 	}
791 
792 	return (phys_addr_t)(phys_addr | offset);
793 }
794 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
795 
796 /*
797  * Set the new pmd in all the pgds we know about:
798  */
799 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
800 {
801 	/* change init_mm */
802 	set_pte_atomic(kpte, pte);
803 #ifdef CONFIG_X86_32
804 	if (!SHARED_KERNEL_PMD) {
805 		struct page *page;
806 
807 		list_for_each_entry(page, &pgd_list, lru) {
808 			pgd_t *pgd;
809 			p4d_t *p4d;
810 			pud_t *pud;
811 			pmd_t *pmd;
812 
813 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
814 			p4d = p4d_offset(pgd, address);
815 			pud = pud_offset(p4d, address);
816 			pmd = pmd_offset(pud, address);
817 			set_pte_atomic((pte_t *)pmd, pte);
818 		}
819 	}
820 #endif
821 }
822 
823 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
824 {
825 	/*
826 	 * _PAGE_GLOBAL means "global page" for present PTEs.
827 	 * But, it is also used to indicate _PAGE_PROTNONE
828 	 * for non-present PTEs.
829 	 *
830 	 * This ensures that a _PAGE_GLOBAL PTE going from
831 	 * present to non-present is not confused as
832 	 * _PAGE_PROTNONE.
833 	 */
834 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
835 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
836 
837 	return prot;
838 }
839 
840 static int __should_split_large_page(pte_t *kpte, unsigned long address,
841 				     struct cpa_data *cpa)
842 {
843 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
844 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
845 	pte_t new_pte, *tmp;
846 	enum pg_level level;
847 
848 	/*
849 	 * Check for races, another CPU might have split this page
850 	 * up already:
851 	 */
852 	tmp = _lookup_address_cpa(cpa, address, &level);
853 	if (tmp != kpte)
854 		return 1;
855 
856 	switch (level) {
857 	case PG_LEVEL_2M:
858 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
859 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
860 		cpa_inc_2m_checked();
861 		break;
862 	case PG_LEVEL_1G:
863 		old_prot = pud_pgprot(*(pud_t *)kpte);
864 		old_pfn = pud_pfn(*(pud_t *)kpte);
865 		cpa_inc_1g_checked();
866 		break;
867 	default:
868 		return -EINVAL;
869 	}
870 
871 	psize = page_level_size(level);
872 	pmask = page_level_mask(level);
873 
874 	/*
875 	 * Calculate the number of pages, which fit into this large
876 	 * page starting at address:
877 	 */
878 	lpaddr = (address + psize) & pmask;
879 	numpages = (lpaddr - address) >> PAGE_SHIFT;
880 	if (numpages < cpa->numpages)
881 		cpa->numpages = numpages;
882 
883 	/*
884 	 * We are safe now. Check whether the new pgprot is the same:
885 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
886 	 * up accordingly.
887 	 */
888 
889 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
890 	req_prot = pgprot_large_2_4k(old_prot);
891 
892 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
893 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
894 
895 	/*
896 	 * req_prot is in format of 4k pages. It must be converted to large
897 	 * page format: the caching mode includes the PAT bit located at
898 	 * different bit positions in the two formats.
899 	 */
900 	req_prot = pgprot_4k_2_large(req_prot);
901 	req_prot = pgprot_clear_protnone_bits(req_prot);
902 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
903 		pgprot_val(req_prot) |= _PAGE_PSE;
904 
905 	/*
906 	 * old_pfn points to the large page base pfn. So we need to add the
907 	 * offset of the virtual address:
908 	 */
909 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
910 	cpa->pfn = pfn;
911 
912 	/*
913 	 * Calculate the large page base address and the number of 4K pages
914 	 * in the large page
915 	 */
916 	lpaddr = address & pmask;
917 	numpages = psize >> PAGE_SHIFT;
918 
919 	/*
920 	 * Sanity check that the existing mapping is correct versus the static
921 	 * protections. static_protections() guards against !PRESENT, so no
922 	 * extra conditional required here.
923 	 */
924 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
925 				      psize, CPA_CONFLICT);
926 
927 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
928 		/*
929 		 * Split the large page and tell the split code to
930 		 * enforce static protections.
931 		 */
932 		cpa->force_static_prot = 1;
933 		return 1;
934 	}
935 
936 	/*
937 	 * Optimization: If the requested pgprot is the same as the current
938 	 * pgprot, then the large page can be preserved and no updates are
939 	 * required independent of alignment and length of the requested
940 	 * range. The above already established that the current pgprot is
941 	 * correct, which in consequence makes the requested pgprot correct
942 	 * as well if it is the same. The static protection scan below will
943 	 * not come to a different conclusion.
944 	 */
945 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
946 		cpa_inc_lp_sameprot(level);
947 		return 0;
948 	}
949 
950 	/*
951 	 * If the requested range does not cover the full page, split it up
952 	 */
953 	if (address != lpaddr || cpa->numpages != numpages)
954 		return 1;
955 
956 	/*
957 	 * Check whether the requested pgprot is conflicting with a static
958 	 * protection requirement in the large page.
959 	 */
960 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
961 				      psize, CPA_DETECT);
962 
963 	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages);
964 
965 	/*
966 	 * If there is a conflict, split the large page.
967 	 *
968 	 * There used to be a 4k wise evaluation trying really hard to
969 	 * preserve the large pages, but experimentation has shown, that this
970 	 * does not help at all. There might be corner cases which would
971 	 * preserve one large page occasionally, but it's really not worth the
972 	 * extra code and cycles for the common case.
973 	 */
974 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
975 		return 1;
976 
977 	/* All checks passed. Update the large page mapping. */
978 	new_pte = pfn_pte(old_pfn, new_prot);
979 	__set_pmd_pte(kpte, address, new_pte);
980 	cpa->flags |= CPA_FLUSHTLB;
981 	cpa_inc_lp_preserved(level);
982 	return 0;
983 }
984 
985 static int should_split_large_page(pte_t *kpte, unsigned long address,
986 				   struct cpa_data *cpa)
987 {
988 	int do_split;
989 
990 	if (cpa->force_split)
991 		return 1;
992 
993 	spin_lock(&pgd_lock);
994 	do_split = __should_split_large_page(kpte, address, cpa);
995 	spin_unlock(&pgd_lock);
996 
997 	return do_split;
998 }
999 
1000 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1001 			  pgprot_t ref_prot, unsigned long address,
1002 			  unsigned long size)
1003 {
1004 	unsigned int npg = PFN_DOWN(size);
1005 	pgprot_t prot;
1006 
1007 	/*
1008 	 * If should_split_large_page() discovered an inconsistent mapping,
1009 	 * remove the invalid protection in the split mapping.
1010 	 */
1011 	if (!cpa->force_static_prot)
1012 		goto set;
1013 
1014 	/* Hand in lpsize = 0 to enforce the protection mechanism */
1015 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1016 
1017 	if (pgprot_val(prot) == pgprot_val(ref_prot))
1018 		goto set;
1019 
1020 	/*
1021 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
1022 	 * fixed trivially as that would require to rescan the newly
1023 	 * installed PMD mappings after returning from split_large_page()
1024 	 * so an eventual further split can allocate the necessary PTE
1025 	 * pages. Warn for now and revisit it in case this actually
1026 	 * happens.
1027 	 */
1028 	if (size == PAGE_SIZE)
1029 		ref_prot = prot;
1030 	else
1031 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1032 set:
1033 	set_pte(pte, pfn_pte(pfn, ref_prot));
1034 }
1035 
1036 static int
1037 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1038 		   struct page *base)
1039 {
1040 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1041 	pte_t *pbase = (pte_t *)page_address(base);
1042 	unsigned int i, level;
1043 	pgprot_t ref_prot;
1044 	pte_t *tmp;
1045 
1046 	spin_lock(&pgd_lock);
1047 	/*
1048 	 * Check for races, another CPU might have split this page
1049 	 * up for us already:
1050 	 */
1051 	tmp = _lookup_address_cpa(cpa, address, &level);
1052 	if (tmp != kpte) {
1053 		spin_unlock(&pgd_lock);
1054 		return 1;
1055 	}
1056 
1057 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1058 
1059 	switch (level) {
1060 	case PG_LEVEL_2M:
1061 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1062 		/*
1063 		 * Clear PSE (aka _PAGE_PAT) and move
1064 		 * PAT bit to correct position.
1065 		 */
1066 		ref_prot = pgprot_large_2_4k(ref_prot);
1067 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1068 		lpaddr = address & PMD_MASK;
1069 		lpinc = PAGE_SIZE;
1070 		break;
1071 
1072 	case PG_LEVEL_1G:
1073 		ref_prot = pud_pgprot(*(pud_t *)kpte);
1074 		ref_pfn = pud_pfn(*(pud_t *)kpte);
1075 		pfninc = PMD_SIZE >> PAGE_SHIFT;
1076 		lpaddr = address & PUD_MASK;
1077 		lpinc = PMD_SIZE;
1078 		/*
1079 		 * Clear the PSE flags if the PRESENT flag is not set
1080 		 * otherwise pmd_present/pmd_huge will return true
1081 		 * even on a non present pmd.
1082 		 */
1083 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1084 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1085 		break;
1086 
1087 	default:
1088 		spin_unlock(&pgd_lock);
1089 		return 1;
1090 	}
1091 
1092 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1093 
1094 	/*
1095 	 * Get the target pfn from the original entry:
1096 	 */
1097 	pfn = ref_pfn;
1098 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1099 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1100 
1101 	if (virt_addr_valid(address)) {
1102 		unsigned long pfn = PFN_DOWN(__pa(address));
1103 
1104 		if (pfn_range_is_mapped(pfn, pfn + 1))
1105 			split_page_count(level);
1106 	}
1107 
1108 	/*
1109 	 * Install the new, split up pagetable.
1110 	 *
1111 	 * We use the standard kernel pagetable protections for the new
1112 	 * pagetable protections, the actual ptes set above control the
1113 	 * primary protection behavior:
1114 	 */
1115 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1116 
1117 	/*
1118 	 * Do a global flush tlb after splitting the large page
1119 	 * and before we do the actual change page attribute in the PTE.
1120 	 *
1121 	 * Without this, we violate the TLB application note, that says:
1122 	 * "The TLBs may contain both ordinary and large-page
1123 	 *  translations for a 4-KByte range of linear addresses. This
1124 	 *  may occur if software modifies the paging structures so that
1125 	 *  the page size used for the address range changes. If the two
1126 	 *  translations differ with respect to page frame or attributes
1127 	 *  (e.g., permissions), processor behavior is undefined and may
1128 	 *  be implementation-specific."
1129 	 *
1130 	 * We do this global tlb flush inside the cpa_lock, so that we
1131 	 * don't allow any other cpu, with stale tlb entries change the
1132 	 * page attribute in parallel, that also falls into the
1133 	 * just split large page entry.
1134 	 */
1135 	flush_tlb_all();
1136 	spin_unlock(&pgd_lock);
1137 
1138 	return 0;
1139 }
1140 
1141 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1142 			    unsigned long address)
1143 {
1144 	struct page *base;
1145 
1146 	if (!debug_pagealloc_enabled())
1147 		spin_unlock(&cpa_lock);
1148 	base = alloc_pages(GFP_KERNEL, 0);
1149 	if (!debug_pagealloc_enabled())
1150 		spin_lock(&cpa_lock);
1151 	if (!base)
1152 		return -ENOMEM;
1153 
1154 	if (__split_large_page(cpa, kpte, address, base))
1155 		__free_page(base);
1156 
1157 	return 0;
1158 }
1159 
1160 static bool try_to_free_pte_page(pte_t *pte)
1161 {
1162 	int i;
1163 
1164 	for (i = 0; i < PTRS_PER_PTE; i++)
1165 		if (!pte_none(pte[i]))
1166 			return false;
1167 
1168 	free_page((unsigned long)pte);
1169 	return true;
1170 }
1171 
1172 static bool try_to_free_pmd_page(pmd_t *pmd)
1173 {
1174 	int i;
1175 
1176 	for (i = 0; i < PTRS_PER_PMD; i++)
1177 		if (!pmd_none(pmd[i]))
1178 			return false;
1179 
1180 	free_page((unsigned long)pmd);
1181 	return true;
1182 }
1183 
1184 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1185 {
1186 	pte_t *pte = pte_offset_kernel(pmd, start);
1187 
1188 	while (start < end) {
1189 		set_pte(pte, __pte(0));
1190 
1191 		start += PAGE_SIZE;
1192 		pte++;
1193 	}
1194 
1195 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1196 		pmd_clear(pmd);
1197 		return true;
1198 	}
1199 	return false;
1200 }
1201 
1202 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1203 			      unsigned long start, unsigned long end)
1204 {
1205 	if (unmap_pte_range(pmd, start, end))
1206 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1207 			pud_clear(pud);
1208 }
1209 
1210 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1211 {
1212 	pmd_t *pmd = pmd_offset(pud, start);
1213 
1214 	/*
1215 	 * Not on a 2MB page boundary?
1216 	 */
1217 	if (start & (PMD_SIZE - 1)) {
1218 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1219 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1220 
1221 		__unmap_pmd_range(pud, pmd, start, pre_end);
1222 
1223 		start = pre_end;
1224 		pmd++;
1225 	}
1226 
1227 	/*
1228 	 * Try to unmap in 2M chunks.
1229 	 */
1230 	while (end - start >= PMD_SIZE) {
1231 		if (pmd_large(*pmd))
1232 			pmd_clear(pmd);
1233 		else
1234 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1235 
1236 		start += PMD_SIZE;
1237 		pmd++;
1238 	}
1239 
1240 	/*
1241 	 * 4K leftovers?
1242 	 */
1243 	if (start < end)
1244 		return __unmap_pmd_range(pud, pmd, start, end);
1245 
1246 	/*
1247 	 * Try again to free the PMD page if haven't succeeded above.
1248 	 */
1249 	if (!pud_none(*pud))
1250 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1251 			pud_clear(pud);
1252 }
1253 
1254 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1255 {
1256 	pud_t *pud = pud_offset(p4d, start);
1257 
1258 	/*
1259 	 * Not on a GB page boundary?
1260 	 */
1261 	if (start & (PUD_SIZE - 1)) {
1262 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1263 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1264 
1265 		unmap_pmd_range(pud, start, pre_end);
1266 
1267 		start = pre_end;
1268 		pud++;
1269 	}
1270 
1271 	/*
1272 	 * Try to unmap in 1G chunks?
1273 	 */
1274 	while (end - start >= PUD_SIZE) {
1275 
1276 		if (pud_large(*pud))
1277 			pud_clear(pud);
1278 		else
1279 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1280 
1281 		start += PUD_SIZE;
1282 		pud++;
1283 	}
1284 
1285 	/*
1286 	 * 2M leftovers?
1287 	 */
1288 	if (start < end)
1289 		unmap_pmd_range(pud, start, end);
1290 
1291 	/*
1292 	 * No need to try to free the PUD page because we'll free it in
1293 	 * populate_pgd's error path
1294 	 */
1295 }
1296 
1297 static int alloc_pte_page(pmd_t *pmd)
1298 {
1299 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1300 	if (!pte)
1301 		return -1;
1302 
1303 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1304 	return 0;
1305 }
1306 
1307 static int alloc_pmd_page(pud_t *pud)
1308 {
1309 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1310 	if (!pmd)
1311 		return -1;
1312 
1313 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1314 	return 0;
1315 }
1316 
1317 static void populate_pte(struct cpa_data *cpa,
1318 			 unsigned long start, unsigned long end,
1319 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1320 {
1321 	pte_t *pte;
1322 
1323 	pte = pte_offset_kernel(pmd, start);
1324 
1325 	pgprot = pgprot_clear_protnone_bits(pgprot);
1326 
1327 	while (num_pages-- && start < end) {
1328 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1329 
1330 		start	 += PAGE_SIZE;
1331 		cpa->pfn++;
1332 		pte++;
1333 	}
1334 }
1335 
1336 static long populate_pmd(struct cpa_data *cpa,
1337 			 unsigned long start, unsigned long end,
1338 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1339 {
1340 	long cur_pages = 0;
1341 	pmd_t *pmd;
1342 	pgprot_t pmd_pgprot;
1343 
1344 	/*
1345 	 * Not on a 2M boundary?
1346 	 */
1347 	if (start & (PMD_SIZE - 1)) {
1348 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1349 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1350 
1351 		pre_end   = min_t(unsigned long, pre_end, next_page);
1352 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1353 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1354 
1355 		/*
1356 		 * Need a PTE page?
1357 		 */
1358 		pmd = pmd_offset(pud, start);
1359 		if (pmd_none(*pmd))
1360 			if (alloc_pte_page(pmd))
1361 				return -1;
1362 
1363 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1364 
1365 		start = pre_end;
1366 	}
1367 
1368 	/*
1369 	 * We mapped them all?
1370 	 */
1371 	if (num_pages == cur_pages)
1372 		return cur_pages;
1373 
1374 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1375 
1376 	while (end - start >= PMD_SIZE) {
1377 
1378 		/*
1379 		 * We cannot use a 1G page so allocate a PMD page if needed.
1380 		 */
1381 		if (pud_none(*pud))
1382 			if (alloc_pmd_page(pud))
1383 				return -1;
1384 
1385 		pmd = pmd_offset(pud, start);
1386 
1387 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1388 					canon_pgprot(pmd_pgprot))));
1389 
1390 		start	  += PMD_SIZE;
1391 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1392 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1393 	}
1394 
1395 	/*
1396 	 * Map trailing 4K pages.
1397 	 */
1398 	if (start < end) {
1399 		pmd = pmd_offset(pud, start);
1400 		if (pmd_none(*pmd))
1401 			if (alloc_pte_page(pmd))
1402 				return -1;
1403 
1404 		populate_pte(cpa, start, end, num_pages - cur_pages,
1405 			     pmd, pgprot);
1406 	}
1407 	return num_pages;
1408 }
1409 
1410 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1411 			pgprot_t pgprot)
1412 {
1413 	pud_t *pud;
1414 	unsigned long end;
1415 	long cur_pages = 0;
1416 	pgprot_t pud_pgprot;
1417 
1418 	end = start + (cpa->numpages << PAGE_SHIFT);
1419 
1420 	/*
1421 	 * Not on a Gb page boundary? => map everything up to it with
1422 	 * smaller pages.
1423 	 */
1424 	if (start & (PUD_SIZE - 1)) {
1425 		unsigned long pre_end;
1426 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1427 
1428 		pre_end   = min_t(unsigned long, end, next_page);
1429 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1430 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1431 
1432 		pud = pud_offset(p4d, start);
1433 
1434 		/*
1435 		 * Need a PMD page?
1436 		 */
1437 		if (pud_none(*pud))
1438 			if (alloc_pmd_page(pud))
1439 				return -1;
1440 
1441 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1442 					 pud, pgprot);
1443 		if (cur_pages < 0)
1444 			return cur_pages;
1445 
1446 		start = pre_end;
1447 	}
1448 
1449 	/* We mapped them all? */
1450 	if (cpa->numpages == cur_pages)
1451 		return cur_pages;
1452 
1453 	pud = pud_offset(p4d, start);
1454 	pud_pgprot = pgprot_4k_2_large(pgprot);
1455 
1456 	/*
1457 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1458 	 */
1459 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1460 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1461 				   canon_pgprot(pud_pgprot))));
1462 
1463 		start	  += PUD_SIZE;
1464 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1465 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1466 		pud++;
1467 	}
1468 
1469 	/* Map trailing leftover */
1470 	if (start < end) {
1471 		long tmp;
1472 
1473 		pud = pud_offset(p4d, start);
1474 		if (pud_none(*pud))
1475 			if (alloc_pmd_page(pud))
1476 				return -1;
1477 
1478 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1479 				   pud, pgprot);
1480 		if (tmp < 0)
1481 			return cur_pages;
1482 
1483 		cur_pages += tmp;
1484 	}
1485 	return cur_pages;
1486 }
1487 
1488 /*
1489  * Restrictions for kernel page table do not necessarily apply when mapping in
1490  * an alternate PGD.
1491  */
1492 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1493 {
1494 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1495 	pud_t *pud = NULL;	/* shut up gcc */
1496 	p4d_t *p4d;
1497 	pgd_t *pgd_entry;
1498 	long ret;
1499 
1500 	pgd_entry = cpa->pgd + pgd_index(addr);
1501 
1502 	if (pgd_none(*pgd_entry)) {
1503 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1504 		if (!p4d)
1505 			return -1;
1506 
1507 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1508 	}
1509 
1510 	/*
1511 	 * Allocate a PUD page and hand it down for mapping.
1512 	 */
1513 	p4d = p4d_offset(pgd_entry, addr);
1514 	if (p4d_none(*p4d)) {
1515 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1516 		if (!pud)
1517 			return -1;
1518 
1519 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1520 	}
1521 
1522 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1523 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1524 
1525 	ret = populate_pud(cpa, addr, p4d, pgprot);
1526 	if (ret < 0) {
1527 		/*
1528 		 * Leave the PUD page in place in case some other CPU or thread
1529 		 * already found it, but remove any useless entries we just
1530 		 * added to it.
1531 		 */
1532 		unmap_pud_range(p4d, addr,
1533 				addr + (cpa->numpages << PAGE_SHIFT));
1534 		return ret;
1535 	}
1536 
1537 	cpa->numpages = ret;
1538 	return 0;
1539 }
1540 
1541 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1542 			       int primary)
1543 {
1544 	if (cpa->pgd) {
1545 		/*
1546 		 * Right now, we only execute this code path when mapping
1547 		 * the EFI virtual memory map regions, no other users
1548 		 * provide a ->pgd value. This may change in the future.
1549 		 */
1550 		return populate_pgd(cpa, vaddr);
1551 	}
1552 
1553 	/*
1554 	 * Ignore all non primary paths.
1555 	 */
1556 	if (!primary) {
1557 		cpa->numpages = 1;
1558 		return 0;
1559 	}
1560 
1561 	/*
1562 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1563 	 * to have holes.
1564 	 * Also set numpages to '1' indicating that we processed cpa req for
1565 	 * one virtual address page and its pfn. TBD: numpages can be set based
1566 	 * on the initial value and the level returned by lookup_address().
1567 	 */
1568 	if (within(vaddr, PAGE_OFFSET,
1569 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1570 		cpa->numpages = 1;
1571 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1572 		return 0;
1573 
1574 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1575 		/* Faults in the highmap are OK, so do not warn: */
1576 		return -EFAULT;
1577 	} else {
1578 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1579 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1580 			*cpa->vaddr);
1581 
1582 		return -EFAULT;
1583 	}
1584 }
1585 
1586 static int __change_page_attr(struct cpa_data *cpa, int primary)
1587 {
1588 	unsigned long address;
1589 	int do_split, err;
1590 	unsigned int level;
1591 	pte_t *kpte, old_pte;
1592 
1593 	address = __cpa_addr(cpa, cpa->curpage);
1594 repeat:
1595 	kpte = _lookup_address_cpa(cpa, address, &level);
1596 	if (!kpte)
1597 		return __cpa_process_fault(cpa, address, primary);
1598 
1599 	old_pte = *kpte;
1600 	if (pte_none(old_pte))
1601 		return __cpa_process_fault(cpa, address, primary);
1602 
1603 	if (level == PG_LEVEL_4K) {
1604 		pte_t new_pte;
1605 		pgprot_t old_prot = pte_pgprot(old_pte);
1606 		pgprot_t new_prot = pte_pgprot(old_pte);
1607 		unsigned long pfn = pte_pfn(old_pte);
1608 
1609 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1610 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1611 
1612 		cpa_inc_4k_install();
1613 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1614 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1615 					      CPA_PROTECT);
1616 
1617 		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1);
1618 
1619 		new_prot = pgprot_clear_protnone_bits(new_prot);
1620 
1621 		/*
1622 		 * We need to keep the pfn from the existing PTE,
1623 		 * after all we're only going to change it's attributes
1624 		 * not the memory it points to
1625 		 */
1626 		new_pte = pfn_pte(pfn, new_prot);
1627 		cpa->pfn = pfn;
1628 		/*
1629 		 * Do we really change anything ?
1630 		 */
1631 		if (pte_val(old_pte) != pte_val(new_pte)) {
1632 			set_pte_atomic(kpte, new_pte);
1633 			cpa->flags |= CPA_FLUSHTLB;
1634 		}
1635 		cpa->numpages = 1;
1636 		return 0;
1637 	}
1638 
1639 	/*
1640 	 * Check, whether we can keep the large page intact
1641 	 * and just change the pte:
1642 	 */
1643 	do_split = should_split_large_page(kpte, address, cpa);
1644 	/*
1645 	 * When the range fits into the existing large page,
1646 	 * return. cp->numpages and cpa->tlbflush have been updated in
1647 	 * try_large_page:
1648 	 */
1649 	if (do_split <= 0)
1650 		return do_split;
1651 
1652 	/*
1653 	 * We have to split the large page:
1654 	 */
1655 	err = split_large_page(cpa, kpte, address);
1656 	if (!err)
1657 		goto repeat;
1658 
1659 	return err;
1660 }
1661 
1662 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1663 
1664 /*
1665  * Check the directmap and "high kernel map" 'aliases'.
1666  */
1667 static int cpa_process_alias(struct cpa_data *cpa)
1668 {
1669 	struct cpa_data alias_cpa;
1670 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1671 	unsigned long vaddr;
1672 	int ret;
1673 
1674 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1675 		return 0;
1676 
1677 	/*
1678 	 * No need to redo, when the primary call touched the direct
1679 	 * mapping already:
1680 	 */
1681 	vaddr = __cpa_addr(cpa, cpa->curpage);
1682 	if (!(within(vaddr, PAGE_OFFSET,
1683 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1684 
1685 		alias_cpa = *cpa;
1686 		alias_cpa.vaddr = &laddr;
1687 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1688 		alias_cpa.curpage = 0;
1689 
1690 		/* Directmap always has NX set, do not modify. */
1691 		if (__supported_pte_mask & _PAGE_NX) {
1692 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1693 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1694 		}
1695 
1696 		cpa->force_flush_all = 1;
1697 
1698 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1699 		if (ret)
1700 			return ret;
1701 	}
1702 
1703 #ifdef CONFIG_X86_64
1704 	/*
1705 	 * If the primary call didn't touch the high mapping already
1706 	 * and the physical address is inside the kernel map, we need
1707 	 * to touch the high mapped kernel as well:
1708 	 */
1709 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1710 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1711 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1712 					       __START_KERNEL_map - phys_base;
1713 		alias_cpa = *cpa;
1714 		alias_cpa.vaddr = &temp_cpa_vaddr;
1715 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1716 		alias_cpa.curpage = 0;
1717 
1718 		/*
1719 		 * [_text, _brk_end) also covers data, do not modify NX except
1720 		 * in cases where the highmap is the primary target.
1721 		 */
1722 		if (__supported_pte_mask & _PAGE_NX) {
1723 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1724 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1725 		}
1726 
1727 		cpa->force_flush_all = 1;
1728 		/*
1729 		 * The high mapping range is imprecise, so ignore the
1730 		 * return value.
1731 		 */
1732 		__change_page_attr_set_clr(&alias_cpa, 0);
1733 	}
1734 #endif
1735 
1736 	return 0;
1737 }
1738 
1739 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1740 {
1741 	unsigned long numpages = cpa->numpages;
1742 	unsigned long rempages = numpages;
1743 	int ret = 0;
1744 
1745 	/*
1746 	 * No changes, easy!
1747 	 */
1748 	if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1749 	    !cpa->force_split)
1750 		return ret;
1751 
1752 	while (rempages) {
1753 		/*
1754 		 * Store the remaining nr of pages for the large page
1755 		 * preservation check.
1756 		 */
1757 		cpa->numpages = rempages;
1758 		/* for array changes, we can't use large page */
1759 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1760 			cpa->numpages = 1;
1761 
1762 		if (!debug_pagealloc_enabled())
1763 			spin_lock(&cpa_lock);
1764 		ret = __change_page_attr(cpa, primary);
1765 		if (!debug_pagealloc_enabled())
1766 			spin_unlock(&cpa_lock);
1767 		if (ret)
1768 			goto out;
1769 
1770 		if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1771 			ret = cpa_process_alias(cpa);
1772 			if (ret)
1773 				goto out;
1774 		}
1775 
1776 		/*
1777 		 * Adjust the number of pages with the result of the
1778 		 * CPA operation. Either a large page has been
1779 		 * preserved or a single page update happened.
1780 		 */
1781 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1782 		rempages -= cpa->numpages;
1783 		cpa->curpage += cpa->numpages;
1784 	}
1785 
1786 out:
1787 	/* Restore the original numpages */
1788 	cpa->numpages = numpages;
1789 	return ret;
1790 }
1791 
1792 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1793 				    pgprot_t mask_set, pgprot_t mask_clr,
1794 				    int force_split, int in_flag,
1795 				    struct page **pages)
1796 {
1797 	struct cpa_data cpa;
1798 	int ret, cache;
1799 
1800 	memset(&cpa, 0, sizeof(cpa));
1801 
1802 	/*
1803 	 * Check, if we are requested to set a not supported
1804 	 * feature.  Clearing non-supported features is OK.
1805 	 */
1806 	mask_set = canon_pgprot(mask_set);
1807 
1808 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1809 		return 0;
1810 
1811 	/* Ensure we are PAGE_SIZE aligned */
1812 	if (in_flag & CPA_ARRAY) {
1813 		int i;
1814 		for (i = 0; i < numpages; i++) {
1815 			if (addr[i] & ~PAGE_MASK) {
1816 				addr[i] &= PAGE_MASK;
1817 				WARN_ON_ONCE(1);
1818 			}
1819 		}
1820 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1821 		/*
1822 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1823 		 * No need to check in that case
1824 		 */
1825 		if (*addr & ~PAGE_MASK) {
1826 			*addr &= PAGE_MASK;
1827 			/*
1828 			 * People should not be passing in unaligned addresses:
1829 			 */
1830 			WARN_ON_ONCE(1);
1831 		}
1832 	}
1833 
1834 	/* Must avoid aliasing mappings in the highmem code */
1835 	kmap_flush_unused();
1836 
1837 	vm_unmap_aliases();
1838 
1839 	cpa.vaddr = addr;
1840 	cpa.pages = pages;
1841 	cpa.numpages = numpages;
1842 	cpa.mask_set = mask_set;
1843 	cpa.mask_clr = mask_clr;
1844 	cpa.flags = in_flag;
1845 	cpa.curpage = 0;
1846 	cpa.force_split = force_split;
1847 
1848 	ret = __change_page_attr_set_clr(&cpa, 1);
1849 
1850 	/*
1851 	 * Check whether we really changed something:
1852 	 */
1853 	if (!(cpa.flags & CPA_FLUSHTLB))
1854 		goto out;
1855 
1856 	/*
1857 	 * No need to flush, when we did not set any of the caching
1858 	 * attributes:
1859 	 */
1860 	cache = !!pgprot2cachemode(mask_set);
1861 
1862 	/*
1863 	 * On error; flush everything to be sure.
1864 	 */
1865 	if (ret) {
1866 		cpa_flush_all(cache);
1867 		goto out;
1868 	}
1869 
1870 	cpa_flush(&cpa, cache);
1871 out:
1872 	return ret;
1873 }
1874 
1875 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1876 				       pgprot_t mask, int array)
1877 {
1878 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1879 		(array ? CPA_ARRAY : 0), NULL);
1880 }
1881 
1882 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1883 					 pgprot_t mask, int array)
1884 {
1885 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1886 		(array ? CPA_ARRAY : 0), NULL);
1887 }
1888 
1889 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1890 				       pgprot_t mask)
1891 {
1892 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1893 		CPA_PAGES_ARRAY, pages);
1894 }
1895 
1896 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1897 					 pgprot_t mask)
1898 {
1899 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1900 		CPA_PAGES_ARRAY, pages);
1901 }
1902 
1903 /*
1904  * __set_memory_prot is an internal helper for callers that have been passed
1905  * a pgprot_t value from upper layers and a reservation has already been taken.
1906  * If you want to set the pgprot to a specific page protocol, use the
1907  * set_memory_xx() functions.
1908  */
1909 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1910 {
1911 	return change_page_attr_set_clr(&addr, numpages, prot,
1912 					__pgprot(~pgprot_val(prot)), 0, 0,
1913 					NULL);
1914 }
1915 
1916 int _set_memory_uc(unsigned long addr, int numpages)
1917 {
1918 	/*
1919 	 * for now UC MINUS. see comments in ioremap()
1920 	 * If you really need strong UC use ioremap_uc(), but note
1921 	 * that you cannot override IO areas with set_memory_*() as
1922 	 * these helpers cannot work with IO memory.
1923 	 */
1924 	return change_page_attr_set(&addr, numpages,
1925 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1926 				    0);
1927 }
1928 
1929 int set_memory_uc(unsigned long addr, int numpages)
1930 {
1931 	int ret;
1932 
1933 	/*
1934 	 * for now UC MINUS. see comments in ioremap()
1935 	 */
1936 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1937 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1938 	if (ret)
1939 		goto out_err;
1940 
1941 	ret = _set_memory_uc(addr, numpages);
1942 	if (ret)
1943 		goto out_free;
1944 
1945 	return 0;
1946 
1947 out_free:
1948 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1949 out_err:
1950 	return ret;
1951 }
1952 EXPORT_SYMBOL(set_memory_uc);
1953 
1954 int _set_memory_wc(unsigned long addr, int numpages)
1955 {
1956 	int ret;
1957 
1958 	ret = change_page_attr_set(&addr, numpages,
1959 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1960 				   0);
1961 	if (!ret) {
1962 		ret = change_page_attr_set_clr(&addr, numpages,
1963 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1964 					       __pgprot(_PAGE_CACHE_MASK),
1965 					       0, 0, NULL);
1966 	}
1967 	return ret;
1968 }
1969 
1970 int set_memory_wc(unsigned long addr, int numpages)
1971 {
1972 	int ret;
1973 
1974 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1975 		_PAGE_CACHE_MODE_WC, NULL);
1976 	if (ret)
1977 		return ret;
1978 
1979 	ret = _set_memory_wc(addr, numpages);
1980 	if (ret)
1981 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1982 
1983 	return ret;
1984 }
1985 EXPORT_SYMBOL(set_memory_wc);
1986 
1987 int _set_memory_wt(unsigned long addr, int numpages)
1988 {
1989 	return change_page_attr_set(&addr, numpages,
1990 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1991 }
1992 
1993 int _set_memory_wb(unsigned long addr, int numpages)
1994 {
1995 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1996 	return change_page_attr_clear(&addr, numpages,
1997 				      __pgprot(_PAGE_CACHE_MASK), 0);
1998 }
1999 
2000 int set_memory_wb(unsigned long addr, int numpages)
2001 {
2002 	int ret;
2003 
2004 	ret = _set_memory_wb(addr, numpages);
2005 	if (ret)
2006 		return ret;
2007 
2008 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2009 	return 0;
2010 }
2011 EXPORT_SYMBOL(set_memory_wb);
2012 
2013 /* Prevent speculative access to a page by marking it not-present */
2014 #ifdef CONFIG_X86_64
2015 int set_mce_nospec(unsigned long pfn)
2016 {
2017 	unsigned long decoy_addr;
2018 	int rc;
2019 
2020 	/* SGX pages are not in the 1:1 map */
2021 	if (arch_is_platform_page(pfn << PAGE_SHIFT))
2022 		return 0;
2023 	/*
2024 	 * We would like to just call:
2025 	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2026 	 * but doing that would radically increase the odds of a
2027 	 * speculative access to the poison page because we'd have
2028 	 * the virtual address of the kernel 1:1 mapping sitting
2029 	 * around in registers.
2030 	 * Instead we get tricky.  We create a non-canonical address
2031 	 * that looks just like the one we want, but has bit 63 flipped.
2032 	 * This relies on set_memory_XX() properly sanitizing any __pa()
2033 	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2034 	 */
2035 	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2036 
2037 	rc = set_memory_np(decoy_addr, 1);
2038 	if (rc)
2039 		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2040 	return rc;
2041 }
2042 
2043 static int set_memory_p(unsigned long *addr, int numpages)
2044 {
2045 	return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2046 }
2047 
2048 /* Restore full speculative operation to the pfn. */
2049 int clear_mce_nospec(unsigned long pfn)
2050 {
2051 	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2052 
2053 	return set_memory_p(&addr, 1);
2054 }
2055 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2056 #endif /* CONFIG_X86_64 */
2057 
2058 int set_memory_x(unsigned long addr, int numpages)
2059 {
2060 	if (!(__supported_pte_mask & _PAGE_NX))
2061 		return 0;
2062 
2063 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2064 }
2065 
2066 int set_memory_nx(unsigned long addr, int numpages)
2067 {
2068 	if (!(__supported_pte_mask & _PAGE_NX))
2069 		return 0;
2070 
2071 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2072 }
2073 
2074 int set_memory_ro(unsigned long addr, int numpages)
2075 {
2076 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
2077 }
2078 
2079 int set_memory_rox(unsigned long addr, int numpages)
2080 {
2081 	pgprot_t clr = __pgprot(_PAGE_RW);
2082 
2083 	if (__supported_pte_mask & _PAGE_NX)
2084 		clr.pgprot |= _PAGE_NX;
2085 
2086 	return change_page_attr_clear(&addr, numpages, clr, 0);
2087 }
2088 
2089 int set_memory_rw(unsigned long addr, int numpages)
2090 {
2091 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2092 }
2093 
2094 int set_memory_np(unsigned long addr, int numpages)
2095 {
2096 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2097 }
2098 
2099 int set_memory_np_noalias(unsigned long addr, int numpages)
2100 {
2101 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2102 					__pgprot(_PAGE_PRESENT), 0,
2103 					CPA_NO_CHECK_ALIAS, NULL);
2104 }
2105 
2106 int set_memory_4k(unsigned long addr, int numpages)
2107 {
2108 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2109 					__pgprot(0), 1, 0, NULL);
2110 }
2111 
2112 int set_memory_nonglobal(unsigned long addr, int numpages)
2113 {
2114 	return change_page_attr_clear(&addr, numpages,
2115 				      __pgprot(_PAGE_GLOBAL), 0);
2116 }
2117 
2118 int set_memory_global(unsigned long addr, int numpages)
2119 {
2120 	return change_page_attr_set(&addr, numpages,
2121 				    __pgprot(_PAGE_GLOBAL), 0);
2122 }
2123 
2124 /*
2125  * __set_memory_enc_pgtable() is used for the hypervisors that get
2126  * informed about "encryption" status via page tables.
2127  */
2128 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2129 {
2130 	pgprot_t empty = __pgprot(0);
2131 	struct cpa_data cpa;
2132 	int ret;
2133 
2134 	/* Should not be working on unaligned addresses */
2135 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2136 		addr &= PAGE_MASK;
2137 
2138 	memset(&cpa, 0, sizeof(cpa));
2139 	cpa.vaddr = &addr;
2140 	cpa.numpages = numpages;
2141 	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2142 	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2143 	cpa.pgd = init_mm.pgd;
2144 
2145 	/* Must avoid aliasing mappings in the highmem code */
2146 	kmap_flush_unused();
2147 	vm_unmap_aliases();
2148 
2149 	/* Flush the caches as needed before changing the encryption attribute. */
2150 	if (x86_platform.guest.enc_tlb_flush_required(enc))
2151 		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2152 
2153 	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2154 	x86_platform.guest.enc_status_change_prepare(addr, numpages, enc);
2155 
2156 	ret = __change_page_attr_set_clr(&cpa, 1);
2157 
2158 	/*
2159 	 * After changing the encryption attribute, we need to flush TLBs again
2160 	 * in case any speculative TLB caching occurred (but no need to flush
2161 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2162 	 * flushing gets optimized in the cpa_flush() path use the same logic
2163 	 * as above.
2164 	 */
2165 	cpa_flush(&cpa, 0);
2166 
2167 	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2168 	if (!ret) {
2169 		if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2170 			ret = -EIO;
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2177 {
2178 	if (hv_is_isolation_supported())
2179 		return hv_set_mem_host_visibility(addr, numpages, !enc);
2180 
2181 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2182 		return __set_memory_enc_pgtable(addr, numpages, enc);
2183 
2184 	return 0;
2185 }
2186 
2187 int set_memory_encrypted(unsigned long addr, int numpages)
2188 {
2189 	return __set_memory_enc_dec(addr, numpages, true);
2190 }
2191 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2192 
2193 int set_memory_decrypted(unsigned long addr, int numpages)
2194 {
2195 	return __set_memory_enc_dec(addr, numpages, false);
2196 }
2197 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2198 
2199 int set_pages_uc(struct page *page, int numpages)
2200 {
2201 	unsigned long addr = (unsigned long)page_address(page);
2202 
2203 	return set_memory_uc(addr, numpages);
2204 }
2205 EXPORT_SYMBOL(set_pages_uc);
2206 
2207 static int _set_pages_array(struct page **pages, int numpages,
2208 		enum page_cache_mode new_type)
2209 {
2210 	unsigned long start;
2211 	unsigned long end;
2212 	enum page_cache_mode set_type;
2213 	int i;
2214 	int free_idx;
2215 	int ret;
2216 
2217 	for (i = 0; i < numpages; i++) {
2218 		if (PageHighMem(pages[i]))
2219 			continue;
2220 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2221 		end = start + PAGE_SIZE;
2222 		if (memtype_reserve(start, end, new_type, NULL))
2223 			goto err_out;
2224 	}
2225 
2226 	/* If WC, set to UC- first and then WC */
2227 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2228 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2229 
2230 	ret = cpa_set_pages_array(pages, numpages,
2231 				  cachemode2pgprot(set_type));
2232 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2233 		ret = change_page_attr_set_clr(NULL, numpages,
2234 					       cachemode2pgprot(
2235 						_PAGE_CACHE_MODE_WC),
2236 					       __pgprot(_PAGE_CACHE_MASK),
2237 					       0, CPA_PAGES_ARRAY, pages);
2238 	if (ret)
2239 		goto err_out;
2240 	return 0; /* Success */
2241 err_out:
2242 	free_idx = i;
2243 	for (i = 0; i < free_idx; i++) {
2244 		if (PageHighMem(pages[i]))
2245 			continue;
2246 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2247 		end = start + PAGE_SIZE;
2248 		memtype_free(start, end);
2249 	}
2250 	return -EINVAL;
2251 }
2252 
2253 int set_pages_array_uc(struct page **pages, int numpages)
2254 {
2255 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2256 }
2257 EXPORT_SYMBOL(set_pages_array_uc);
2258 
2259 int set_pages_array_wc(struct page **pages, int numpages)
2260 {
2261 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2262 }
2263 EXPORT_SYMBOL(set_pages_array_wc);
2264 
2265 int set_pages_wb(struct page *page, int numpages)
2266 {
2267 	unsigned long addr = (unsigned long)page_address(page);
2268 
2269 	return set_memory_wb(addr, numpages);
2270 }
2271 EXPORT_SYMBOL(set_pages_wb);
2272 
2273 int set_pages_array_wb(struct page **pages, int numpages)
2274 {
2275 	int retval;
2276 	unsigned long start;
2277 	unsigned long end;
2278 	int i;
2279 
2280 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2281 	retval = cpa_clear_pages_array(pages, numpages,
2282 			__pgprot(_PAGE_CACHE_MASK));
2283 	if (retval)
2284 		return retval;
2285 
2286 	for (i = 0; i < numpages; i++) {
2287 		if (PageHighMem(pages[i]))
2288 			continue;
2289 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2290 		end = start + PAGE_SIZE;
2291 		memtype_free(start, end);
2292 	}
2293 
2294 	return 0;
2295 }
2296 EXPORT_SYMBOL(set_pages_array_wb);
2297 
2298 int set_pages_ro(struct page *page, int numpages)
2299 {
2300 	unsigned long addr = (unsigned long)page_address(page);
2301 
2302 	return set_memory_ro(addr, numpages);
2303 }
2304 
2305 int set_pages_rw(struct page *page, int numpages)
2306 {
2307 	unsigned long addr = (unsigned long)page_address(page);
2308 
2309 	return set_memory_rw(addr, numpages);
2310 }
2311 
2312 static int __set_pages_p(struct page *page, int numpages)
2313 {
2314 	unsigned long tempaddr = (unsigned long) page_address(page);
2315 	struct cpa_data cpa = { .vaddr = &tempaddr,
2316 				.pgd = NULL,
2317 				.numpages = numpages,
2318 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2319 				.mask_clr = __pgprot(0),
2320 				.flags = CPA_NO_CHECK_ALIAS };
2321 
2322 	/*
2323 	 * No alias checking needed for setting present flag. otherwise,
2324 	 * we may need to break large pages for 64-bit kernel text
2325 	 * mappings (this adds to complexity if we want to do this from
2326 	 * atomic context especially). Let's keep it simple!
2327 	 */
2328 	return __change_page_attr_set_clr(&cpa, 1);
2329 }
2330 
2331 static int __set_pages_np(struct page *page, int numpages)
2332 {
2333 	unsigned long tempaddr = (unsigned long) page_address(page);
2334 	struct cpa_data cpa = { .vaddr = &tempaddr,
2335 				.pgd = NULL,
2336 				.numpages = numpages,
2337 				.mask_set = __pgprot(0),
2338 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2339 				.flags = CPA_NO_CHECK_ALIAS };
2340 
2341 	/*
2342 	 * No alias checking needed for setting not present flag. otherwise,
2343 	 * we may need to break large pages for 64-bit kernel text
2344 	 * mappings (this adds to complexity if we want to do this from
2345 	 * atomic context especially). Let's keep it simple!
2346 	 */
2347 	return __change_page_attr_set_clr(&cpa, 1);
2348 }
2349 
2350 int set_direct_map_invalid_noflush(struct page *page)
2351 {
2352 	return __set_pages_np(page, 1);
2353 }
2354 
2355 int set_direct_map_default_noflush(struct page *page)
2356 {
2357 	return __set_pages_p(page, 1);
2358 }
2359 
2360 #ifdef CONFIG_DEBUG_PAGEALLOC
2361 void __kernel_map_pages(struct page *page, int numpages, int enable)
2362 {
2363 	if (PageHighMem(page))
2364 		return;
2365 	if (!enable) {
2366 		debug_check_no_locks_freed(page_address(page),
2367 					   numpages * PAGE_SIZE);
2368 	}
2369 
2370 	/*
2371 	 * The return value is ignored as the calls cannot fail.
2372 	 * Large pages for identity mappings are not used at boot time
2373 	 * and hence no memory allocations during large page split.
2374 	 */
2375 	if (enable)
2376 		__set_pages_p(page, numpages);
2377 	else
2378 		__set_pages_np(page, numpages);
2379 
2380 	/*
2381 	 * We should perform an IPI and flush all tlbs,
2382 	 * but that can deadlock->flush only current cpu.
2383 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2384 	 * CR3 reload in __native_flush_tlb().
2385 	 */
2386 	preempt_disable();
2387 	__flush_tlb_all();
2388 	preempt_enable();
2389 
2390 	arch_flush_lazy_mmu_mode();
2391 }
2392 #endif /* CONFIG_DEBUG_PAGEALLOC */
2393 
2394 bool kernel_page_present(struct page *page)
2395 {
2396 	unsigned int level;
2397 	pte_t *pte;
2398 
2399 	if (PageHighMem(page))
2400 		return false;
2401 
2402 	pte = lookup_address((unsigned long)page_address(page), &level);
2403 	return (pte_val(*pte) & _PAGE_PRESENT);
2404 }
2405 
2406 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2407 				   unsigned numpages, unsigned long page_flags)
2408 {
2409 	int retval = -EINVAL;
2410 
2411 	struct cpa_data cpa = {
2412 		.vaddr = &address,
2413 		.pfn = pfn,
2414 		.pgd = pgd,
2415 		.numpages = numpages,
2416 		.mask_set = __pgprot(0),
2417 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2418 		.flags = CPA_NO_CHECK_ALIAS,
2419 	};
2420 
2421 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2422 
2423 	if (!(__supported_pte_mask & _PAGE_NX))
2424 		goto out;
2425 
2426 	if (!(page_flags & _PAGE_ENC))
2427 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2428 
2429 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2430 
2431 	retval = __change_page_attr_set_clr(&cpa, 1);
2432 	__flush_tlb_all();
2433 
2434 out:
2435 	return retval;
2436 }
2437 
2438 /*
2439  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2440  * function shouldn't be used in an SMP environment. Presently, it's used only
2441  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2442  */
2443 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2444 				     unsigned long numpages)
2445 {
2446 	int retval;
2447 
2448 	/*
2449 	 * The typical sequence for unmapping is to find a pte through
2450 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2451 	 * the address is already mapped) and change it's protections. As pfn is
2452 	 * the *target* of a mapping, it's not useful while unmapping.
2453 	 */
2454 	struct cpa_data cpa = {
2455 		.vaddr		= &address,
2456 		.pfn		= 0,
2457 		.pgd		= pgd,
2458 		.numpages	= numpages,
2459 		.mask_set	= __pgprot(0),
2460 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2461 		.flags		= CPA_NO_CHECK_ALIAS,
2462 	};
2463 
2464 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2465 
2466 	retval = __change_page_attr_set_clr(&cpa, 1);
2467 	__flush_tlb_all();
2468 
2469 	return retval;
2470 }
2471 
2472 /*
2473  * The testcases use internal knowledge of the implementation that shouldn't
2474  * be exposed to the rest of the kernel. Include these directly here.
2475  */
2476 #ifdef CONFIG_CPA_DEBUG
2477 #include "cpa-test.c"
2478 #endif
2479