1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002 Andi Kleen, SuSE Labs. 4 * Thanks to Ben LaHaise for precious feedback. 5 */ 6 #include <linux/highmem.h> 7 #include <linux/memblock.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/interrupt.h> 11 #include <linux/seq_file.h> 12 #include <linux/proc_fs.h> 13 #include <linux/debugfs.h> 14 #include <linux/pfn.h> 15 #include <linux/percpu.h> 16 #include <linux/gfp.h> 17 #include <linux/pci.h> 18 #include <linux/vmalloc.h> 19 #include <linux/libnvdimm.h> 20 #include <linux/vmstat.h> 21 #include <linux/kernel.h> 22 #include <linux/cc_platform.h> 23 #include <linux/set_memory.h> 24 #include <linux/memregion.h> 25 26 #include <asm/e820/api.h> 27 #include <asm/processor.h> 28 #include <asm/tlbflush.h> 29 #include <asm/sections.h> 30 #include <asm/setup.h> 31 #include <linux/uaccess.h> 32 #include <asm/pgalloc.h> 33 #include <asm/proto.h> 34 #include <asm/memtype.h> 35 #include <asm/hyperv-tlfs.h> 36 #include <asm/mshyperv.h> 37 38 #include "../mm_internal.h" 39 40 /* 41 * The current flushing context - we pass it instead of 5 arguments: 42 */ 43 struct cpa_data { 44 unsigned long *vaddr; 45 pgd_t *pgd; 46 pgprot_t mask_set; 47 pgprot_t mask_clr; 48 unsigned long numpages; 49 unsigned long curpage; 50 unsigned long pfn; 51 unsigned int flags; 52 unsigned int force_split : 1, 53 force_static_prot : 1, 54 force_flush_all : 1; 55 struct page **pages; 56 }; 57 58 enum cpa_warn { 59 CPA_CONFLICT, 60 CPA_PROTECT, 61 CPA_DETECT, 62 }; 63 64 static const int cpa_warn_level = CPA_PROTECT; 65 66 /* 67 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) 68 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb 69 * entries change the page attribute in parallel to some other cpu 70 * splitting a large page entry along with changing the attribute. 71 */ 72 static DEFINE_SPINLOCK(cpa_lock); 73 74 #define CPA_FLUSHTLB 1 75 #define CPA_ARRAY 2 76 #define CPA_PAGES_ARRAY 4 77 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ 78 79 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm) 80 { 81 return __pgprot(cachemode2protval(pcm)); 82 } 83 84 #ifdef CONFIG_PROC_FS 85 static unsigned long direct_pages_count[PG_LEVEL_NUM]; 86 87 void update_page_count(int level, unsigned long pages) 88 { 89 /* Protect against CPA */ 90 spin_lock(&pgd_lock); 91 direct_pages_count[level] += pages; 92 spin_unlock(&pgd_lock); 93 } 94 95 static void split_page_count(int level) 96 { 97 if (direct_pages_count[level] == 0) 98 return; 99 100 direct_pages_count[level]--; 101 if (system_state == SYSTEM_RUNNING) { 102 if (level == PG_LEVEL_2M) 103 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT); 104 else if (level == PG_LEVEL_1G) 105 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT); 106 } 107 direct_pages_count[level - 1] += PTRS_PER_PTE; 108 } 109 110 void arch_report_meminfo(struct seq_file *m) 111 { 112 seq_printf(m, "DirectMap4k: %8lu kB\n", 113 direct_pages_count[PG_LEVEL_4K] << 2); 114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 115 seq_printf(m, "DirectMap2M: %8lu kB\n", 116 direct_pages_count[PG_LEVEL_2M] << 11); 117 #else 118 seq_printf(m, "DirectMap4M: %8lu kB\n", 119 direct_pages_count[PG_LEVEL_2M] << 12); 120 #endif 121 if (direct_gbpages) 122 seq_printf(m, "DirectMap1G: %8lu kB\n", 123 direct_pages_count[PG_LEVEL_1G] << 20); 124 } 125 #else 126 static inline void split_page_count(int level) { } 127 #endif 128 129 #ifdef CONFIG_X86_CPA_STATISTICS 130 131 static unsigned long cpa_1g_checked; 132 static unsigned long cpa_1g_sameprot; 133 static unsigned long cpa_1g_preserved; 134 static unsigned long cpa_2m_checked; 135 static unsigned long cpa_2m_sameprot; 136 static unsigned long cpa_2m_preserved; 137 static unsigned long cpa_4k_install; 138 139 static inline void cpa_inc_1g_checked(void) 140 { 141 cpa_1g_checked++; 142 } 143 144 static inline void cpa_inc_2m_checked(void) 145 { 146 cpa_2m_checked++; 147 } 148 149 static inline void cpa_inc_4k_install(void) 150 { 151 data_race(cpa_4k_install++); 152 } 153 154 static inline void cpa_inc_lp_sameprot(int level) 155 { 156 if (level == PG_LEVEL_1G) 157 cpa_1g_sameprot++; 158 else 159 cpa_2m_sameprot++; 160 } 161 162 static inline void cpa_inc_lp_preserved(int level) 163 { 164 if (level == PG_LEVEL_1G) 165 cpa_1g_preserved++; 166 else 167 cpa_2m_preserved++; 168 } 169 170 static int cpastats_show(struct seq_file *m, void *p) 171 { 172 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); 173 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); 174 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); 175 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); 176 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); 177 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); 178 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); 179 return 0; 180 } 181 182 static int cpastats_open(struct inode *inode, struct file *file) 183 { 184 return single_open(file, cpastats_show, NULL); 185 } 186 187 static const struct file_operations cpastats_fops = { 188 .open = cpastats_open, 189 .read = seq_read, 190 .llseek = seq_lseek, 191 .release = single_release, 192 }; 193 194 static int __init cpa_stats_init(void) 195 { 196 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, 197 &cpastats_fops); 198 return 0; 199 } 200 late_initcall(cpa_stats_init); 201 #else 202 static inline void cpa_inc_1g_checked(void) { } 203 static inline void cpa_inc_2m_checked(void) { } 204 static inline void cpa_inc_4k_install(void) { } 205 static inline void cpa_inc_lp_sameprot(int level) { } 206 static inline void cpa_inc_lp_preserved(int level) { } 207 #endif 208 209 210 static inline int 211 within(unsigned long addr, unsigned long start, unsigned long end) 212 { 213 return addr >= start && addr < end; 214 } 215 216 static inline int 217 within_inclusive(unsigned long addr, unsigned long start, unsigned long end) 218 { 219 return addr >= start && addr <= end; 220 } 221 222 #ifdef CONFIG_X86_64 223 224 /* 225 * The kernel image is mapped into two places in the virtual address space 226 * (addresses without KASLR, of course): 227 * 228 * 1. The kernel direct map (0xffff880000000000) 229 * 2. The "high kernel map" (0xffffffff81000000) 230 * 231 * We actually execute out of #2. If we get the address of a kernel symbol, it 232 * points to #2, but almost all physical-to-virtual translations point to #1. 233 * 234 * This is so that we can have both a directmap of all physical memory *and* 235 * take full advantage of the limited (s32) immediate addressing range (2G) 236 * of x86_64. 237 * 238 * See Documentation/arch/x86/x86_64/mm.rst for more detail. 239 */ 240 241 static inline unsigned long highmap_start_pfn(void) 242 { 243 return __pa_symbol(_text) >> PAGE_SHIFT; 244 } 245 246 static inline unsigned long highmap_end_pfn(void) 247 { 248 /* Do not reference physical address outside the kernel. */ 249 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; 250 } 251 252 static bool __cpa_pfn_in_highmap(unsigned long pfn) 253 { 254 /* 255 * Kernel text has an alias mapping at a high address, known 256 * here as "highmap". 257 */ 258 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); 259 } 260 261 #else 262 263 static bool __cpa_pfn_in_highmap(unsigned long pfn) 264 { 265 /* There is no highmap on 32-bit */ 266 return false; 267 } 268 269 #endif 270 271 /* 272 * See set_mce_nospec(). 273 * 274 * Machine check recovery code needs to change cache mode of poisoned pages to 275 * UC to avoid speculative access logging another error. But passing the 276 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a 277 * speculative access. So we cheat and flip the top bit of the address. This 278 * works fine for the code that updates the page tables. But at the end of the 279 * process we need to flush the TLB and cache and the non-canonical address 280 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. 281 * 282 * But in the common case we already have a canonical address. This code 283 * will fix the top bit if needed and is a no-op otherwise. 284 */ 285 static inline unsigned long fix_addr(unsigned long addr) 286 { 287 #ifdef CONFIG_X86_64 288 return (long)(addr << 1) >> 1; 289 #else 290 return addr; 291 #endif 292 } 293 294 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) 295 { 296 if (cpa->flags & CPA_PAGES_ARRAY) { 297 struct page *page = cpa->pages[idx]; 298 299 if (unlikely(PageHighMem(page))) 300 return 0; 301 302 return (unsigned long)page_address(page); 303 } 304 305 if (cpa->flags & CPA_ARRAY) 306 return cpa->vaddr[idx]; 307 308 return *cpa->vaddr + idx * PAGE_SIZE; 309 } 310 311 /* 312 * Flushing functions 313 */ 314 315 static void clflush_cache_range_opt(void *vaddr, unsigned int size) 316 { 317 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; 318 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); 319 void *vend = vaddr + size; 320 321 if (p >= vend) 322 return; 323 324 for (; p < vend; p += clflush_size) 325 clflushopt(p); 326 } 327 328 /** 329 * clflush_cache_range - flush a cache range with clflush 330 * @vaddr: virtual start address 331 * @size: number of bytes to flush 332 * 333 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or 334 * SFENCE to avoid ordering issues. 335 */ 336 void clflush_cache_range(void *vaddr, unsigned int size) 337 { 338 mb(); 339 clflush_cache_range_opt(vaddr, size); 340 mb(); 341 } 342 EXPORT_SYMBOL_GPL(clflush_cache_range); 343 344 #ifdef CONFIG_ARCH_HAS_PMEM_API 345 void arch_invalidate_pmem(void *addr, size_t size) 346 { 347 clflush_cache_range(addr, size); 348 } 349 EXPORT_SYMBOL_GPL(arch_invalidate_pmem); 350 #endif 351 352 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION 353 bool cpu_cache_has_invalidate_memregion(void) 354 { 355 return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR); 356 } 357 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM); 358 359 int cpu_cache_invalidate_memregion(int res_desc) 360 { 361 if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion())) 362 return -ENXIO; 363 wbinvd_on_all_cpus(); 364 return 0; 365 } 366 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM); 367 #endif 368 369 static void __cpa_flush_all(void *arg) 370 { 371 unsigned long cache = (unsigned long)arg; 372 373 /* 374 * Flush all to work around Errata in early athlons regarding 375 * large page flushing. 376 */ 377 __flush_tlb_all(); 378 379 if (cache && boot_cpu_data.x86 >= 4) 380 wbinvd(); 381 } 382 383 static void cpa_flush_all(unsigned long cache) 384 { 385 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 386 387 on_each_cpu(__cpa_flush_all, (void *) cache, 1); 388 } 389 390 static void __cpa_flush_tlb(void *data) 391 { 392 struct cpa_data *cpa = data; 393 unsigned int i; 394 395 for (i = 0; i < cpa->numpages; i++) 396 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); 397 } 398 399 static void cpa_flush(struct cpa_data *data, int cache) 400 { 401 struct cpa_data *cpa = data; 402 unsigned int i; 403 404 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); 405 406 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { 407 cpa_flush_all(cache); 408 return; 409 } 410 411 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling) 412 flush_tlb_all(); 413 else 414 on_each_cpu(__cpa_flush_tlb, cpa, 1); 415 416 if (!cache) 417 return; 418 419 mb(); 420 for (i = 0; i < cpa->numpages; i++) { 421 unsigned long addr = __cpa_addr(cpa, i); 422 unsigned int level; 423 424 pte_t *pte = lookup_address(addr, &level); 425 426 /* 427 * Only flush present addresses: 428 */ 429 if (pte && (pte_val(*pte) & _PAGE_PRESENT)) 430 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); 431 } 432 mb(); 433 } 434 435 static bool overlaps(unsigned long r1_start, unsigned long r1_end, 436 unsigned long r2_start, unsigned long r2_end) 437 { 438 return (r1_start <= r2_end && r1_end >= r2_start) || 439 (r2_start <= r1_end && r2_end >= r1_start); 440 } 441 442 #ifdef CONFIG_PCI_BIOS 443 /* 444 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS 445 * based config access (CONFIG_PCI_GOBIOS) support. 446 */ 447 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN) 448 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) 449 450 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 451 { 452 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) 453 return _PAGE_NX; 454 return 0; 455 } 456 #else 457 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) 458 { 459 return 0; 460 } 461 #endif 462 463 /* 464 * The .rodata section needs to be read-only. Using the pfn catches all 465 * aliases. This also includes __ro_after_init, so do not enforce until 466 * kernel_set_to_readonly is true. 467 */ 468 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) 469 { 470 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); 471 472 /* 473 * Note: __end_rodata is at page aligned and not inclusive, so 474 * subtract 1 to get the last enforced PFN in the rodata area. 475 */ 476 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; 477 478 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) 479 return _PAGE_RW; 480 return 0; 481 } 482 483 /* 484 * Protect kernel text against becoming non executable by forbidding 485 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) 486 * out of which the kernel actually executes. Do not protect the low 487 * mapping. 488 * 489 * This does not cover __inittext since that is gone after boot. 490 */ 491 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) 492 { 493 unsigned long t_end = (unsigned long)_etext - 1; 494 unsigned long t_start = (unsigned long)_text; 495 496 if (overlaps(start, end, t_start, t_end)) 497 return _PAGE_NX; 498 return 0; 499 } 500 501 #if defined(CONFIG_X86_64) 502 /* 503 * Once the kernel maps the text as RO (kernel_set_to_readonly is set), 504 * kernel text mappings for the large page aligned text, rodata sections 505 * will be always read-only. For the kernel identity mappings covering the 506 * holes caused by this alignment can be anything that user asks. 507 * 508 * This will preserve the large page mappings for kernel text/data at no 509 * extra cost. 510 */ 511 static pgprotval_t protect_kernel_text_ro(unsigned long start, 512 unsigned long end) 513 { 514 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; 515 unsigned long t_start = (unsigned long)_text; 516 unsigned int level; 517 518 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) 519 return 0; 520 /* 521 * Don't enforce the !RW mapping for the kernel text mapping, if 522 * the current mapping is already using small page mapping. No 523 * need to work hard to preserve large page mappings in this case. 524 * 525 * This also fixes the Linux Xen paravirt guest boot failure caused 526 * by unexpected read-only mappings for kernel identity 527 * mappings. In this paravirt guest case, the kernel text mapping 528 * and the kernel identity mapping share the same page-table pages, 529 * so the protections for kernel text and identity mappings have to 530 * be the same. 531 */ 532 if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) 533 return _PAGE_RW; 534 return 0; 535 } 536 #else 537 static pgprotval_t protect_kernel_text_ro(unsigned long start, 538 unsigned long end) 539 { 540 return 0; 541 } 542 #endif 543 544 static inline bool conflicts(pgprot_t prot, pgprotval_t val) 545 { 546 return (pgprot_val(prot) & ~val) != pgprot_val(prot); 547 } 548 549 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, 550 unsigned long start, unsigned long end, 551 unsigned long pfn, const char *txt) 552 { 553 static const char *lvltxt[] = { 554 [CPA_CONFLICT] = "conflict", 555 [CPA_PROTECT] = "protect", 556 [CPA_DETECT] = "detect", 557 }; 558 559 if (warnlvl > cpa_warn_level || !conflicts(prot, val)) 560 return; 561 562 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", 563 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), 564 (unsigned long long)val); 565 } 566 567 /* 568 * Certain areas of memory on x86 require very specific protection flags, 569 * for example the BIOS area or kernel text. Callers don't always get this 570 * right (again, ioremap() on BIOS memory is not uncommon) so this function 571 * checks and fixes these known static required protection bits. 572 */ 573 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, 574 unsigned long pfn, unsigned long npg, 575 unsigned long lpsize, int warnlvl) 576 { 577 pgprotval_t forbidden, res; 578 unsigned long end; 579 580 /* 581 * There is no point in checking RW/NX conflicts when the requested 582 * mapping is setting the page !PRESENT. 583 */ 584 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 585 return prot; 586 587 /* Operate on the virtual address */ 588 end = start + npg * PAGE_SIZE - 1; 589 590 res = protect_kernel_text(start, end); 591 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); 592 forbidden = res; 593 594 /* 595 * Special case to preserve a large page. If the change spawns the 596 * full large page mapping then there is no point to split it 597 * up. Happens with ftrace and is going to be removed once ftrace 598 * switched to text_poke(). 599 */ 600 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { 601 res = protect_kernel_text_ro(start, end); 602 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); 603 forbidden |= res; 604 } 605 606 /* Check the PFN directly */ 607 res = protect_pci_bios(pfn, pfn + npg - 1); 608 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); 609 forbidden |= res; 610 611 res = protect_rodata(pfn, pfn + npg - 1); 612 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); 613 forbidden |= res; 614 615 return __pgprot(pgprot_val(prot) & ~forbidden); 616 } 617 618 /* 619 * Validate strict W^X semantics. 620 */ 621 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start, 622 unsigned long pfn, unsigned long npg, 623 bool nx, bool rw) 624 { 625 unsigned long end; 626 627 /* 628 * 32-bit has some unfixable W+X issues, like EFI code 629 * and writeable data being in the same page. Disable 630 * detection and enforcement there. 631 */ 632 if (IS_ENABLED(CONFIG_X86_32)) 633 return new; 634 635 /* Only verify when NX is supported: */ 636 if (!(__supported_pte_mask & _PAGE_NX)) 637 return new; 638 639 if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX))) 640 return new; 641 642 if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW) 643 return new; 644 645 /* Non-leaf translation entries can disable writing or execution. */ 646 if (!rw || nx) 647 return new; 648 649 end = start + npg * PAGE_SIZE - 1; 650 WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n", 651 (unsigned long long)pgprot_val(old), 652 (unsigned long long)pgprot_val(new), 653 start, end, pfn); 654 655 /* 656 * For now, allow all permission change attempts by returning the 657 * attempted permissions. This can 'return old' to actively 658 * refuse the permission change at a later time. 659 */ 660 return new; 661 } 662 663 /* 664 * Lookup the page table entry for a virtual address in a specific pgd. 665 * Return a pointer to the entry (or NULL if the entry does not exist), 666 * the level of the entry, and the effective NX and RW bits of all 667 * page table levels. 668 */ 669 pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address, 670 unsigned int *level, bool *nx, bool *rw) 671 { 672 p4d_t *p4d; 673 pud_t *pud; 674 pmd_t *pmd; 675 676 *level = PG_LEVEL_256T; 677 *nx = false; 678 *rw = true; 679 680 if (pgd_none(*pgd)) 681 return NULL; 682 683 *level = PG_LEVEL_512G; 684 *nx |= pgd_flags(*pgd) & _PAGE_NX; 685 *rw &= pgd_flags(*pgd) & _PAGE_RW; 686 687 p4d = p4d_offset(pgd, address); 688 if (p4d_none(*p4d)) 689 return NULL; 690 691 if (p4d_leaf(*p4d) || !p4d_present(*p4d)) 692 return (pte_t *)p4d; 693 694 *level = PG_LEVEL_1G; 695 *nx |= p4d_flags(*p4d) & _PAGE_NX; 696 *rw &= p4d_flags(*p4d) & _PAGE_RW; 697 698 pud = pud_offset(p4d, address); 699 if (pud_none(*pud)) 700 return NULL; 701 702 if (pud_leaf(*pud) || !pud_present(*pud)) 703 return (pte_t *)pud; 704 705 *level = PG_LEVEL_2M; 706 *nx |= pud_flags(*pud) & _PAGE_NX; 707 *rw &= pud_flags(*pud) & _PAGE_RW; 708 709 pmd = pmd_offset(pud, address); 710 if (pmd_none(*pmd)) 711 return NULL; 712 713 if (pmd_leaf(*pmd) || !pmd_present(*pmd)) 714 return (pte_t *)pmd; 715 716 *level = PG_LEVEL_4K; 717 *nx |= pmd_flags(*pmd) & _PAGE_NX; 718 *rw &= pmd_flags(*pmd) & _PAGE_RW; 719 720 return pte_offset_kernel(pmd, address); 721 } 722 723 /* 724 * Lookup the page table entry for a virtual address in a specific pgd. 725 * Return a pointer to the entry and the level of the mapping. 726 */ 727 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, 728 unsigned int *level) 729 { 730 bool nx, rw; 731 732 return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw); 733 } 734 735 /* 736 * Lookup the page table entry for a virtual address. Return a pointer 737 * to the entry and the level of the mapping. 738 * 739 * Note: the function returns p4d, pud or pmd either when the entry is marked 740 * large or when the present bit is not set. Otherwise it returns NULL. 741 */ 742 pte_t *lookup_address(unsigned long address, unsigned int *level) 743 { 744 return lookup_address_in_pgd(pgd_offset_k(address), address, level); 745 } 746 EXPORT_SYMBOL_GPL(lookup_address); 747 748 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, 749 unsigned int *level, bool *nx, bool *rw) 750 { 751 pgd_t *pgd; 752 753 if (!cpa->pgd) 754 pgd = pgd_offset_k(address); 755 else 756 pgd = cpa->pgd + pgd_index(address); 757 758 return lookup_address_in_pgd_attr(pgd, address, level, nx, rw); 759 } 760 761 /* 762 * Lookup the PMD entry for a virtual address. Return a pointer to the entry 763 * or NULL if not present. 764 */ 765 pmd_t *lookup_pmd_address(unsigned long address) 766 { 767 pgd_t *pgd; 768 p4d_t *p4d; 769 pud_t *pud; 770 771 pgd = pgd_offset_k(address); 772 if (pgd_none(*pgd)) 773 return NULL; 774 775 p4d = p4d_offset(pgd, address); 776 if (p4d_none(*p4d) || p4d_leaf(*p4d) || !p4d_present(*p4d)) 777 return NULL; 778 779 pud = pud_offset(p4d, address); 780 if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud)) 781 return NULL; 782 783 return pmd_offset(pud, address); 784 } 785 786 /* 787 * This is necessary because __pa() does not work on some 788 * kinds of memory, like vmalloc() or the alloc_remap() 789 * areas on 32-bit NUMA systems. The percpu areas can 790 * end up in this kind of memory, for instance. 791 * 792 * Note that as long as the PTEs are well-formed with correct PFNs, this 793 * works without checking the PRESENT bit in the leaf PTE. This is unlike 794 * the similar vmalloc_to_page() and derivatives. Callers may depend on 795 * this behavior. 796 * 797 * This could be optimized, but it is only used in paths that are not perf 798 * sensitive, and keeping it unoptimized should increase the testing coverage 799 * for the more obscure platforms. 800 */ 801 phys_addr_t slow_virt_to_phys(void *__virt_addr) 802 { 803 unsigned long virt_addr = (unsigned long)__virt_addr; 804 phys_addr_t phys_addr; 805 unsigned long offset; 806 enum pg_level level; 807 pte_t *pte; 808 809 pte = lookup_address(virt_addr, &level); 810 BUG_ON(!pte); 811 812 /* 813 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t 814 * before being left-shifted PAGE_SHIFT bits -- this trick is to 815 * make 32-PAE kernel work correctly. 816 */ 817 switch (level) { 818 case PG_LEVEL_1G: 819 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; 820 offset = virt_addr & ~PUD_MASK; 821 break; 822 case PG_LEVEL_2M: 823 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; 824 offset = virt_addr & ~PMD_MASK; 825 break; 826 default: 827 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; 828 offset = virt_addr & ~PAGE_MASK; 829 } 830 831 return (phys_addr_t)(phys_addr | offset); 832 } 833 EXPORT_SYMBOL_GPL(slow_virt_to_phys); 834 835 /* 836 * Set the new pmd in all the pgds we know about: 837 */ 838 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) 839 { 840 /* change init_mm */ 841 set_pte_atomic(kpte, pte); 842 #ifdef CONFIG_X86_32 843 if (!SHARED_KERNEL_PMD) { 844 struct page *page; 845 846 list_for_each_entry(page, &pgd_list, lru) { 847 pgd_t *pgd; 848 p4d_t *p4d; 849 pud_t *pud; 850 pmd_t *pmd; 851 852 pgd = (pgd_t *)page_address(page) + pgd_index(address); 853 p4d = p4d_offset(pgd, address); 854 pud = pud_offset(p4d, address); 855 pmd = pmd_offset(pud, address); 856 set_pte_atomic((pte_t *)pmd, pte); 857 } 858 } 859 #endif 860 } 861 862 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) 863 { 864 /* 865 * _PAGE_GLOBAL means "global page" for present PTEs. 866 * But, it is also used to indicate _PAGE_PROTNONE 867 * for non-present PTEs. 868 * 869 * This ensures that a _PAGE_GLOBAL PTE going from 870 * present to non-present is not confused as 871 * _PAGE_PROTNONE. 872 */ 873 if (!(pgprot_val(prot) & _PAGE_PRESENT)) 874 pgprot_val(prot) &= ~_PAGE_GLOBAL; 875 876 return prot; 877 } 878 879 static int __should_split_large_page(pte_t *kpte, unsigned long address, 880 struct cpa_data *cpa) 881 { 882 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; 883 pgprot_t old_prot, new_prot, req_prot, chk_prot; 884 pte_t new_pte, *tmp; 885 enum pg_level level; 886 bool nx, rw; 887 888 /* 889 * Check for races, another CPU might have split this page 890 * up already: 891 */ 892 tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw); 893 if (tmp != kpte) 894 return 1; 895 896 switch (level) { 897 case PG_LEVEL_2M: 898 old_prot = pmd_pgprot(*(pmd_t *)kpte); 899 old_pfn = pmd_pfn(*(pmd_t *)kpte); 900 cpa_inc_2m_checked(); 901 break; 902 case PG_LEVEL_1G: 903 old_prot = pud_pgprot(*(pud_t *)kpte); 904 old_pfn = pud_pfn(*(pud_t *)kpte); 905 cpa_inc_1g_checked(); 906 break; 907 default: 908 return -EINVAL; 909 } 910 911 psize = page_level_size(level); 912 pmask = page_level_mask(level); 913 914 /* 915 * Calculate the number of pages, which fit into this large 916 * page starting at address: 917 */ 918 lpaddr = (address + psize) & pmask; 919 numpages = (lpaddr - address) >> PAGE_SHIFT; 920 if (numpages < cpa->numpages) 921 cpa->numpages = numpages; 922 923 /* 924 * We are safe now. Check whether the new pgprot is the same: 925 * Convert protection attributes to 4k-format, as cpa->mask* are set 926 * up accordingly. 927 */ 928 929 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ 930 req_prot = pgprot_large_2_4k(old_prot); 931 932 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); 933 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); 934 935 /* 936 * req_prot is in format of 4k pages. It must be converted to large 937 * page format: the caching mode includes the PAT bit located at 938 * different bit positions in the two formats. 939 */ 940 req_prot = pgprot_4k_2_large(req_prot); 941 req_prot = pgprot_clear_protnone_bits(req_prot); 942 if (pgprot_val(req_prot) & _PAGE_PRESENT) 943 pgprot_val(req_prot) |= _PAGE_PSE; 944 945 /* 946 * old_pfn points to the large page base pfn. So we need to add the 947 * offset of the virtual address: 948 */ 949 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); 950 cpa->pfn = pfn; 951 952 /* 953 * Calculate the large page base address and the number of 4K pages 954 * in the large page 955 */ 956 lpaddr = address & pmask; 957 numpages = psize >> PAGE_SHIFT; 958 959 /* 960 * Sanity check that the existing mapping is correct versus the static 961 * protections. static_protections() guards against !PRESENT, so no 962 * extra conditional required here. 963 */ 964 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, 965 psize, CPA_CONFLICT); 966 967 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { 968 /* 969 * Split the large page and tell the split code to 970 * enforce static protections. 971 */ 972 cpa->force_static_prot = 1; 973 return 1; 974 } 975 976 /* 977 * Optimization: If the requested pgprot is the same as the current 978 * pgprot, then the large page can be preserved and no updates are 979 * required independent of alignment and length of the requested 980 * range. The above already established that the current pgprot is 981 * correct, which in consequence makes the requested pgprot correct 982 * as well if it is the same. The static protection scan below will 983 * not come to a different conclusion. 984 */ 985 if (pgprot_val(req_prot) == pgprot_val(old_prot)) { 986 cpa_inc_lp_sameprot(level); 987 return 0; 988 } 989 990 /* 991 * If the requested range does not cover the full page, split it up 992 */ 993 if (address != lpaddr || cpa->numpages != numpages) 994 return 1; 995 996 /* 997 * Check whether the requested pgprot is conflicting with a static 998 * protection requirement in the large page. 999 */ 1000 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, 1001 psize, CPA_DETECT); 1002 1003 new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages, 1004 nx, rw); 1005 1006 /* 1007 * If there is a conflict, split the large page. 1008 * 1009 * There used to be a 4k wise evaluation trying really hard to 1010 * preserve the large pages, but experimentation has shown, that this 1011 * does not help at all. There might be corner cases which would 1012 * preserve one large page occasionally, but it's really not worth the 1013 * extra code and cycles for the common case. 1014 */ 1015 if (pgprot_val(req_prot) != pgprot_val(new_prot)) 1016 return 1; 1017 1018 /* All checks passed. Update the large page mapping. */ 1019 new_pte = pfn_pte(old_pfn, new_prot); 1020 __set_pmd_pte(kpte, address, new_pte); 1021 cpa->flags |= CPA_FLUSHTLB; 1022 cpa_inc_lp_preserved(level); 1023 return 0; 1024 } 1025 1026 static int should_split_large_page(pte_t *kpte, unsigned long address, 1027 struct cpa_data *cpa) 1028 { 1029 int do_split; 1030 1031 if (cpa->force_split) 1032 return 1; 1033 1034 spin_lock(&pgd_lock); 1035 do_split = __should_split_large_page(kpte, address, cpa); 1036 spin_unlock(&pgd_lock); 1037 1038 return do_split; 1039 } 1040 1041 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, 1042 pgprot_t ref_prot, unsigned long address, 1043 unsigned long size) 1044 { 1045 unsigned int npg = PFN_DOWN(size); 1046 pgprot_t prot; 1047 1048 /* 1049 * If should_split_large_page() discovered an inconsistent mapping, 1050 * remove the invalid protection in the split mapping. 1051 */ 1052 if (!cpa->force_static_prot) 1053 goto set; 1054 1055 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1056 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); 1057 1058 if (pgprot_val(prot) == pgprot_val(ref_prot)) 1059 goto set; 1060 1061 /* 1062 * If this is splitting a PMD, fix it up. PUD splits cannot be 1063 * fixed trivially as that would require to rescan the newly 1064 * installed PMD mappings after returning from split_large_page() 1065 * so an eventual further split can allocate the necessary PTE 1066 * pages. Warn for now and revisit it in case this actually 1067 * happens. 1068 */ 1069 if (size == PAGE_SIZE) 1070 ref_prot = prot; 1071 else 1072 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); 1073 set: 1074 set_pte(pte, pfn_pte(pfn, ref_prot)); 1075 } 1076 1077 static int 1078 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, 1079 struct page *base) 1080 { 1081 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; 1082 pte_t *pbase = (pte_t *)page_address(base); 1083 unsigned int i, level; 1084 pgprot_t ref_prot; 1085 bool nx, rw; 1086 pte_t *tmp; 1087 1088 spin_lock(&pgd_lock); 1089 /* 1090 * Check for races, another CPU might have split this page 1091 * up for us already: 1092 */ 1093 tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw); 1094 if (tmp != kpte) { 1095 spin_unlock(&pgd_lock); 1096 return 1; 1097 } 1098 1099 paravirt_alloc_pte(&init_mm, page_to_pfn(base)); 1100 1101 switch (level) { 1102 case PG_LEVEL_2M: 1103 ref_prot = pmd_pgprot(*(pmd_t *)kpte); 1104 /* 1105 * Clear PSE (aka _PAGE_PAT) and move 1106 * PAT bit to correct position. 1107 */ 1108 ref_prot = pgprot_large_2_4k(ref_prot); 1109 ref_pfn = pmd_pfn(*(pmd_t *)kpte); 1110 lpaddr = address & PMD_MASK; 1111 lpinc = PAGE_SIZE; 1112 break; 1113 1114 case PG_LEVEL_1G: 1115 ref_prot = pud_pgprot(*(pud_t *)kpte); 1116 ref_pfn = pud_pfn(*(pud_t *)kpte); 1117 pfninc = PMD_SIZE >> PAGE_SHIFT; 1118 lpaddr = address & PUD_MASK; 1119 lpinc = PMD_SIZE; 1120 /* 1121 * Clear the PSE flags if the PRESENT flag is not set 1122 * otherwise pmd_present() will return true even on a non 1123 * present pmd. 1124 */ 1125 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) 1126 pgprot_val(ref_prot) &= ~_PAGE_PSE; 1127 break; 1128 1129 default: 1130 spin_unlock(&pgd_lock); 1131 return 1; 1132 } 1133 1134 ref_prot = pgprot_clear_protnone_bits(ref_prot); 1135 1136 /* 1137 * Get the target pfn from the original entry: 1138 */ 1139 pfn = ref_pfn; 1140 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) 1141 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); 1142 1143 if (virt_addr_valid(address)) { 1144 unsigned long pfn = PFN_DOWN(__pa(address)); 1145 1146 if (pfn_range_is_mapped(pfn, pfn + 1)) 1147 split_page_count(level); 1148 } 1149 1150 /* 1151 * Install the new, split up pagetable. 1152 * 1153 * We use the standard kernel pagetable protections for the new 1154 * pagetable protections, the actual ptes set above control the 1155 * primary protection behavior: 1156 */ 1157 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); 1158 1159 /* 1160 * Do a global flush tlb after splitting the large page 1161 * and before we do the actual change page attribute in the PTE. 1162 * 1163 * Without this, we violate the TLB application note, that says: 1164 * "The TLBs may contain both ordinary and large-page 1165 * translations for a 4-KByte range of linear addresses. This 1166 * may occur if software modifies the paging structures so that 1167 * the page size used for the address range changes. If the two 1168 * translations differ with respect to page frame or attributes 1169 * (e.g., permissions), processor behavior is undefined and may 1170 * be implementation-specific." 1171 * 1172 * We do this global tlb flush inside the cpa_lock, so that we 1173 * don't allow any other cpu, with stale tlb entries change the 1174 * page attribute in parallel, that also falls into the 1175 * just split large page entry. 1176 */ 1177 flush_tlb_all(); 1178 spin_unlock(&pgd_lock); 1179 1180 return 0; 1181 } 1182 1183 static int split_large_page(struct cpa_data *cpa, pte_t *kpte, 1184 unsigned long address) 1185 { 1186 struct page *base; 1187 1188 if (!debug_pagealloc_enabled()) 1189 spin_unlock(&cpa_lock); 1190 base = alloc_pages(GFP_KERNEL, 0); 1191 if (!debug_pagealloc_enabled()) 1192 spin_lock(&cpa_lock); 1193 if (!base) 1194 return -ENOMEM; 1195 1196 if (__split_large_page(cpa, kpte, address, base)) 1197 __free_page(base); 1198 1199 return 0; 1200 } 1201 1202 static bool try_to_free_pte_page(pte_t *pte) 1203 { 1204 int i; 1205 1206 for (i = 0; i < PTRS_PER_PTE; i++) 1207 if (!pte_none(pte[i])) 1208 return false; 1209 1210 free_page((unsigned long)pte); 1211 return true; 1212 } 1213 1214 static bool try_to_free_pmd_page(pmd_t *pmd) 1215 { 1216 int i; 1217 1218 for (i = 0; i < PTRS_PER_PMD; i++) 1219 if (!pmd_none(pmd[i])) 1220 return false; 1221 1222 free_page((unsigned long)pmd); 1223 return true; 1224 } 1225 1226 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) 1227 { 1228 pte_t *pte = pte_offset_kernel(pmd, start); 1229 1230 while (start < end) { 1231 set_pte(pte, __pte(0)); 1232 1233 start += PAGE_SIZE; 1234 pte++; 1235 } 1236 1237 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { 1238 pmd_clear(pmd); 1239 return true; 1240 } 1241 return false; 1242 } 1243 1244 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, 1245 unsigned long start, unsigned long end) 1246 { 1247 if (unmap_pte_range(pmd, start, end)) 1248 if (try_to_free_pmd_page(pud_pgtable(*pud))) 1249 pud_clear(pud); 1250 } 1251 1252 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) 1253 { 1254 pmd_t *pmd = pmd_offset(pud, start); 1255 1256 /* 1257 * Not on a 2MB page boundary? 1258 */ 1259 if (start & (PMD_SIZE - 1)) { 1260 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1261 unsigned long pre_end = min_t(unsigned long, end, next_page); 1262 1263 __unmap_pmd_range(pud, pmd, start, pre_end); 1264 1265 start = pre_end; 1266 pmd++; 1267 } 1268 1269 /* 1270 * Try to unmap in 2M chunks. 1271 */ 1272 while (end - start >= PMD_SIZE) { 1273 if (pmd_leaf(*pmd)) 1274 pmd_clear(pmd); 1275 else 1276 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); 1277 1278 start += PMD_SIZE; 1279 pmd++; 1280 } 1281 1282 /* 1283 * 4K leftovers? 1284 */ 1285 if (start < end) 1286 return __unmap_pmd_range(pud, pmd, start, end); 1287 1288 /* 1289 * Try again to free the PMD page if haven't succeeded above. 1290 */ 1291 if (!pud_none(*pud)) 1292 if (try_to_free_pmd_page(pud_pgtable(*pud))) 1293 pud_clear(pud); 1294 } 1295 1296 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) 1297 { 1298 pud_t *pud = pud_offset(p4d, start); 1299 1300 /* 1301 * Not on a GB page boundary? 1302 */ 1303 if (start & (PUD_SIZE - 1)) { 1304 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1305 unsigned long pre_end = min_t(unsigned long, end, next_page); 1306 1307 unmap_pmd_range(pud, start, pre_end); 1308 1309 start = pre_end; 1310 pud++; 1311 } 1312 1313 /* 1314 * Try to unmap in 1G chunks? 1315 */ 1316 while (end - start >= PUD_SIZE) { 1317 1318 if (pud_leaf(*pud)) 1319 pud_clear(pud); 1320 else 1321 unmap_pmd_range(pud, start, start + PUD_SIZE); 1322 1323 start += PUD_SIZE; 1324 pud++; 1325 } 1326 1327 /* 1328 * 2M leftovers? 1329 */ 1330 if (start < end) 1331 unmap_pmd_range(pud, start, end); 1332 1333 /* 1334 * No need to try to free the PUD page because we'll free it in 1335 * populate_pgd's error path 1336 */ 1337 } 1338 1339 static int alloc_pte_page(pmd_t *pmd) 1340 { 1341 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 1342 if (!pte) 1343 return -1; 1344 1345 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 1346 return 0; 1347 } 1348 1349 static int alloc_pmd_page(pud_t *pud) 1350 { 1351 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 1352 if (!pmd) 1353 return -1; 1354 1355 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 1356 return 0; 1357 } 1358 1359 static void populate_pte(struct cpa_data *cpa, 1360 unsigned long start, unsigned long end, 1361 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) 1362 { 1363 pte_t *pte; 1364 1365 pte = pte_offset_kernel(pmd, start); 1366 1367 pgprot = pgprot_clear_protnone_bits(pgprot); 1368 1369 while (num_pages-- && start < end) { 1370 set_pte(pte, pfn_pte(cpa->pfn, pgprot)); 1371 1372 start += PAGE_SIZE; 1373 cpa->pfn++; 1374 pte++; 1375 } 1376 } 1377 1378 static long populate_pmd(struct cpa_data *cpa, 1379 unsigned long start, unsigned long end, 1380 unsigned num_pages, pud_t *pud, pgprot_t pgprot) 1381 { 1382 long cur_pages = 0; 1383 pmd_t *pmd; 1384 pgprot_t pmd_pgprot; 1385 1386 /* 1387 * Not on a 2M boundary? 1388 */ 1389 if (start & (PMD_SIZE - 1)) { 1390 unsigned long pre_end = start + (num_pages << PAGE_SHIFT); 1391 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; 1392 1393 pre_end = min_t(unsigned long, pre_end, next_page); 1394 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1395 cur_pages = min_t(unsigned int, num_pages, cur_pages); 1396 1397 /* 1398 * Need a PTE page? 1399 */ 1400 pmd = pmd_offset(pud, start); 1401 if (pmd_none(*pmd)) 1402 if (alloc_pte_page(pmd)) 1403 return -1; 1404 1405 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); 1406 1407 start = pre_end; 1408 } 1409 1410 /* 1411 * We mapped them all? 1412 */ 1413 if (num_pages == cur_pages) 1414 return cur_pages; 1415 1416 pmd_pgprot = pgprot_4k_2_large(pgprot); 1417 1418 while (end - start >= PMD_SIZE) { 1419 1420 /* 1421 * We cannot use a 1G page so allocate a PMD page if needed. 1422 */ 1423 if (pud_none(*pud)) 1424 if (alloc_pmd_page(pud)) 1425 return -1; 1426 1427 pmd = pmd_offset(pud, start); 1428 1429 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, 1430 canon_pgprot(pmd_pgprot)))); 1431 1432 start += PMD_SIZE; 1433 cpa->pfn += PMD_SIZE >> PAGE_SHIFT; 1434 cur_pages += PMD_SIZE >> PAGE_SHIFT; 1435 } 1436 1437 /* 1438 * Map trailing 4K pages. 1439 */ 1440 if (start < end) { 1441 pmd = pmd_offset(pud, start); 1442 if (pmd_none(*pmd)) 1443 if (alloc_pte_page(pmd)) 1444 return -1; 1445 1446 populate_pte(cpa, start, end, num_pages - cur_pages, 1447 pmd, pgprot); 1448 } 1449 return num_pages; 1450 } 1451 1452 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, 1453 pgprot_t pgprot) 1454 { 1455 pud_t *pud; 1456 unsigned long end; 1457 long cur_pages = 0; 1458 pgprot_t pud_pgprot; 1459 1460 end = start + (cpa->numpages << PAGE_SHIFT); 1461 1462 /* 1463 * Not on a Gb page boundary? => map everything up to it with 1464 * smaller pages. 1465 */ 1466 if (start & (PUD_SIZE - 1)) { 1467 unsigned long pre_end; 1468 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; 1469 1470 pre_end = min_t(unsigned long, end, next_page); 1471 cur_pages = (pre_end - start) >> PAGE_SHIFT; 1472 cur_pages = min_t(int, (int)cpa->numpages, cur_pages); 1473 1474 pud = pud_offset(p4d, start); 1475 1476 /* 1477 * Need a PMD page? 1478 */ 1479 if (pud_none(*pud)) 1480 if (alloc_pmd_page(pud)) 1481 return -1; 1482 1483 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, 1484 pud, pgprot); 1485 if (cur_pages < 0) 1486 return cur_pages; 1487 1488 start = pre_end; 1489 } 1490 1491 /* We mapped them all? */ 1492 if (cpa->numpages == cur_pages) 1493 return cur_pages; 1494 1495 pud = pud_offset(p4d, start); 1496 pud_pgprot = pgprot_4k_2_large(pgprot); 1497 1498 /* 1499 * Map everything starting from the Gb boundary, possibly with 1G pages 1500 */ 1501 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { 1502 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, 1503 canon_pgprot(pud_pgprot)))); 1504 1505 start += PUD_SIZE; 1506 cpa->pfn += PUD_SIZE >> PAGE_SHIFT; 1507 cur_pages += PUD_SIZE >> PAGE_SHIFT; 1508 pud++; 1509 } 1510 1511 /* Map trailing leftover */ 1512 if (start < end) { 1513 long tmp; 1514 1515 pud = pud_offset(p4d, start); 1516 if (pud_none(*pud)) 1517 if (alloc_pmd_page(pud)) 1518 return -1; 1519 1520 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, 1521 pud, pgprot); 1522 if (tmp < 0) 1523 return cur_pages; 1524 1525 cur_pages += tmp; 1526 } 1527 return cur_pages; 1528 } 1529 1530 /* 1531 * Restrictions for kernel page table do not necessarily apply when mapping in 1532 * an alternate PGD. 1533 */ 1534 static int populate_pgd(struct cpa_data *cpa, unsigned long addr) 1535 { 1536 pgprot_t pgprot = __pgprot(_KERNPG_TABLE); 1537 pud_t *pud = NULL; /* shut up gcc */ 1538 p4d_t *p4d; 1539 pgd_t *pgd_entry; 1540 long ret; 1541 1542 pgd_entry = cpa->pgd + pgd_index(addr); 1543 1544 if (pgd_none(*pgd_entry)) { 1545 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 1546 if (!p4d) 1547 return -1; 1548 1549 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); 1550 } 1551 1552 /* 1553 * Allocate a PUD page and hand it down for mapping. 1554 */ 1555 p4d = p4d_offset(pgd_entry, addr); 1556 if (p4d_none(*p4d)) { 1557 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 1558 if (!pud) 1559 return -1; 1560 1561 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 1562 } 1563 1564 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); 1565 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); 1566 1567 ret = populate_pud(cpa, addr, p4d, pgprot); 1568 if (ret < 0) { 1569 /* 1570 * Leave the PUD page in place in case some other CPU or thread 1571 * already found it, but remove any useless entries we just 1572 * added to it. 1573 */ 1574 unmap_pud_range(p4d, addr, 1575 addr + (cpa->numpages << PAGE_SHIFT)); 1576 return ret; 1577 } 1578 1579 cpa->numpages = ret; 1580 return 0; 1581 } 1582 1583 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, 1584 int primary) 1585 { 1586 if (cpa->pgd) { 1587 /* 1588 * Right now, we only execute this code path when mapping 1589 * the EFI virtual memory map regions, no other users 1590 * provide a ->pgd value. This may change in the future. 1591 */ 1592 return populate_pgd(cpa, vaddr); 1593 } 1594 1595 /* 1596 * Ignore all non primary paths. 1597 */ 1598 if (!primary) { 1599 cpa->numpages = 1; 1600 return 0; 1601 } 1602 1603 /* 1604 * Ignore the NULL PTE for kernel identity mapping, as it is expected 1605 * to have holes. 1606 * Also set numpages to '1' indicating that we processed cpa req for 1607 * one virtual address page and its pfn. TBD: numpages can be set based 1608 * on the initial value and the level returned by lookup_address(). 1609 */ 1610 if (within(vaddr, PAGE_OFFSET, 1611 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { 1612 cpa->numpages = 1; 1613 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; 1614 return 0; 1615 1616 } else if (__cpa_pfn_in_highmap(cpa->pfn)) { 1617 /* Faults in the highmap are OK, so do not warn: */ 1618 return -EFAULT; 1619 } else { 1620 WARN(1, KERN_WARNING "CPA: called for zero pte. " 1621 "vaddr = %lx cpa->vaddr = %lx\n", vaddr, 1622 *cpa->vaddr); 1623 1624 return -EFAULT; 1625 } 1626 } 1627 1628 static int __change_page_attr(struct cpa_data *cpa, int primary) 1629 { 1630 unsigned long address; 1631 int do_split, err; 1632 unsigned int level; 1633 pte_t *kpte, old_pte; 1634 bool nx, rw; 1635 1636 address = __cpa_addr(cpa, cpa->curpage); 1637 repeat: 1638 kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw); 1639 if (!kpte) 1640 return __cpa_process_fault(cpa, address, primary); 1641 1642 old_pte = *kpte; 1643 if (pte_none(old_pte)) 1644 return __cpa_process_fault(cpa, address, primary); 1645 1646 if (level == PG_LEVEL_4K) { 1647 pte_t new_pte; 1648 pgprot_t old_prot = pte_pgprot(old_pte); 1649 pgprot_t new_prot = pte_pgprot(old_pte); 1650 unsigned long pfn = pte_pfn(old_pte); 1651 1652 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); 1653 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); 1654 1655 cpa_inc_4k_install(); 1656 /* Hand in lpsize = 0 to enforce the protection mechanism */ 1657 new_prot = static_protections(new_prot, address, pfn, 1, 0, 1658 CPA_PROTECT); 1659 1660 new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1, 1661 nx, rw); 1662 1663 new_prot = pgprot_clear_protnone_bits(new_prot); 1664 1665 /* 1666 * We need to keep the pfn from the existing PTE, 1667 * after all we're only going to change its attributes 1668 * not the memory it points to 1669 */ 1670 new_pte = pfn_pte(pfn, new_prot); 1671 cpa->pfn = pfn; 1672 /* 1673 * Do we really change anything ? 1674 */ 1675 if (pte_val(old_pte) != pte_val(new_pte)) { 1676 set_pte_atomic(kpte, new_pte); 1677 cpa->flags |= CPA_FLUSHTLB; 1678 } 1679 cpa->numpages = 1; 1680 return 0; 1681 } 1682 1683 /* 1684 * Check, whether we can keep the large page intact 1685 * and just change the pte: 1686 */ 1687 do_split = should_split_large_page(kpte, address, cpa); 1688 /* 1689 * When the range fits into the existing large page, 1690 * return. cp->numpages and cpa->tlbflush have been updated in 1691 * try_large_page: 1692 */ 1693 if (do_split <= 0) 1694 return do_split; 1695 1696 /* 1697 * We have to split the large page: 1698 */ 1699 err = split_large_page(cpa, kpte, address); 1700 if (!err) 1701 goto repeat; 1702 1703 return err; 1704 } 1705 1706 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary); 1707 1708 /* 1709 * Check the directmap and "high kernel map" 'aliases'. 1710 */ 1711 static int cpa_process_alias(struct cpa_data *cpa) 1712 { 1713 struct cpa_data alias_cpa; 1714 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); 1715 unsigned long vaddr; 1716 int ret; 1717 1718 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) 1719 return 0; 1720 1721 /* 1722 * No need to redo, when the primary call touched the direct 1723 * mapping already: 1724 */ 1725 vaddr = __cpa_addr(cpa, cpa->curpage); 1726 if (!(within(vaddr, PAGE_OFFSET, 1727 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { 1728 1729 alias_cpa = *cpa; 1730 alias_cpa.vaddr = &laddr; 1731 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1732 alias_cpa.curpage = 0; 1733 1734 /* Directmap always has NX set, do not modify. */ 1735 if (__supported_pte_mask & _PAGE_NX) { 1736 alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; 1737 alias_cpa.mask_set.pgprot &= ~_PAGE_NX; 1738 } 1739 1740 cpa->force_flush_all = 1; 1741 1742 ret = __change_page_attr_set_clr(&alias_cpa, 0); 1743 if (ret) 1744 return ret; 1745 } 1746 1747 #ifdef CONFIG_X86_64 1748 /* 1749 * If the primary call didn't touch the high mapping already 1750 * and the physical address is inside the kernel map, we need 1751 * to touch the high mapped kernel as well: 1752 */ 1753 if (!within(vaddr, (unsigned long)_text, _brk_end) && 1754 __cpa_pfn_in_highmap(cpa->pfn)) { 1755 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + 1756 __START_KERNEL_map - phys_base; 1757 alias_cpa = *cpa; 1758 alias_cpa.vaddr = &temp_cpa_vaddr; 1759 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); 1760 alias_cpa.curpage = 0; 1761 1762 /* 1763 * [_text, _brk_end) also covers data, do not modify NX except 1764 * in cases where the highmap is the primary target. 1765 */ 1766 if (__supported_pte_mask & _PAGE_NX) { 1767 alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; 1768 alias_cpa.mask_set.pgprot &= ~_PAGE_NX; 1769 } 1770 1771 cpa->force_flush_all = 1; 1772 /* 1773 * The high mapping range is imprecise, so ignore the 1774 * return value. 1775 */ 1776 __change_page_attr_set_clr(&alias_cpa, 0); 1777 } 1778 #endif 1779 1780 return 0; 1781 } 1782 1783 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary) 1784 { 1785 unsigned long numpages = cpa->numpages; 1786 unsigned long rempages = numpages; 1787 int ret = 0; 1788 1789 /* 1790 * No changes, easy! 1791 */ 1792 if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) && 1793 !cpa->force_split) 1794 return ret; 1795 1796 while (rempages) { 1797 /* 1798 * Store the remaining nr of pages for the large page 1799 * preservation check. 1800 */ 1801 cpa->numpages = rempages; 1802 /* for array changes, we can't use large page */ 1803 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) 1804 cpa->numpages = 1; 1805 1806 if (!debug_pagealloc_enabled()) 1807 spin_lock(&cpa_lock); 1808 ret = __change_page_attr(cpa, primary); 1809 if (!debug_pagealloc_enabled()) 1810 spin_unlock(&cpa_lock); 1811 if (ret) 1812 goto out; 1813 1814 if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) { 1815 ret = cpa_process_alias(cpa); 1816 if (ret) 1817 goto out; 1818 } 1819 1820 /* 1821 * Adjust the number of pages with the result of the 1822 * CPA operation. Either a large page has been 1823 * preserved or a single page update happened. 1824 */ 1825 BUG_ON(cpa->numpages > rempages || !cpa->numpages); 1826 rempages -= cpa->numpages; 1827 cpa->curpage += cpa->numpages; 1828 } 1829 1830 out: 1831 /* Restore the original numpages */ 1832 cpa->numpages = numpages; 1833 return ret; 1834 } 1835 1836 static int change_page_attr_set_clr(unsigned long *addr, int numpages, 1837 pgprot_t mask_set, pgprot_t mask_clr, 1838 int force_split, int in_flag, 1839 struct page **pages) 1840 { 1841 struct cpa_data cpa; 1842 int ret, cache; 1843 1844 memset(&cpa, 0, sizeof(cpa)); 1845 1846 /* 1847 * Check, if we are requested to set a not supported 1848 * feature. Clearing non-supported features is OK. 1849 */ 1850 mask_set = canon_pgprot(mask_set); 1851 1852 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) 1853 return 0; 1854 1855 /* Ensure we are PAGE_SIZE aligned */ 1856 if (in_flag & CPA_ARRAY) { 1857 int i; 1858 for (i = 0; i < numpages; i++) { 1859 if (addr[i] & ~PAGE_MASK) { 1860 addr[i] &= PAGE_MASK; 1861 WARN_ON_ONCE(1); 1862 } 1863 } 1864 } else if (!(in_flag & CPA_PAGES_ARRAY)) { 1865 /* 1866 * in_flag of CPA_PAGES_ARRAY implies it is aligned. 1867 * No need to check in that case 1868 */ 1869 if (*addr & ~PAGE_MASK) { 1870 *addr &= PAGE_MASK; 1871 /* 1872 * People should not be passing in unaligned addresses: 1873 */ 1874 WARN_ON_ONCE(1); 1875 } 1876 } 1877 1878 /* Must avoid aliasing mappings in the highmem code */ 1879 kmap_flush_unused(); 1880 1881 vm_unmap_aliases(); 1882 1883 cpa.vaddr = addr; 1884 cpa.pages = pages; 1885 cpa.numpages = numpages; 1886 cpa.mask_set = mask_set; 1887 cpa.mask_clr = mask_clr; 1888 cpa.flags = in_flag; 1889 cpa.curpage = 0; 1890 cpa.force_split = force_split; 1891 1892 ret = __change_page_attr_set_clr(&cpa, 1); 1893 1894 /* 1895 * Check whether we really changed something: 1896 */ 1897 if (!(cpa.flags & CPA_FLUSHTLB)) 1898 goto out; 1899 1900 /* 1901 * No need to flush, when we did not set any of the caching 1902 * attributes: 1903 */ 1904 cache = !!pgprot2cachemode(mask_set); 1905 1906 /* 1907 * On error; flush everything to be sure. 1908 */ 1909 if (ret) { 1910 cpa_flush_all(cache); 1911 goto out; 1912 } 1913 1914 cpa_flush(&cpa, cache); 1915 out: 1916 return ret; 1917 } 1918 1919 static inline int change_page_attr_set(unsigned long *addr, int numpages, 1920 pgprot_t mask, int array) 1921 { 1922 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, 1923 (array ? CPA_ARRAY : 0), NULL); 1924 } 1925 1926 static inline int change_page_attr_clear(unsigned long *addr, int numpages, 1927 pgprot_t mask, int array) 1928 { 1929 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, 1930 (array ? CPA_ARRAY : 0), NULL); 1931 } 1932 1933 static inline int cpa_set_pages_array(struct page **pages, int numpages, 1934 pgprot_t mask) 1935 { 1936 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, 1937 CPA_PAGES_ARRAY, pages); 1938 } 1939 1940 static inline int cpa_clear_pages_array(struct page **pages, int numpages, 1941 pgprot_t mask) 1942 { 1943 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, 1944 CPA_PAGES_ARRAY, pages); 1945 } 1946 1947 /* 1948 * __set_memory_prot is an internal helper for callers that have been passed 1949 * a pgprot_t value from upper layers and a reservation has already been taken. 1950 * If you want to set the pgprot to a specific page protocol, use the 1951 * set_memory_xx() functions. 1952 */ 1953 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot) 1954 { 1955 return change_page_attr_set_clr(&addr, numpages, prot, 1956 __pgprot(~pgprot_val(prot)), 0, 0, 1957 NULL); 1958 } 1959 1960 int _set_memory_uc(unsigned long addr, int numpages) 1961 { 1962 /* 1963 * for now UC MINUS. see comments in ioremap() 1964 * If you really need strong UC use ioremap_uc(), but note 1965 * that you cannot override IO areas with set_memory_*() as 1966 * these helpers cannot work with IO memory. 1967 */ 1968 return change_page_attr_set(&addr, numpages, 1969 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 1970 0); 1971 } 1972 1973 int set_memory_uc(unsigned long addr, int numpages) 1974 { 1975 int ret; 1976 1977 /* 1978 * for now UC MINUS. see comments in ioremap() 1979 */ 1980 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 1981 _PAGE_CACHE_MODE_UC_MINUS, NULL); 1982 if (ret) 1983 goto out_err; 1984 1985 ret = _set_memory_uc(addr, numpages); 1986 if (ret) 1987 goto out_free; 1988 1989 return 0; 1990 1991 out_free: 1992 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 1993 out_err: 1994 return ret; 1995 } 1996 EXPORT_SYMBOL(set_memory_uc); 1997 1998 int _set_memory_wc(unsigned long addr, int numpages) 1999 { 2000 int ret; 2001 2002 ret = change_page_attr_set(&addr, numpages, 2003 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 2004 0); 2005 if (!ret) { 2006 ret = change_page_attr_set_clr(&addr, numpages, 2007 cachemode2pgprot(_PAGE_CACHE_MODE_WC), 2008 __pgprot(_PAGE_CACHE_MASK), 2009 0, 0, NULL); 2010 } 2011 return ret; 2012 } 2013 2014 int set_memory_wc(unsigned long addr, int numpages) 2015 { 2016 int ret; 2017 2018 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, 2019 _PAGE_CACHE_MODE_WC, NULL); 2020 if (ret) 2021 return ret; 2022 2023 ret = _set_memory_wc(addr, numpages); 2024 if (ret) 2025 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 2026 2027 return ret; 2028 } 2029 EXPORT_SYMBOL(set_memory_wc); 2030 2031 int _set_memory_wt(unsigned long addr, int numpages) 2032 { 2033 return change_page_attr_set(&addr, numpages, 2034 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); 2035 } 2036 2037 int _set_memory_wb(unsigned long addr, int numpages) 2038 { 2039 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 2040 return change_page_attr_clear(&addr, numpages, 2041 __pgprot(_PAGE_CACHE_MASK), 0); 2042 } 2043 2044 int set_memory_wb(unsigned long addr, int numpages) 2045 { 2046 int ret; 2047 2048 ret = _set_memory_wb(addr, numpages); 2049 if (ret) 2050 return ret; 2051 2052 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); 2053 return 0; 2054 } 2055 EXPORT_SYMBOL(set_memory_wb); 2056 2057 /* Prevent speculative access to a page by marking it not-present */ 2058 #ifdef CONFIG_X86_64 2059 int set_mce_nospec(unsigned long pfn) 2060 { 2061 unsigned long decoy_addr; 2062 int rc; 2063 2064 /* SGX pages are not in the 1:1 map */ 2065 if (arch_is_platform_page(pfn << PAGE_SHIFT)) 2066 return 0; 2067 /* 2068 * We would like to just call: 2069 * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1); 2070 * but doing that would radically increase the odds of a 2071 * speculative access to the poison page because we'd have 2072 * the virtual address of the kernel 1:1 mapping sitting 2073 * around in registers. 2074 * Instead we get tricky. We create a non-canonical address 2075 * that looks just like the one we want, but has bit 63 flipped. 2076 * This relies on set_memory_XX() properly sanitizing any __pa() 2077 * results with __PHYSICAL_MASK or PTE_PFN_MASK. 2078 */ 2079 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63)); 2080 2081 rc = set_memory_np(decoy_addr, 1); 2082 if (rc) 2083 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn); 2084 return rc; 2085 } 2086 2087 /* Restore full speculative operation to the pfn. */ 2088 int clear_mce_nospec(unsigned long pfn) 2089 { 2090 unsigned long addr = (unsigned long) pfn_to_kaddr(pfn); 2091 2092 return set_memory_p(addr, 1); 2093 } 2094 EXPORT_SYMBOL_GPL(clear_mce_nospec); 2095 #endif /* CONFIG_X86_64 */ 2096 2097 int set_memory_x(unsigned long addr, int numpages) 2098 { 2099 if (!(__supported_pte_mask & _PAGE_NX)) 2100 return 0; 2101 2102 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); 2103 } 2104 2105 int set_memory_nx(unsigned long addr, int numpages) 2106 { 2107 if (!(__supported_pte_mask & _PAGE_NX)) 2108 return 0; 2109 2110 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); 2111 } 2112 2113 int set_memory_ro(unsigned long addr, int numpages) 2114 { 2115 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0); 2116 } 2117 2118 int set_memory_rox(unsigned long addr, int numpages) 2119 { 2120 pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY); 2121 2122 if (__supported_pte_mask & _PAGE_NX) 2123 clr.pgprot |= _PAGE_NX; 2124 2125 return change_page_attr_clear(&addr, numpages, clr, 0); 2126 } 2127 2128 int set_memory_rw(unsigned long addr, int numpages) 2129 { 2130 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); 2131 } 2132 2133 int set_memory_np(unsigned long addr, int numpages) 2134 { 2135 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); 2136 } 2137 2138 int set_memory_np_noalias(unsigned long addr, int numpages) 2139 { 2140 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 2141 __pgprot(_PAGE_PRESENT), 0, 2142 CPA_NO_CHECK_ALIAS, NULL); 2143 } 2144 2145 int set_memory_p(unsigned long addr, int numpages) 2146 { 2147 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); 2148 } 2149 2150 int set_memory_4k(unsigned long addr, int numpages) 2151 { 2152 return change_page_attr_set_clr(&addr, numpages, __pgprot(0), 2153 __pgprot(0), 1, 0, NULL); 2154 } 2155 2156 int set_memory_nonglobal(unsigned long addr, int numpages) 2157 { 2158 return change_page_attr_clear(&addr, numpages, 2159 __pgprot(_PAGE_GLOBAL), 0); 2160 } 2161 2162 int set_memory_global(unsigned long addr, int numpages) 2163 { 2164 return change_page_attr_set(&addr, numpages, 2165 __pgprot(_PAGE_GLOBAL), 0); 2166 } 2167 2168 /* 2169 * __set_memory_enc_pgtable() is used for the hypervisors that get 2170 * informed about "encryption" status via page tables. 2171 */ 2172 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc) 2173 { 2174 pgprot_t empty = __pgprot(0); 2175 struct cpa_data cpa; 2176 int ret; 2177 2178 /* Should not be working on unaligned addresses */ 2179 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) 2180 addr &= PAGE_MASK; 2181 2182 memset(&cpa, 0, sizeof(cpa)); 2183 cpa.vaddr = &addr; 2184 cpa.numpages = numpages; 2185 cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty); 2186 cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty); 2187 cpa.pgd = init_mm.pgd; 2188 2189 /* Must avoid aliasing mappings in the highmem code */ 2190 kmap_flush_unused(); 2191 vm_unmap_aliases(); 2192 2193 /* Flush the caches as needed before changing the encryption attribute. */ 2194 if (x86_platform.guest.enc_tlb_flush_required(enc)) 2195 cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required()); 2196 2197 /* Notify hypervisor that we are about to set/clr encryption attribute. */ 2198 ret = x86_platform.guest.enc_status_change_prepare(addr, numpages, enc); 2199 if (ret) 2200 goto vmm_fail; 2201 2202 ret = __change_page_attr_set_clr(&cpa, 1); 2203 2204 /* 2205 * After changing the encryption attribute, we need to flush TLBs again 2206 * in case any speculative TLB caching occurred (but no need to flush 2207 * caches again). We could just use cpa_flush_all(), but in case TLB 2208 * flushing gets optimized in the cpa_flush() path use the same logic 2209 * as above. 2210 */ 2211 cpa_flush(&cpa, 0); 2212 2213 if (ret) 2214 return ret; 2215 2216 /* Notify hypervisor that we have successfully set/clr encryption attribute. */ 2217 ret = x86_platform.guest.enc_status_change_finish(addr, numpages, enc); 2218 if (ret) 2219 goto vmm_fail; 2220 2221 return 0; 2222 2223 vmm_fail: 2224 WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s: %d\n", 2225 (void *)addr, numpages, enc ? "private" : "shared", ret); 2226 2227 return ret; 2228 } 2229 2230 /* 2231 * The lock serializes conversions between private and shared memory. 2232 * 2233 * It is taken for read on conversion. A write lock guarantees that no 2234 * concurrent conversions are in progress. 2235 */ 2236 static DECLARE_RWSEM(mem_enc_lock); 2237 2238 /* 2239 * Stop new private<->shared conversions. 2240 * 2241 * Taking the exclusive mem_enc_lock waits for in-flight conversions to complete. 2242 * The lock is not released to prevent new conversions from being started. 2243 */ 2244 bool set_memory_enc_stop_conversion(void) 2245 { 2246 /* 2247 * In a crash scenario, sleep is not allowed. Try to take the lock. 2248 * Failure indicates that there is a race with the conversion. 2249 */ 2250 if (oops_in_progress) 2251 return down_write_trylock(&mem_enc_lock); 2252 2253 down_write(&mem_enc_lock); 2254 2255 return true; 2256 } 2257 2258 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) 2259 { 2260 int ret = 0; 2261 2262 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 2263 if (!down_read_trylock(&mem_enc_lock)) 2264 return -EBUSY; 2265 2266 ret = __set_memory_enc_pgtable(addr, numpages, enc); 2267 2268 up_read(&mem_enc_lock); 2269 } 2270 2271 return ret; 2272 } 2273 2274 int set_memory_encrypted(unsigned long addr, int numpages) 2275 { 2276 return __set_memory_enc_dec(addr, numpages, true); 2277 } 2278 EXPORT_SYMBOL_GPL(set_memory_encrypted); 2279 2280 int set_memory_decrypted(unsigned long addr, int numpages) 2281 { 2282 return __set_memory_enc_dec(addr, numpages, false); 2283 } 2284 EXPORT_SYMBOL_GPL(set_memory_decrypted); 2285 2286 int set_pages_uc(struct page *page, int numpages) 2287 { 2288 unsigned long addr = (unsigned long)page_address(page); 2289 2290 return set_memory_uc(addr, numpages); 2291 } 2292 EXPORT_SYMBOL(set_pages_uc); 2293 2294 static int _set_pages_array(struct page **pages, int numpages, 2295 enum page_cache_mode new_type) 2296 { 2297 unsigned long start; 2298 unsigned long end; 2299 enum page_cache_mode set_type; 2300 int i; 2301 int free_idx; 2302 int ret; 2303 2304 for (i = 0; i < numpages; i++) { 2305 if (PageHighMem(pages[i])) 2306 continue; 2307 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2308 end = start + PAGE_SIZE; 2309 if (memtype_reserve(start, end, new_type, NULL)) 2310 goto err_out; 2311 } 2312 2313 /* If WC, set to UC- first and then WC */ 2314 set_type = (new_type == _PAGE_CACHE_MODE_WC) ? 2315 _PAGE_CACHE_MODE_UC_MINUS : new_type; 2316 2317 ret = cpa_set_pages_array(pages, numpages, 2318 cachemode2pgprot(set_type)); 2319 if (!ret && new_type == _PAGE_CACHE_MODE_WC) 2320 ret = change_page_attr_set_clr(NULL, numpages, 2321 cachemode2pgprot( 2322 _PAGE_CACHE_MODE_WC), 2323 __pgprot(_PAGE_CACHE_MASK), 2324 0, CPA_PAGES_ARRAY, pages); 2325 if (ret) 2326 goto err_out; 2327 return 0; /* Success */ 2328 err_out: 2329 free_idx = i; 2330 for (i = 0; i < free_idx; i++) { 2331 if (PageHighMem(pages[i])) 2332 continue; 2333 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2334 end = start + PAGE_SIZE; 2335 memtype_free(start, end); 2336 } 2337 return -EINVAL; 2338 } 2339 2340 int set_pages_array_uc(struct page **pages, int numpages) 2341 { 2342 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); 2343 } 2344 EXPORT_SYMBOL(set_pages_array_uc); 2345 2346 int set_pages_array_wc(struct page **pages, int numpages) 2347 { 2348 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); 2349 } 2350 EXPORT_SYMBOL(set_pages_array_wc); 2351 2352 int set_pages_wb(struct page *page, int numpages) 2353 { 2354 unsigned long addr = (unsigned long)page_address(page); 2355 2356 return set_memory_wb(addr, numpages); 2357 } 2358 EXPORT_SYMBOL(set_pages_wb); 2359 2360 int set_pages_array_wb(struct page **pages, int numpages) 2361 { 2362 int retval; 2363 unsigned long start; 2364 unsigned long end; 2365 int i; 2366 2367 /* WB cache mode is hard wired to all cache attribute bits being 0 */ 2368 retval = cpa_clear_pages_array(pages, numpages, 2369 __pgprot(_PAGE_CACHE_MASK)); 2370 if (retval) 2371 return retval; 2372 2373 for (i = 0; i < numpages; i++) { 2374 if (PageHighMem(pages[i])) 2375 continue; 2376 start = page_to_pfn(pages[i]) << PAGE_SHIFT; 2377 end = start + PAGE_SIZE; 2378 memtype_free(start, end); 2379 } 2380 2381 return 0; 2382 } 2383 EXPORT_SYMBOL(set_pages_array_wb); 2384 2385 int set_pages_ro(struct page *page, int numpages) 2386 { 2387 unsigned long addr = (unsigned long)page_address(page); 2388 2389 return set_memory_ro(addr, numpages); 2390 } 2391 2392 int set_pages_rw(struct page *page, int numpages) 2393 { 2394 unsigned long addr = (unsigned long)page_address(page); 2395 2396 return set_memory_rw(addr, numpages); 2397 } 2398 2399 static int __set_pages_p(struct page *page, int numpages) 2400 { 2401 unsigned long tempaddr = (unsigned long) page_address(page); 2402 struct cpa_data cpa = { .vaddr = &tempaddr, 2403 .pgd = NULL, 2404 .numpages = numpages, 2405 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2406 .mask_clr = __pgprot(0), 2407 .flags = CPA_NO_CHECK_ALIAS }; 2408 2409 /* 2410 * No alias checking needed for setting present flag. otherwise, 2411 * we may need to break large pages for 64-bit kernel text 2412 * mappings (this adds to complexity if we want to do this from 2413 * atomic context especially). Let's keep it simple! 2414 */ 2415 return __change_page_attr_set_clr(&cpa, 1); 2416 } 2417 2418 static int __set_pages_np(struct page *page, int numpages) 2419 { 2420 unsigned long tempaddr = (unsigned long) page_address(page); 2421 struct cpa_data cpa = { .vaddr = &tempaddr, 2422 .pgd = NULL, 2423 .numpages = numpages, 2424 .mask_set = __pgprot(0), 2425 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2426 .flags = CPA_NO_CHECK_ALIAS }; 2427 2428 /* 2429 * No alias checking needed for setting not present flag. otherwise, 2430 * we may need to break large pages for 64-bit kernel text 2431 * mappings (this adds to complexity if we want to do this from 2432 * atomic context especially). Let's keep it simple! 2433 */ 2434 return __change_page_attr_set_clr(&cpa, 1); 2435 } 2436 2437 int set_direct_map_invalid_noflush(struct page *page) 2438 { 2439 return __set_pages_np(page, 1); 2440 } 2441 2442 int set_direct_map_default_noflush(struct page *page) 2443 { 2444 return __set_pages_p(page, 1); 2445 } 2446 2447 #ifdef CONFIG_DEBUG_PAGEALLOC 2448 void __kernel_map_pages(struct page *page, int numpages, int enable) 2449 { 2450 if (PageHighMem(page)) 2451 return; 2452 if (!enable) { 2453 debug_check_no_locks_freed(page_address(page), 2454 numpages * PAGE_SIZE); 2455 } 2456 2457 /* 2458 * The return value is ignored as the calls cannot fail. 2459 * Large pages for identity mappings are not used at boot time 2460 * and hence no memory allocations during large page split. 2461 */ 2462 if (enable) 2463 __set_pages_p(page, numpages); 2464 else 2465 __set_pages_np(page, numpages); 2466 2467 /* 2468 * We should perform an IPI and flush all tlbs, 2469 * but that can deadlock->flush only current cpu. 2470 * Preemption needs to be disabled around __flush_tlb_all() due to 2471 * CR3 reload in __native_flush_tlb(). 2472 */ 2473 preempt_disable(); 2474 __flush_tlb_all(); 2475 preempt_enable(); 2476 2477 arch_flush_lazy_mmu_mode(); 2478 } 2479 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2480 2481 bool kernel_page_present(struct page *page) 2482 { 2483 unsigned int level; 2484 pte_t *pte; 2485 2486 if (PageHighMem(page)) 2487 return false; 2488 2489 pte = lookup_address((unsigned long)page_address(page), &level); 2490 return (pte_val(*pte) & _PAGE_PRESENT); 2491 } 2492 2493 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, 2494 unsigned numpages, unsigned long page_flags) 2495 { 2496 int retval = -EINVAL; 2497 2498 struct cpa_data cpa = { 2499 .vaddr = &address, 2500 .pfn = pfn, 2501 .pgd = pgd, 2502 .numpages = numpages, 2503 .mask_set = __pgprot(0), 2504 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), 2505 .flags = CPA_NO_CHECK_ALIAS, 2506 }; 2507 2508 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2509 2510 if (!(__supported_pte_mask & _PAGE_NX)) 2511 goto out; 2512 2513 if (!(page_flags & _PAGE_ENC)) 2514 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); 2515 2516 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); 2517 2518 retval = __change_page_attr_set_clr(&cpa, 1); 2519 __flush_tlb_all(); 2520 2521 out: 2522 return retval; 2523 } 2524 2525 /* 2526 * __flush_tlb_all() flushes mappings only on current CPU and hence this 2527 * function shouldn't be used in an SMP environment. Presently, it's used only 2528 * during boot (way before smp_init()) by EFI subsystem and hence is ok. 2529 */ 2530 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, 2531 unsigned long numpages) 2532 { 2533 int retval; 2534 2535 /* 2536 * The typical sequence for unmapping is to find a pte through 2537 * lookup_address_in_pgd() (ideally, it should never return NULL because 2538 * the address is already mapped) and change its protections. As pfn is 2539 * the *target* of a mapping, it's not useful while unmapping. 2540 */ 2541 struct cpa_data cpa = { 2542 .vaddr = &address, 2543 .pfn = 0, 2544 .pgd = pgd, 2545 .numpages = numpages, 2546 .mask_set = __pgprot(0), 2547 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), 2548 .flags = CPA_NO_CHECK_ALIAS, 2549 }; 2550 2551 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); 2552 2553 retval = __change_page_attr_set_clr(&cpa, 1); 2554 __flush_tlb_all(); 2555 2556 return retval; 2557 } 2558 2559 /* 2560 * The testcases use internal knowledge of the implementation that shouldn't 2561 * be exposed to the rest of the kernel. Include these directly here. 2562 */ 2563 #ifdef CONFIG_CPA_DEBUG 2564 #include "cpa-test.c" 2565 #endif 2566