xref: /linux/arch/x86/mm/numa_32.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /*
2  * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
3  * August 2002: added remote node KVA remap - Martin J. Bligh
4  *
5  * Copyright (C) 2002, IBM Corp.
6  *
7  * All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17  * NON INFRINGEMENT.  See the GNU General Public License for more
18  * details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/mm.h>
26 #include <linux/bootmem.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/highmem.h>
30 #include <linux/initrd.h>
31 #include <linux/nodemask.h>
32 #include <linux/module.h>
33 #include <linux/kexec.h>
34 #include <linux/pfn.h>
35 #include <linux/swap.h>
36 #include <linux/acpi.h>
37 
38 #include <asm/e820.h>
39 #include <asm/setup.h>
40 #include <asm/mmzone.h>
41 #include <asm/bios_ebda.h>
42 #include <asm/proto.h>
43 
44 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
45 EXPORT_SYMBOL(node_data);
46 
47 /*
48  * numa interface - we expect the numa architecture specific code to have
49  *                  populated the following initialisation.
50  *
51  * 1) node_online_map  - the map of all nodes configured (online) in the system
52  * 2) node_start_pfn   - the starting page frame number for a node
53  * 3) node_end_pfn     - the ending page fram number for a node
54  */
55 unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
56 unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
57 
58 
59 #ifdef CONFIG_DISCONTIGMEM
60 /*
61  * 4) physnode_map     - the mapping between a pfn and owning node
62  * physnode_map keeps track of the physical memory layout of a generic
63  * numa node on a 64Mb break (each element of the array will
64  * represent 64Mb of memory and will be marked by the node id.  so,
65  * if the first gig is on node 0, and the second gig is on node 1
66  * physnode_map will contain:
67  *
68  *     physnode_map[0-15] = 0;
69  *     physnode_map[16-31] = 1;
70  *     physnode_map[32- ] = -1;
71  */
72 s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
73 EXPORT_SYMBOL(physnode_map);
74 
75 void memory_present(int nid, unsigned long start, unsigned long end)
76 {
77 	unsigned long pfn;
78 
79 	printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
80 			nid, start, end);
81 	printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid);
82 	printk(KERN_DEBUG "  ");
83 	for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
84 		physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
85 		printk(KERN_CONT "%lx ", pfn);
86 	}
87 	printk(KERN_CONT "\n");
88 }
89 
90 unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
91 					      unsigned long end_pfn)
92 {
93 	unsigned long nr_pages = end_pfn - start_pfn;
94 
95 	if (!nr_pages)
96 		return 0;
97 
98 	return (nr_pages + 1) * sizeof(struct page);
99 }
100 #endif
101 
102 extern unsigned long find_max_low_pfn(void);
103 extern unsigned long highend_pfn, highstart_pfn;
104 
105 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
106 
107 unsigned long node_remap_size[MAX_NUMNODES];
108 static void *node_remap_start_vaddr[MAX_NUMNODES];
109 void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
110 
111 static unsigned long kva_start_pfn;
112 static unsigned long kva_pages;
113 /*
114  * FLAT - support for basic PC memory model with discontig enabled, essentially
115  *        a single node with all available processors in it with a flat
116  *        memory map.
117  */
118 int __init get_memcfg_numa_flat(void)
119 {
120 	printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");
121 
122 	node_start_pfn[0] = 0;
123 	node_end_pfn[0] = max_pfn;
124 	memblock_x86_register_active_regions(0, 0, max_pfn);
125 	memory_present(0, 0, max_pfn);
126 	node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn);
127 
128         /* Indicate there is one node available. */
129 	nodes_clear(node_online_map);
130 	node_set_online(0);
131 	return 1;
132 }
133 
134 /*
135  * Find the highest page frame number we have available for the node
136  */
137 static void __init propagate_e820_map_node(int nid)
138 {
139 	if (node_end_pfn[nid] > max_pfn)
140 		node_end_pfn[nid] = max_pfn;
141 	/*
142 	 * if a user has given mem=XXXX, then we need to make sure
143 	 * that the node _starts_ before that, too, not just ends
144 	 */
145 	if (node_start_pfn[nid] > max_pfn)
146 		node_start_pfn[nid] = max_pfn;
147 	BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
148 }
149 
150 /*
151  * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
152  * method.  For node zero take this from the bottom of memory, for
153  * subsequent nodes place them at node_remap_start_vaddr which contains
154  * node local data in physically node local memory.  See setup_memory()
155  * for details.
156  */
157 static void __init allocate_pgdat(int nid)
158 {
159 	char buf[16];
160 
161 	if (node_has_online_mem(nid) && node_remap_start_vaddr[nid])
162 		NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
163 	else {
164 		unsigned long pgdat_phys;
165 		pgdat_phys = memblock_find_in_range(min_low_pfn<<PAGE_SHIFT,
166 				 max_pfn_mapped<<PAGE_SHIFT,
167 				 sizeof(pg_data_t),
168 				 PAGE_SIZE);
169 		NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
170 		memset(buf, 0, sizeof(buf));
171 		sprintf(buf, "NODE_DATA %d",  nid);
172 		memblock_x86_reserve_range(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf);
173 	}
174 	printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
175 		nid, (unsigned long)NODE_DATA(nid));
176 }
177 
178 /*
179  * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel
180  * virtual address space (KVA) is reserved and portions of nodes are mapped
181  * using it. This is to allow node-local memory to be allocated for
182  * structures that would normally require ZONE_NORMAL. The memory is
183  * allocated with alloc_remap() and callers should be prepared to allocate
184  * from the bootmem allocator instead.
185  */
186 static unsigned long node_remap_start_pfn[MAX_NUMNODES];
187 static void *node_remap_end_vaddr[MAX_NUMNODES];
188 static void *node_remap_alloc_vaddr[MAX_NUMNODES];
189 static unsigned long node_remap_offset[MAX_NUMNODES];
190 
191 void *alloc_remap(int nid, unsigned long size)
192 {
193 	void *allocation = node_remap_alloc_vaddr[nid];
194 
195 	size = ALIGN(size, L1_CACHE_BYTES);
196 
197 	if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
198 		return NULL;
199 
200 	node_remap_alloc_vaddr[nid] += size;
201 	memset(allocation, 0, size);
202 
203 	return allocation;
204 }
205 
206 static void __init remap_numa_kva(void)
207 {
208 	void *vaddr;
209 	unsigned long pfn;
210 	int node;
211 
212 	for_each_online_node(node) {
213 		printk(KERN_DEBUG "remap_numa_kva: node %d\n", node);
214 		for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
215 			vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
216 			printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n",
217 				(unsigned long)vaddr,
218 				node_remap_start_pfn[node] + pfn);
219 			set_pmd_pfn((ulong) vaddr,
220 				node_remap_start_pfn[node] + pfn,
221 				PAGE_KERNEL_LARGE);
222 		}
223 	}
224 }
225 
226 #ifdef CONFIG_HIBERNATION
227 /**
228  * resume_map_numa_kva - add KVA mapping to the temporary page tables created
229  *                       during resume from hibernation
230  * @pgd_base - temporary resume page directory
231  */
232 void resume_map_numa_kva(pgd_t *pgd_base)
233 {
234 	int node;
235 
236 	for_each_online_node(node) {
237 		unsigned long start_va, start_pfn, size, pfn;
238 
239 		start_va = (unsigned long)node_remap_start_vaddr[node];
240 		start_pfn = node_remap_start_pfn[node];
241 		size = node_remap_size[node];
242 
243 		printk(KERN_DEBUG "%s: node %d\n", __func__, node);
244 
245 		for (pfn = 0; pfn < size; pfn += PTRS_PER_PTE) {
246 			unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
247 			pgd_t *pgd = pgd_base + pgd_index(vaddr);
248 			pud_t *pud = pud_offset(pgd, vaddr);
249 			pmd_t *pmd = pmd_offset(pud, vaddr);
250 
251 			set_pmd(pmd, pfn_pmd(start_pfn + pfn,
252 						PAGE_KERNEL_LARGE_EXEC));
253 
254 			printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
255 				__func__, vaddr, start_pfn + pfn);
256 		}
257 	}
258 }
259 #endif
260 
261 static __init unsigned long calculate_numa_remap_pages(void)
262 {
263 	int nid;
264 	unsigned long size, reserve_pages = 0;
265 
266 	for_each_online_node(nid) {
267 		u64 node_kva_target;
268 		u64 node_kva_final;
269 
270 		/*
271 		 * The acpi/srat node info can show hot-add memroy zones
272 		 * where memory could be added but not currently present.
273 		 */
274 		printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
275 			nid, node_start_pfn[nid], node_end_pfn[nid]);
276 		if (node_start_pfn[nid] > max_pfn)
277 			continue;
278 		if (!node_end_pfn[nid])
279 			continue;
280 		if (node_end_pfn[nid] > max_pfn)
281 			node_end_pfn[nid] = max_pfn;
282 
283 		/* ensure the remap includes space for the pgdat. */
284 		size = node_remap_size[nid] + sizeof(pg_data_t);
285 
286 		/* convert size to large (pmd size) pages, rounding up */
287 		size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
288 		/* now the roundup is correct, convert to PAGE_SIZE pages */
289 		size = size * PTRS_PER_PTE;
290 
291 		node_kva_target = round_down(node_end_pfn[nid] - size,
292 						 PTRS_PER_PTE);
293 		node_kva_target <<= PAGE_SHIFT;
294 		do {
295 			node_kva_final = memblock_find_in_range(node_kva_target,
296 					((u64)node_end_pfn[nid])<<PAGE_SHIFT,
297 						((u64)size)<<PAGE_SHIFT,
298 						LARGE_PAGE_BYTES);
299 			node_kva_target -= LARGE_PAGE_BYTES;
300 		} while (node_kva_final == MEMBLOCK_ERROR &&
301 			 (node_kva_target>>PAGE_SHIFT) > (node_start_pfn[nid]));
302 
303 		if (node_kva_final == MEMBLOCK_ERROR)
304 			panic("Can not get kva ram\n");
305 
306 		node_remap_size[nid] = size;
307 		node_remap_offset[nid] = reserve_pages;
308 		reserve_pages += size;
309 		printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of"
310 				  " node %d at %llx\n",
311 				size, nid, node_kva_final>>PAGE_SHIFT);
312 
313 		/*
314 		 *  prevent kva address below max_low_pfn want it on system
315 		 *  with less memory later.
316 		 *  layout will be: KVA address , KVA RAM
317 		 *
318 		 *  we are supposed to only record the one less then max_low_pfn
319 		 *  but we could have some hole in high memory, and it will only
320 		 *  check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide
321 		 *  to use it as free.
322 		 *  So memblock_x86_reserve_range here, hope we don't run out of that array
323 		 */
324 		memblock_x86_reserve_range(node_kva_final,
325 			      node_kva_final+(((u64)size)<<PAGE_SHIFT),
326 			      "KVA RAM");
327 
328 		node_remap_start_pfn[nid] = node_kva_final>>PAGE_SHIFT;
329 	}
330 	printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n",
331 			reserve_pages);
332 	return reserve_pages;
333 }
334 
335 static void init_remap_allocator(int nid)
336 {
337 	node_remap_start_vaddr[nid] = pfn_to_kaddr(
338 			kva_start_pfn + node_remap_offset[nid]);
339 	node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
340 		(node_remap_size[nid] * PAGE_SIZE);
341 	node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
342 		ALIGN(sizeof(pg_data_t), PAGE_SIZE);
343 
344 	printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid,
345 		(ulong) node_remap_start_vaddr[nid],
346 		(ulong) node_remap_end_vaddr[nid]);
347 }
348 
349 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
350 				int acpi, int k8)
351 {
352 	int nid;
353 	long kva_target_pfn;
354 
355 	/*
356 	 * When mapping a NUMA machine we allocate the node_mem_map arrays
357 	 * from node local memory.  They are then mapped directly into KVA
358 	 * between zone normal and vmalloc space.  Calculate the size of
359 	 * this space and use it to adjust the boundary between ZONE_NORMAL
360 	 * and ZONE_HIGHMEM.
361 	 */
362 
363 	get_memcfg_numa();
364 
365 	kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE);
366 
367 	kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE);
368 	do {
369 		kva_start_pfn = memblock_find_in_range(kva_target_pfn<<PAGE_SHIFT,
370 					max_low_pfn<<PAGE_SHIFT,
371 					kva_pages<<PAGE_SHIFT,
372 					PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT;
373 		kva_target_pfn -= PTRS_PER_PTE;
374 	} while (kva_start_pfn == MEMBLOCK_ERROR && kva_target_pfn > min_low_pfn);
375 
376 	if (kva_start_pfn == MEMBLOCK_ERROR)
377 		panic("Can not get kva space\n");
378 
379 	printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n",
380 		kva_start_pfn, max_low_pfn);
381 	printk(KERN_INFO "max_pfn = %lx\n", max_pfn);
382 
383 	/* avoid clash with initrd */
384 	memblock_x86_reserve_range(kva_start_pfn<<PAGE_SHIFT,
385 		      (kva_start_pfn + kva_pages)<<PAGE_SHIFT,
386 		     "KVA PG");
387 #ifdef CONFIG_HIGHMEM
388 	highstart_pfn = highend_pfn = max_pfn;
389 	if (max_pfn > max_low_pfn)
390 		highstart_pfn = max_low_pfn;
391 	printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
392 	       pages_to_mb(highend_pfn - highstart_pfn));
393 	num_physpages = highend_pfn;
394 	high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
395 #else
396 	num_physpages = max_low_pfn;
397 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
398 #endif
399 	printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
400 			pages_to_mb(max_low_pfn));
401 	printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
402 			max_low_pfn, highstart_pfn);
403 
404 	printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
405 			(ulong) pfn_to_kaddr(max_low_pfn));
406 	for_each_online_node(nid) {
407 		init_remap_allocator(nid);
408 
409 		allocate_pgdat(nid);
410 	}
411 	remap_numa_kva();
412 
413 	printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
414 			(ulong) pfn_to_kaddr(highstart_pfn));
415 	for_each_online_node(nid)
416 		propagate_e820_map_node(nid);
417 
418 	for_each_online_node(nid) {
419 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
420 		NODE_DATA(nid)->node_id = nid;
421 	}
422 
423 	setup_bootmem_allocator();
424 }
425 
426 #ifdef CONFIG_MEMORY_HOTPLUG
427 static int paddr_to_nid(u64 addr)
428 {
429 	int nid;
430 	unsigned long pfn = PFN_DOWN(addr);
431 
432 	for_each_node(nid)
433 		if (node_start_pfn[nid] <= pfn &&
434 		    pfn < node_end_pfn[nid])
435 			return nid;
436 
437 	return -1;
438 }
439 
440 /*
441  * This function is used to ask node id BEFORE memmap and mem_section's
442  * initialization (pfn_to_nid() can't be used yet).
443  * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
444  */
445 int memory_add_physaddr_to_nid(u64 addr)
446 {
447 	int nid = paddr_to_nid(addr);
448 	return (nid >= 0) ? nid : 0;
449 }
450 
451 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
452 #endif
453 
454