xref: /linux/arch/x86/mm/numa_32.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
3  * August 2002: added remote node KVA remap - Martin J. Bligh
4  *
5  * Copyright (C) 2002, IBM Corp.
6  *
7  * All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17  * NON INFRINGEMENT.  See the GNU General Public License for more
18  * details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bootmem.h>
26 #include <linux/memblock.h>
27 #include <linux/module.h>
28 
29 #include "numa_internal.h"
30 
31 #ifdef CONFIG_DISCONTIGMEM
32 /*
33  * 4) physnode_map     - the mapping between a pfn and owning node
34  * physnode_map keeps track of the physical memory layout of a generic
35  * numa node on a 64Mb break (each element of the array will
36  * represent 64Mb of memory and will be marked by the node id.  so,
37  * if the first gig is on node 0, and the second gig is on node 1
38  * physnode_map will contain:
39  *
40  *     physnode_map[0-15] = 0;
41  *     physnode_map[16-31] = 1;
42  *     physnode_map[32- ] = -1;
43  */
44 s8 physnode_map[MAX_SECTIONS] __read_mostly = { [0 ... (MAX_SECTIONS - 1)] = -1};
45 EXPORT_SYMBOL(physnode_map);
46 
47 void memory_present(int nid, unsigned long start, unsigned long end)
48 {
49 	unsigned long pfn;
50 
51 	printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
52 			nid, start, end);
53 	printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid);
54 	printk(KERN_DEBUG "  ");
55 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
56 		physnode_map[pfn / PAGES_PER_SECTION] = nid;
57 		printk(KERN_CONT "%lx ", pfn);
58 	}
59 	printk(KERN_CONT "\n");
60 }
61 
62 unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
63 					      unsigned long end_pfn)
64 {
65 	unsigned long nr_pages = end_pfn - start_pfn;
66 
67 	if (!nr_pages)
68 		return 0;
69 
70 	return (nr_pages + 1) * sizeof(struct page);
71 }
72 #endif
73 
74 extern unsigned long highend_pfn, highstart_pfn;
75 
76 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
77 
78 static void *node_remap_start_vaddr[MAX_NUMNODES];
79 void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
80 
81 /*
82  * Remap memory allocator
83  */
84 static unsigned long node_remap_start_pfn[MAX_NUMNODES];
85 static void *node_remap_end_vaddr[MAX_NUMNODES];
86 static void *node_remap_alloc_vaddr[MAX_NUMNODES];
87 
88 /**
89  * alloc_remap - Allocate remapped memory
90  * @nid: NUMA node to allocate memory from
91  * @size: The size of allocation
92  *
93  * Allocate @size bytes from the remap area of NUMA node @nid.  The
94  * size of the remap area is predetermined by init_alloc_remap() and
95  * only the callers considered there should call this function.  For
96  * more info, please read the comment on top of init_alloc_remap().
97  *
98  * The caller must be ready to handle allocation failure from this
99  * function and fall back to regular memory allocator in such cases.
100  *
101  * CONTEXT:
102  * Single CPU early boot context.
103  *
104  * RETURNS:
105  * Pointer to the allocated memory on success, %NULL on failure.
106  */
107 void *alloc_remap(int nid, unsigned long size)
108 {
109 	void *allocation = node_remap_alloc_vaddr[nid];
110 
111 	size = ALIGN(size, L1_CACHE_BYTES);
112 
113 	if (!allocation || (allocation + size) > node_remap_end_vaddr[nid])
114 		return NULL;
115 
116 	node_remap_alloc_vaddr[nid] += size;
117 	memset(allocation, 0, size);
118 
119 	return allocation;
120 }
121 
122 #ifdef CONFIG_HIBERNATION
123 /**
124  * resume_map_numa_kva - add KVA mapping to the temporary page tables created
125  *                       during resume from hibernation
126  * @pgd_base - temporary resume page directory
127  */
128 void resume_map_numa_kva(pgd_t *pgd_base)
129 {
130 	int node;
131 
132 	for_each_online_node(node) {
133 		unsigned long start_va, start_pfn, nr_pages, pfn;
134 
135 		start_va = (unsigned long)node_remap_start_vaddr[node];
136 		start_pfn = node_remap_start_pfn[node];
137 		nr_pages = (node_remap_end_vaddr[node] -
138 			    node_remap_start_vaddr[node]) >> PAGE_SHIFT;
139 
140 		printk(KERN_DEBUG "%s: node %d\n", __func__, node);
141 
142 		for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) {
143 			unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
144 			pgd_t *pgd = pgd_base + pgd_index(vaddr);
145 			pud_t *pud = pud_offset(pgd, vaddr);
146 			pmd_t *pmd = pmd_offset(pud, vaddr);
147 
148 			set_pmd(pmd, pfn_pmd(start_pfn + pfn,
149 						PAGE_KERNEL_LARGE_EXEC));
150 
151 			printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
152 				__func__, vaddr, start_pfn + pfn);
153 		}
154 	}
155 }
156 #endif
157 
158 /**
159  * init_alloc_remap - Initialize remap allocator for a NUMA node
160  * @nid: NUMA node to initizlie remap allocator for
161  *
162  * NUMA nodes may end up without any lowmem.  As allocating pgdat and
163  * memmap on a different node with lowmem is inefficient, a special
164  * remap allocator is implemented which can be used by alloc_remap().
165  *
166  * For each node, the amount of memory which will be necessary for
167  * pgdat and memmap is calculated and two memory areas of the size are
168  * allocated - one in the node and the other in lowmem; then, the area
169  * in the node is remapped to the lowmem area.
170  *
171  * As pgdat and memmap must be allocated in lowmem anyway, this
172  * doesn't waste lowmem address space; however, the actual lowmem
173  * which gets remapped over is wasted.  The amount shouldn't be
174  * problematic on machines this feature will be used.
175  *
176  * Initialization failure isn't fatal.  alloc_remap() is used
177  * opportunistically and the callers will fall back to other memory
178  * allocation mechanisms on failure.
179  */
180 void __init init_alloc_remap(int nid, u64 start, u64 end)
181 {
182 	unsigned long start_pfn = start >> PAGE_SHIFT;
183 	unsigned long end_pfn = end >> PAGE_SHIFT;
184 	unsigned long size, pfn;
185 	u64 node_pa, remap_pa;
186 	void *remap_va;
187 
188 	/*
189 	 * The acpi/srat node info can show hot-add memroy zones where
190 	 * memory could be added but not currently present.
191 	 */
192 	printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
193 	       nid, start_pfn, end_pfn);
194 
195 	/* calculate the necessary space aligned to large page size */
196 	size = node_memmap_size_bytes(nid, start_pfn, end_pfn);
197 	size += ALIGN(sizeof(pg_data_t), PAGE_SIZE);
198 	size = ALIGN(size, LARGE_PAGE_BYTES);
199 
200 	/* allocate node memory and the lowmem remap area */
201 	node_pa = memblock_find_in_range(start, end, size, LARGE_PAGE_BYTES);
202 	if (node_pa == MEMBLOCK_ERROR) {
203 		pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n",
204 			   size, nid);
205 		return;
206 	}
207 	memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM");
208 
209 	remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT,
210 					  max_low_pfn << PAGE_SHIFT,
211 					  size, LARGE_PAGE_BYTES);
212 	if (remap_pa == MEMBLOCK_ERROR) {
213 		pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n",
214 			   size, nid);
215 		memblock_x86_free_range(node_pa, node_pa + size);
216 		return;
217 	}
218 	memblock_x86_reserve_range(remap_pa, remap_pa + size, "KVA PG");
219 	remap_va = phys_to_virt(remap_pa);
220 
221 	/* perform actual remap */
222 	for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE)
223 		set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT),
224 			    (node_pa >> PAGE_SHIFT) + pfn,
225 			    PAGE_KERNEL_LARGE);
226 
227 	/* initialize remap allocator parameters */
228 	node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT;
229 	node_remap_start_vaddr[nid] = remap_va;
230 	node_remap_end_vaddr[nid] = remap_va + size;
231 	node_remap_alloc_vaddr[nid] = remap_va;
232 
233 	printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n",
234 	       nid, node_pa, node_pa + size, remap_va, remap_va + size);
235 }
236 
237 void __init initmem_init(void)
238 {
239 	x86_numa_init();
240 
241 #ifdef CONFIG_HIGHMEM
242 	highstart_pfn = highend_pfn = max_pfn;
243 	if (max_pfn > max_low_pfn)
244 		highstart_pfn = max_low_pfn;
245 	printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
246 	       pages_to_mb(highend_pfn - highstart_pfn));
247 	num_physpages = highend_pfn;
248 	high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
249 #else
250 	num_physpages = max_low_pfn;
251 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
252 #endif
253 	printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
254 			pages_to_mb(max_low_pfn));
255 	printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
256 			max_low_pfn, highstart_pfn);
257 
258 	printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
259 			(ulong) pfn_to_kaddr(max_low_pfn));
260 
261 	printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
262 			(ulong) pfn_to_kaddr(highstart_pfn));
263 
264 	setup_bootmem_allocator();
265 }
266