1 /* Common code for 32 and 64-bit NUMA */ 2 #include <linux/acpi.h> 3 #include <linux/kernel.h> 4 #include <linux/mm.h> 5 #include <linux/string.h> 6 #include <linux/init.h> 7 #include <linux/memblock.h> 8 #include <linux/mmzone.h> 9 #include <linux/ctype.h> 10 #include <linux/nodemask.h> 11 #include <linux/sched.h> 12 #include <linux/topology.h> 13 14 #include <asm/e820/api.h> 15 #include <asm/proto.h> 16 #include <asm/dma.h> 17 #include <asm/amd_nb.h> 18 19 #include "numa_internal.h" 20 21 int numa_off; 22 nodemask_t numa_nodes_parsed __initdata; 23 24 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; 25 EXPORT_SYMBOL(node_data); 26 27 static struct numa_meminfo numa_meminfo 28 #ifndef CONFIG_MEMORY_HOTPLUG 29 __initdata 30 #endif 31 ; 32 33 static int numa_distance_cnt; 34 static u8 *numa_distance; 35 36 static __init int numa_setup(char *opt) 37 { 38 if (!opt) 39 return -EINVAL; 40 if (!strncmp(opt, "off", 3)) 41 numa_off = 1; 42 #ifdef CONFIG_NUMA_EMU 43 if (!strncmp(opt, "fake=", 5)) 44 numa_emu_cmdline(opt + 5); 45 #endif 46 #ifdef CONFIG_ACPI_NUMA 47 if (!strncmp(opt, "noacpi", 6)) 48 acpi_numa = -1; 49 #endif 50 return 0; 51 } 52 early_param("numa", numa_setup); 53 54 /* 55 * apicid, cpu, node mappings 56 */ 57 s16 __apicid_to_node[MAX_LOCAL_APIC] = { 58 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE 59 }; 60 61 int numa_cpu_node(int cpu) 62 { 63 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); 64 65 if (apicid != BAD_APICID) 66 return __apicid_to_node[apicid]; 67 return NUMA_NO_NODE; 68 } 69 70 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 71 EXPORT_SYMBOL(node_to_cpumask_map); 72 73 /* 74 * Map cpu index to node index 75 */ 76 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); 77 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); 78 79 void numa_set_node(int cpu, int node) 80 { 81 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); 82 83 /* early setting, no percpu area yet */ 84 if (cpu_to_node_map) { 85 cpu_to_node_map[cpu] = node; 86 return; 87 } 88 89 #ifdef CONFIG_DEBUG_PER_CPU_MAPS 90 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 91 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); 92 dump_stack(); 93 return; 94 } 95 #endif 96 per_cpu(x86_cpu_to_node_map, cpu) = node; 97 98 set_cpu_numa_node(cpu, node); 99 } 100 101 void numa_clear_node(int cpu) 102 { 103 numa_set_node(cpu, NUMA_NO_NODE); 104 } 105 106 /* 107 * Allocate node_to_cpumask_map based on number of available nodes 108 * Requires node_possible_map to be valid. 109 * 110 * Note: cpumask_of_node() is not valid until after this is done. 111 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) 112 */ 113 void __init setup_node_to_cpumask_map(void) 114 { 115 unsigned int node; 116 117 /* setup nr_node_ids if not done yet */ 118 if (nr_node_ids == MAX_NUMNODES) 119 setup_nr_node_ids(); 120 121 /* allocate the map */ 122 for (node = 0; node < nr_node_ids; node++) 123 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 124 125 /* cpumask_of_node() will now work */ 126 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); 127 } 128 129 static int __init numa_add_memblk_to(int nid, u64 start, u64 end, 130 struct numa_meminfo *mi) 131 { 132 /* ignore zero length blks */ 133 if (start == end) 134 return 0; 135 136 /* whine about and ignore invalid blks */ 137 if (start > end || nid < 0 || nid >= MAX_NUMNODES) { 138 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", 139 nid, start, end - 1); 140 return 0; 141 } 142 143 if (mi->nr_blks >= NR_NODE_MEMBLKS) { 144 pr_err("too many memblk ranges\n"); 145 return -EINVAL; 146 } 147 148 mi->blk[mi->nr_blks].start = start; 149 mi->blk[mi->nr_blks].end = end; 150 mi->blk[mi->nr_blks].nid = nid; 151 mi->nr_blks++; 152 return 0; 153 } 154 155 /** 156 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo 157 * @idx: Index of memblk to remove 158 * @mi: numa_meminfo to remove memblk from 159 * 160 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and 161 * decrementing @mi->nr_blks. 162 */ 163 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) 164 { 165 mi->nr_blks--; 166 memmove(&mi->blk[idx], &mi->blk[idx + 1], 167 (mi->nr_blks - idx) * sizeof(mi->blk[0])); 168 } 169 170 /** 171 * numa_add_memblk - Add one numa_memblk to numa_meminfo 172 * @nid: NUMA node ID of the new memblk 173 * @start: Start address of the new memblk 174 * @end: End address of the new memblk 175 * 176 * Add a new memblk to the default numa_meminfo. 177 * 178 * RETURNS: 179 * 0 on success, -errno on failure. 180 */ 181 int __init numa_add_memblk(int nid, u64 start, u64 end) 182 { 183 return numa_add_memblk_to(nid, start, end, &numa_meminfo); 184 } 185 186 /* Allocate NODE_DATA for a node on the local memory */ 187 static void __init alloc_node_data(int nid) 188 { 189 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); 190 u64 nd_pa; 191 void *nd; 192 int tnid; 193 194 /* 195 * Allocate node data. Try node-local memory and then any node. 196 * Never allocate in DMA zone. 197 */ 198 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 199 if (!nd_pa) { 200 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n", 201 nd_size, nid); 202 return; 203 } 204 nd = __va(nd_pa); 205 206 /* report and initialize */ 207 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, 208 nd_pa, nd_pa + nd_size - 1); 209 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 210 if (tnid != nid) 211 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); 212 213 node_data[nid] = nd; 214 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 215 216 node_set_online(nid); 217 } 218 219 /** 220 * numa_cleanup_meminfo - Cleanup a numa_meminfo 221 * @mi: numa_meminfo to clean up 222 * 223 * Sanitize @mi by merging and removing unnecessary memblks. Also check for 224 * conflicts and clear unused memblks. 225 * 226 * RETURNS: 227 * 0 on success, -errno on failure. 228 */ 229 int __init numa_cleanup_meminfo(struct numa_meminfo *mi) 230 { 231 const u64 low = 0; 232 const u64 high = PFN_PHYS(max_pfn); 233 int i, j, k; 234 235 /* first, trim all entries */ 236 for (i = 0; i < mi->nr_blks; i++) { 237 struct numa_memblk *bi = &mi->blk[i]; 238 239 /* make sure all blocks are inside the limits */ 240 bi->start = max(bi->start, low); 241 bi->end = min(bi->end, high); 242 243 /* and there's no empty or non-exist block */ 244 if (bi->start >= bi->end || 245 !memblock_overlaps_region(&memblock.memory, 246 bi->start, bi->end - bi->start)) 247 numa_remove_memblk_from(i--, mi); 248 } 249 250 /* merge neighboring / overlapping entries */ 251 for (i = 0; i < mi->nr_blks; i++) { 252 struct numa_memblk *bi = &mi->blk[i]; 253 254 for (j = i + 1; j < mi->nr_blks; j++) { 255 struct numa_memblk *bj = &mi->blk[j]; 256 u64 start, end; 257 258 /* 259 * See whether there are overlapping blocks. Whine 260 * about but allow overlaps of the same nid. They 261 * will be merged below. 262 */ 263 if (bi->end > bj->start && bi->start < bj->end) { 264 if (bi->nid != bj->nid) { 265 pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", 266 bi->nid, bi->start, bi->end - 1, 267 bj->nid, bj->start, bj->end - 1); 268 return -EINVAL; 269 } 270 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", 271 bi->nid, bi->start, bi->end - 1, 272 bj->start, bj->end - 1); 273 } 274 275 /* 276 * Join together blocks on the same node, holes 277 * between which don't overlap with memory on other 278 * nodes. 279 */ 280 if (bi->nid != bj->nid) 281 continue; 282 start = min(bi->start, bj->start); 283 end = max(bi->end, bj->end); 284 for (k = 0; k < mi->nr_blks; k++) { 285 struct numa_memblk *bk = &mi->blk[k]; 286 287 if (bi->nid == bk->nid) 288 continue; 289 if (start < bk->end && end > bk->start) 290 break; 291 } 292 if (k < mi->nr_blks) 293 continue; 294 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", 295 bi->nid, bi->start, bi->end - 1, bj->start, 296 bj->end - 1, start, end - 1); 297 bi->start = start; 298 bi->end = end; 299 numa_remove_memblk_from(j--, mi); 300 } 301 } 302 303 /* clear unused ones */ 304 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { 305 mi->blk[i].start = mi->blk[i].end = 0; 306 mi->blk[i].nid = NUMA_NO_NODE; 307 } 308 309 return 0; 310 } 311 312 /* 313 * Set nodes, which have memory in @mi, in *@nodemask. 314 */ 315 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, 316 const struct numa_meminfo *mi) 317 { 318 int i; 319 320 for (i = 0; i < ARRAY_SIZE(mi->blk); i++) 321 if (mi->blk[i].start != mi->blk[i].end && 322 mi->blk[i].nid != NUMA_NO_NODE) 323 node_set(mi->blk[i].nid, *nodemask); 324 } 325 326 /** 327 * numa_reset_distance - Reset NUMA distance table 328 * 329 * The current table is freed. The next numa_set_distance() call will 330 * create a new one. 331 */ 332 void __init numa_reset_distance(void) 333 { 334 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); 335 336 /* numa_distance could be 1LU marking allocation failure, test cnt */ 337 if (numa_distance_cnt) 338 memblock_free(__pa(numa_distance), size); 339 numa_distance_cnt = 0; 340 numa_distance = NULL; /* enable table creation */ 341 } 342 343 static int __init numa_alloc_distance(void) 344 { 345 nodemask_t nodes_parsed; 346 size_t size; 347 int i, j, cnt = 0; 348 u64 phys; 349 350 /* size the new table and allocate it */ 351 nodes_parsed = numa_nodes_parsed; 352 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); 353 354 for_each_node_mask(i, nodes_parsed) 355 cnt = i; 356 cnt++; 357 size = cnt * cnt * sizeof(numa_distance[0]); 358 359 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), 360 size, PAGE_SIZE); 361 if (!phys) { 362 pr_warn("Warning: can't allocate distance table!\n"); 363 /* don't retry until explicitly reset */ 364 numa_distance = (void *)1LU; 365 return -ENOMEM; 366 } 367 memblock_reserve(phys, size); 368 369 numa_distance = __va(phys); 370 numa_distance_cnt = cnt; 371 372 /* fill with the default distances */ 373 for (i = 0; i < cnt; i++) 374 for (j = 0; j < cnt; j++) 375 numa_distance[i * cnt + j] = i == j ? 376 LOCAL_DISTANCE : REMOTE_DISTANCE; 377 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); 378 379 return 0; 380 } 381 382 /** 383 * numa_set_distance - Set NUMA distance from one NUMA to another 384 * @from: the 'from' node to set distance 385 * @to: the 'to' node to set distance 386 * @distance: NUMA distance 387 * 388 * Set the distance from node @from to @to to @distance. If distance table 389 * doesn't exist, one which is large enough to accommodate all the currently 390 * known nodes will be created. 391 * 392 * If such table cannot be allocated, a warning is printed and further 393 * calls are ignored until the distance table is reset with 394 * numa_reset_distance(). 395 * 396 * If @from or @to is higher than the highest known node or lower than zero 397 * at the time of table creation or @distance doesn't make sense, the call 398 * is ignored. 399 * This is to allow simplification of specific NUMA config implementations. 400 */ 401 void __init numa_set_distance(int from, int to, int distance) 402 { 403 if (!numa_distance && numa_alloc_distance() < 0) 404 return; 405 406 if (from >= numa_distance_cnt || to >= numa_distance_cnt || 407 from < 0 || to < 0) { 408 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", 409 from, to, distance); 410 return; 411 } 412 413 if ((u8)distance != distance || 414 (from == to && distance != LOCAL_DISTANCE)) { 415 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", 416 from, to, distance); 417 return; 418 } 419 420 numa_distance[from * numa_distance_cnt + to] = distance; 421 } 422 423 int __node_distance(int from, int to) 424 { 425 if (from >= numa_distance_cnt || to >= numa_distance_cnt) 426 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; 427 return numa_distance[from * numa_distance_cnt + to]; 428 } 429 EXPORT_SYMBOL(__node_distance); 430 431 /* 432 * Sanity check to catch more bad NUMA configurations (they are amazingly 433 * common). Make sure the nodes cover all memory. 434 */ 435 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) 436 { 437 u64 numaram, e820ram; 438 int i; 439 440 numaram = 0; 441 for (i = 0; i < mi->nr_blks; i++) { 442 u64 s = mi->blk[i].start >> PAGE_SHIFT; 443 u64 e = mi->blk[i].end >> PAGE_SHIFT; 444 numaram += e - s; 445 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); 446 if ((s64)numaram < 0) 447 numaram = 0; 448 } 449 450 e820ram = max_pfn - absent_pages_in_range(0, max_pfn); 451 452 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ 453 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { 454 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", 455 (numaram << PAGE_SHIFT) >> 20, 456 (e820ram << PAGE_SHIFT) >> 20); 457 return false; 458 } 459 return true; 460 } 461 462 /* 463 * Mark all currently memblock-reserved physical memory (which covers the 464 * kernel's own memory ranges) as hot-unswappable. 465 */ 466 static void __init numa_clear_kernel_node_hotplug(void) 467 { 468 nodemask_t reserved_nodemask = NODE_MASK_NONE; 469 struct memblock_region *mb_region; 470 int i; 471 472 /* 473 * We have to do some preprocessing of memblock regions, to 474 * make them suitable for reservation. 475 * 476 * At this time, all memory regions reserved by memblock are 477 * used by the kernel, but those regions are not split up 478 * along node boundaries yet, and don't necessarily have their 479 * node ID set yet either. 480 * 481 * So iterate over all memory known to the x86 architecture, 482 * and use those ranges to set the nid in memblock.reserved. 483 * This will split up the memblock regions along node 484 * boundaries and will set the node IDs as well. 485 */ 486 for (i = 0; i < numa_meminfo.nr_blks; i++) { 487 struct numa_memblk *mb = numa_meminfo.blk + i; 488 int ret; 489 490 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); 491 WARN_ON_ONCE(ret); 492 } 493 494 /* 495 * Now go over all reserved memblock regions, to construct a 496 * node mask of all kernel reserved memory areas. 497 * 498 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, 499 * numa_meminfo might not include all memblock.reserved 500 * memory ranges, because quirks such as trim_snb_memory() 501 * reserve specific pages for Sandy Bridge graphics. ] 502 */ 503 for_each_memblock(reserved, mb_region) { 504 if (mb_region->nid != MAX_NUMNODES) 505 node_set(mb_region->nid, reserved_nodemask); 506 } 507 508 /* 509 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory 510 * belonging to the reserved node mask. 511 * 512 * Note that this will include memory regions that reside 513 * on nodes that contain kernel memory - entire nodes 514 * become hot-unpluggable: 515 */ 516 for (i = 0; i < numa_meminfo.nr_blks; i++) { 517 struct numa_memblk *mb = numa_meminfo.blk + i; 518 519 if (!node_isset(mb->nid, reserved_nodemask)) 520 continue; 521 522 memblock_clear_hotplug(mb->start, mb->end - mb->start); 523 } 524 } 525 526 static int __init numa_register_memblks(struct numa_meminfo *mi) 527 { 528 unsigned long uninitialized_var(pfn_align); 529 int i, nid; 530 531 /* Account for nodes with cpus and no memory */ 532 node_possible_map = numa_nodes_parsed; 533 numa_nodemask_from_meminfo(&node_possible_map, mi); 534 if (WARN_ON(nodes_empty(node_possible_map))) 535 return -EINVAL; 536 537 for (i = 0; i < mi->nr_blks; i++) { 538 struct numa_memblk *mb = &mi->blk[i]; 539 memblock_set_node(mb->start, mb->end - mb->start, 540 &memblock.memory, mb->nid); 541 } 542 543 /* 544 * At very early time, the kernel have to use some memory such as 545 * loading the kernel image. We cannot prevent this anyway. So any 546 * node the kernel resides in should be un-hotpluggable. 547 * 548 * And when we come here, alloc node data won't fail. 549 */ 550 numa_clear_kernel_node_hotplug(); 551 552 /* 553 * If sections array is gonna be used for pfn -> nid mapping, check 554 * whether its granularity is fine enough. 555 */ 556 #ifdef NODE_NOT_IN_PAGE_FLAGS 557 pfn_align = node_map_pfn_alignment(); 558 if (pfn_align && pfn_align < PAGES_PER_SECTION) { 559 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", 560 PFN_PHYS(pfn_align) >> 20, 561 PFN_PHYS(PAGES_PER_SECTION) >> 20); 562 return -EINVAL; 563 } 564 #endif 565 if (!numa_meminfo_cover_memory(mi)) 566 return -EINVAL; 567 568 /* Finally register nodes. */ 569 for_each_node_mask(nid, node_possible_map) { 570 u64 start = PFN_PHYS(max_pfn); 571 u64 end = 0; 572 573 for (i = 0; i < mi->nr_blks; i++) { 574 if (nid != mi->blk[i].nid) 575 continue; 576 start = min(mi->blk[i].start, start); 577 end = max(mi->blk[i].end, end); 578 } 579 580 if (start >= end) 581 continue; 582 583 /* 584 * Don't confuse VM with a node that doesn't have the 585 * minimum amount of memory: 586 */ 587 if (end && (end - start) < NODE_MIN_SIZE) 588 continue; 589 590 alloc_node_data(nid); 591 } 592 593 /* Dump memblock with node info and return. */ 594 memblock_dump_all(); 595 return 0; 596 } 597 598 /* 599 * There are unfortunately some poorly designed mainboards around that 600 * only connect memory to a single CPU. This breaks the 1:1 cpu->node 601 * mapping. To avoid this fill in the mapping for all possible CPUs, 602 * as the number of CPUs is not known yet. We round robin the existing 603 * nodes. 604 */ 605 static void __init numa_init_array(void) 606 { 607 int rr, i; 608 609 rr = first_node(node_online_map); 610 for (i = 0; i < nr_cpu_ids; i++) { 611 if (early_cpu_to_node(i) != NUMA_NO_NODE) 612 continue; 613 numa_set_node(i, rr); 614 rr = next_node_in(rr, node_online_map); 615 } 616 } 617 618 static int __init numa_init(int (*init_func)(void)) 619 { 620 int i; 621 int ret; 622 623 for (i = 0; i < MAX_LOCAL_APIC; i++) 624 set_apicid_to_node(i, NUMA_NO_NODE); 625 626 nodes_clear(numa_nodes_parsed); 627 nodes_clear(node_possible_map); 628 nodes_clear(node_online_map); 629 memset(&numa_meminfo, 0, sizeof(numa_meminfo)); 630 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, 631 MAX_NUMNODES)); 632 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, 633 MAX_NUMNODES)); 634 /* In case that parsing SRAT failed. */ 635 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); 636 numa_reset_distance(); 637 638 ret = init_func(); 639 if (ret < 0) 640 return ret; 641 642 /* 643 * We reset memblock back to the top-down direction 644 * here because if we configured ACPI_NUMA, we have 645 * parsed SRAT in init_func(). It is ok to have the 646 * reset here even if we did't configure ACPI_NUMA 647 * or acpi numa init fails and fallbacks to dummy 648 * numa init. 649 */ 650 memblock_set_bottom_up(false); 651 652 ret = numa_cleanup_meminfo(&numa_meminfo); 653 if (ret < 0) 654 return ret; 655 656 numa_emulation(&numa_meminfo, numa_distance_cnt); 657 658 ret = numa_register_memblks(&numa_meminfo); 659 if (ret < 0) 660 return ret; 661 662 for (i = 0; i < nr_cpu_ids; i++) { 663 int nid = early_cpu_to_node(i); 664 665 if (nid == NUMA_NO_NODE) 666 continue; 667 if (!node_online(nid)) 668 numa_clear_node(i); 669 } 670 numa_init_array(); 671 672 return 0; 673 } 674 675 /** 676 * dummy_numa_init - Fallback dummy NUMA init 677 * 678 * Used if there's no underlying NUMA architecture, NUMA initialization 679 * fails, or NUMA is disabled on the command line. 680 * 681 * Must online at least one node and add memory blocks that cover all 682 * allowed memory. This function must not fail. 683 */ 684 static int __init dummy_numa_init(void) 685 { 686 printk(KERN_INFO "%s\n", 687 numa_off ? "NUMA turned off" : "No NUMA configuration found"); 688 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", 689 0LLU, PFN_PHYS(max_pfn) - 1); 690 691 node_set(0, numa_nodes_parsed); 692 numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); 693 694 return 0; 695 } 696 697 /** 698 * x86_numa_init - Initialize NUMA 699 * 700 * Try each configured NUMA initialization method until one succeeds. The 701 * last fallback is dummy single node config encomapssing whole memory and 702 * never fails. 703 */ 704 void __init x86_numa_init(void) 705 { 706 if (!numa_off) { 707 #ifdef CONFIG_ACPI_NUMA 708 if (!numa_init(x86_acpi_numa_init)) 709 return; 710 #endif 711 #ifdef CONFIG_AMD_NUMA 712 if (!numa_init(amd_numa_init)) 713 return; 714 #endif 715 } 716 717 numa_init(dummy_numa_init); 718 } 719 720 static void __init init_memory_less_node(int nid) 721 { 722 unsigned long zones_size[MAX_NR_ZONES] = {0}; 723 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 724 725 /* Allocate and initialize node data. Memory-less node is now online.*/ 726 alloc_node_data(nid); 727 free_area_init_node(nid, zones_size, 0, zholes_size); 728 729 /* 730 * All zonelists will be built later in start_kernel() after per cpu 731 * areas are initialized. 732 */ 733 } 734 735 /* 736 * Setup early cpu_to_node. 737 * 738 * Populate cpu_to_node[] only if x86_cpu_to_apicid[], 739 * and apicid_to_node[] tables have valid entries for a CPU. 740 * This means we skip cpu_to_node[] initialisation for NUMA 741 * emulation and faking node case (when running a kernel compiled 742 * for NUMA on a non NUMA box), which is OK as cpu_to_node[] 743 * is already initialized in a round robin manner at numa_init_array, 744 * prior to this call, and this initialization is good enough 745 * for the fake NUMA cases. 746 * 747 * Called before the per_cpu areas are setup. 748 */ 749 void __init init_cpu_to_node(void) 750 { 751 int cpu; 752 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); 753 754 BUG_ON(cpu_to_apicid == NULL); 755 756 for_each_possible_cpu(cpu) { 757 int node = numa_cpu_node(cpu); 758 759 if (node == NUMA_NO_NODE) 760 continue; 761 762 if (!node_online(node)) 763 init_memory_less_node(node); 764 765 numa_set_node(cpu, node); 766 } 767 } 768 769 #ifndef CONFIG_DEBUG_PER_CPU_MAPS 770 771 # ifndef CONFIG_NUMA_EMU 772 void numa_add_cpu(int cpu) 773 { 774 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 775 } 776 777 void numa_remove_cpu(int cpu) 778 { 779 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 780 } 781 # endif /* !CONFIG_NUMA_EMU */ 782 783 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ 784 785 int __cpu_to_node(int cpu) 786 { 787 if (early_per_cpu_ptr(x86_cpu_to_node_map)) { 788 printk(KERN_WARNING 789 "cpu_to_node(%d): usage too early!\n", cpu); 790 dump_stack(); 791 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 792 } 793 return per_cpu(x86_cpu_to_node_map, cpu); 794 } 795 EXPORT_SYMBOL(__cpu_to_node); 796 797 /* 798 * Same function as cpu_to_node() but used if called before the 799 * per_cpu areas are setup. 800 */ 801 int early_cpu_to_node(int cpu) 802 { 803 if (early_per_cpu_ptr(x86_cpu_to_node_map)) 804 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 805 806 if (!cpu_possible(cpu)) { 807 printk(KERN_WARNING 808 "early_cpu_to_node(%d): no per_cpu area!\n", cpu); 809 dump_stack(); 810 return NUMA_NO_NODE; 811 } 812 return per_cpu(x86_cpu_to_node_map, cpu); 813 } 814 815 void debug_cpumask_set_cpu(int cpu, int node, bool enable) 816 { 817 struct cpumask *mask; 818 819 if (node == NUMA_NO_NODE) { 820 /* early_cpu_to_node() already emits a warning and trace */ 821 return; 822 } 823 mask = node_to_cpumask_map[node]; 824 if (!mask) { 825 pr_err("node_to_cpumask_map[%i] NULL\n", node); 826 dump_stack(); 827 return; 828 } 829 830 if (enable) 831 cpumask_set_cpu(cpu, mask); 832 else 833 cpumask_clear_cpu(cpu, mask); 834 835 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", 836 enable ? "numa_add_cpu" : "numa_remove_cpu", 837 cpu, node, cpumask_pr_args(mask)); 838 return; 839 } 840 841 # ifndef CONFIG_NUMA_EMU 842 static void numa_set_cpumask(int cpu, bool enable) 843 { 844 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); 845 } 846 847 void numa_add_cpu(int cpu) 848 { 849 numa_set_cpumask(cpu, true); 850 } 851 852 void numa_remove_cpu(int cpu) 853 { 854 numa_set_cpumask(cpu, false); 855 } 856 # endif /* !CONFIG_NUMA_EMU */ 857 858 /* 859 * Returns a pointer to the bitmask of CPUs on Node 'node'. 860 */ 861 const struct cpumask *cpumask_of_node(int node) 862 { 863 if (node >= nr_node_ids) { 864 printk(KERN_WARNING 865 "cpumask_of_node(%d): node > nr_node_ids(%u)\n", 866 node, nr_node_ids); 867 dump_stack(); 868 return cpu_none_mask; 869 } 870 if (node_to_cpumask_map[node] == NULL) { 871 printk(KERN_WARNING 872 "cpumask_of_node(%d): no node_to_cpumask_map!\n", 873 node); 874 dump_stack(); 875 return cpu_online_mask; 876 } 877 return node_to_cpumask_map[node]; 878 } 879 EXPORT_SYMBOL(cpumask_of_node); 880 881 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ 882 883 #ifdef CONFIG_MEMORY_HOTPLUG 884 int memory_add_physaddr_to_nid(u64 start) 885 { 886 struct numa_meminfo *mi = &numa_meminfo; 887 int nid = mi->blk[0].nid; 888 int i; 889 890 for (i = 0; i < mi->nr_blks; i++) 891 if (mi->blk[i].start <= start && mi->blk[i].end > start) 892 nid = mi->blk[i].nid; 893 return nid; 894 } 895 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); 896 #endif 897