1 /* Common code for 32 and 64-bit NUMA */ 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/string.h> 5 #include <linux/init.h> 6 #include <linux/bootmem.h> 7 #include <linux/memblock.h> 8 #include <linux/mmzone.h> 9 #include <linux/ctype.h> 10 #include <linux/module.h> 11 #include <linux/nodemask.h> 12 #include <linux/sched.h> 13 #include <linux/topology.h> 14 15 #include <asm/e820.h> 16 #include <asm/proto.h> 17 #include <asm/dma.h> 18 #include <asm/acpi.h> 19 #include <asm/amd_nb.h> 20 21 #include "numa_internal.h" 22 23 int __initdata numa_off; 24 nodemask_t numa_nodes_parsed __initdata; 25 26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; 27 EXPORT_SYMBOL(node_data); 28 29 static struct numa_meminfo numa_meminfo 30 #ifndef CONFIG_MEMORY_HOTPLUG 31 __initdata 32 #endif 33 ; 34 35 static int numa_distance_cnt; 36 static u8 *numa_distance; 37 38 static __init int numa_setup(char *opt) 39 { 40 if (!opt) 41 return -EINVAL; 42 if (!strncmp(opt, "off", 3)) 43 numa_off = 1; 44 #ifdef CONFIG_NUMA_EMU 45 if (!strncmp(opt, "fake=", 5)) 46 numa_emu_cmdline(opt + 5); 47 #endif 48 #ifdef CONFIG_ACPI_NUMA 49 if (!strncmp(opt, "noacpi", 6)) 50 acpi_numa = -1; 51 #endif 52 return 0; 53 } 54 early_param("numa", numa_setup); 55 56 /* 57 * apicid, cpu, node mappings 58 */ 59 s16 __apicid_to_node[MAX_LOCAL_APIC] = { 60 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE 61 }; 62 63 int numa_cpu_node(int cpu) 64 { 65 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); 66 67 if (apicid != BAD_APICID) 68 return __apicid_to_node[apicid]; 69 return NUMA_NO_NODE; 70 } 71 72 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 73 EXPORT_SYMBOL(node_to_cpumask_map); 74 75 /* 76 * Map cpu index to node index 77 */ 78 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); 79 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); 80 81 void numa_set_node(int cpu, int node) 82 { 83 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); 84 85 /* early setting, no percpu area yet */ 86 if (cpu_to_node_map) { 87 cpu_to_node_map[cpu] = node; 88 return; 89 } 90 91 #ifdef CONFIG_DEBUG_PER_CPU_MAPS 92 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 93 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); 94 dump_stack(); 95 return; 96 } 97 #endif 98 per_cpu(x86_cpu_to_node_map, cpu) = node; 99 100 set_cpu_numa_node(cpu, node); 101 } 102 103 void numa_clear_node(int cpu) 104 { 105 numa_set_node(cpu, NUMA_NO_NODE); 106 } 107 108 /* 109 * Allocate node_to_cpumask_map based on number of available nodes 110 * Requires node_possible_map to be valid. 111 * 112 * Note: cpumask_of_node() is not valid until after this is done. 113 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) 114 */ 115 void __init setup_node_to_cpumask_map(void) 116 { 117 unsigned int node; 118 119 /* setup nr_node_ids if not done yet */ 120 if (nr_node_ids == MAX_NUMNODES) 121 setup_nr_node_ids(); 122 123 /* allocate the map */ 124 for (node = 0; node < nr_node_ids; node++) 125 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 126 127 /* cpumask_of_node() will now work */ 128 pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids); 129 } 130 131 static int __init numa_add_memblk_to(int nid, u64 start, u64 end, 132 struct numa_meminfo *mi) 133 { 134 /* ignore zero length blks */ 135 if (start == end) 136 return 0; 137 138 /* whine about and ignore invalid blks */ 139 if (start > end || nid < 0 || nid >= MAX_NUMNODES) { 140 pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", 141 nid, start, end - 1); 142 return 0; 143 } 144 145 if (mi->nr_blks >= NR_NODE_MEMBLKS) { 146 pr_err("NUMA: too many memblk ranges\n"); 147 return -EINVAL; 148 } 149 150 mi->blk[mi->nr_blks].start = start; 151 mi->blk[mi->nr_blks].end = end; 152 mi->blk[mi->nr_blks].nid = nid; 153 mi->nr_blks++; 154 return 0; 155 } 156 157 /** 158 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo 159 * @idx: Index of memblk to remove 160 * @mi: numa_meminfo to remove memblk from 161 * 162 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and 163 * decrementing @mi->nr_blks. 164 */ 165 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) 166 { 167 mi->nr_blks--; 168 memmove(&mi->blk[idx], &mi->blk[idx + 1], 169 (mi->nr_blks - idx) * sizeof(mi->blk[0])); 170 } 171 172 /** 173 * numa_add_memblk - Add one numa_memblk to numa_meminfo 174 * @nid: NUMA node ID of the new memblk 175 * @start: Start address of the new memblk 176 * @end: End address of the new memblk 177 * 178 * Add a new memblk to the default numa_meminfo. 179 * 180 * RETURNS: 181 * 0 on success, -errno on failure. 182 */ 183 int __init numa_add_memblk(int nid, u64 start, u64 end) 184 { 185 return numa_add_memblk_to(nid, start, end, &numa_meminfo); 186 } 187 188 /* Allocate NODE_DATA for a node on the local memory */ 189 static void __init alloc_node_data(int nid) 190 { 191 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); 192 u64 nd_pa; 193 void *nd; 194 int tnid; 195 196 /* 197 * Allocate node data. Try node-local memory and then any node. 198 * Never allocate in DMA zone. 199 */ 200 nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid); 201 if (!nd_pa) { 202 nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES, 203 MEMBLOCK_ALLOC_ACCESSIBLE); 204 if (!nd_pa) { 205 pr_err("Cannot find %zu bytes in node %d\n", 206 nd_size, nid); 207 return; 208 } 209 } 210 nd = __va(nd_pa); 211 212 /* report and initialize */ 213 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, 214 nd_pa, nd_pa + nd_size - 1); 215 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 216 if (tnid != nid) 217 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); 218 219 node_data[nid] = nd; 220 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 221 222 node_set_online(nid); 223 } 224 225 /** 226 * numa_cleanup_meminfo - Cleanup a numa_meminfo 227 * @mi: numa_meminfo to clean up 228 * 229 * Sanitize @mi by merging and removing unncessary memblks. Also check for 230 * conflicts and clear unused memblks. 231 * 232 * RETURNS: 233 * 0 on success, -errno on failure. 234 */ 235 int __init numa_cleanup_meminfo(struct numa_meminfo *mi) 236 { 237 const u64 low = 0; 238 const u64 high = PFN_PHYS(max_pfn); 239 int i, j, k; 240 241 /* first, trim all entries */ 242 for (i = 0; i < mi->nr_blks; i++) { 243 struct numa_memblk *bi = &mi->blk[i]; 244 245 /* make sure all blocks are inside the limits */ 246 bi->start = max(bi->start, low); 247 bi->end = min(bi->end, high); 248 249 /* and there's no empty block */ 250 if (bi->start >= bi->end) 251 numa_remove_memblk_from(i--, mi); 252 } 253 254 /* merge neighboring / overlapping entries */ 255 for (i = 0; i < mi->nr_blks; i++) { 256 struct numa_memblk *bi = &mi->blk[i]; 257 258 for (j = i + 1; j < mi->nr_blks; j++) { 259 struct numa_memblk *bj = &mi->blk[j]; 260 u64 start, end; 261 262 /* 263 * See whether there are overlapping blocks. Whine 264 * about but allow overlaps of the same nid. They 265 * will be merged below. 266 */ 267 if (bi->end > bj->start && bi->start < bj->end) { 268 if (bi->nid != bj->nid) { 269 pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", 270 bi->nid, bi->start, bi->end - 1, 271 bj->nid, bj->start, bj->end - 1); 272 return -EINVAL; 273 } 274 pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", 275 bi->nid, bi->start, bi->end - 1, 276 bj->start, bj->end - 1); 277 } 278 279 /* 280 * Join together blocks on the same node, holes 281 * between which don't overlap with memory on other 282 * nodes. 283 */ 284 if (bi->nid != bj->nid) 285 continue; 286 start = min(bi->start, bj->start); 287 end = max(bi->end, bj->end); 288 for (k = 0; k < mi->nr_blks; k++) { 289 struct numa_memblk *bk = &mi->blk[k]; 290 291 if (bi->nid == bk->nid) 292 continue; 293 if (start < bk->end && end > bk->start) 294 break; 295 } 296 if (k < mi->nr_blks) 297 continue; 298 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", 299 bi->nid, bi->start, bi->end - 1, bj->start, 300 bj->end - 1, start, end - 1); 301 bi->start = start; 302 bi->end = end; 303 numa_remove_memblk_from(j--, mi); 304 } 305 } 306 307 /* clear unused ones */ 308 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { 309 mi->blk[i].start = mi->blk[i].end = 0; 310 mi->blk[i].nid = NUMA_NO_NODE; 311 } 312 313 return 0; 314 } 315 316 /* 317 * Set nodes, which have memory in @mi, in *@nodemask. 318 */ 319 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, 320 const struct numa_meminfo *mi) 321 { 322 int i; 323 324 for (i = 0; i < ARRAY_SIZE(mi->blk); i++) 325 if (mi->blk[i].start != mi->blk[i].end && 326 mi->blk[i].nid != NUMA_NO_NODE) 327 node_set(mi->blk[i].nid, *nodemask); 328 } 329 330 /** 331 * numa_reset_distance - Reset NUMA distance table 332 * 333 * The current table is freed. The next numa_set_distance() call will 334 * create a new one. 335 */ 336 void __init numa_reset_distance(void) 337 { 338 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); 339 340 /* numa_distance could be 1LU marking allocation failure, test cnt */ 341 if (numa_distance_cnt) 342 memblock_free(__pa(numa_distance), size); 343 numa_distance_cnt = 0; 344 numa_distance = NULL; /* enable table creation */ 345 } 346 347 static int __init numa_alloc_distance(void) 348 { 349 nodemask_t nodes_parsed; 350 size_t size; 351 int i, j, cnt = 0; 352 u64 phys; 353 354 /* size the new table and allocate it */ 355 nodes_parsed = numa_nodes_parsed; 356 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); 357 358 for_each_node_mask(i, nodes_parsed) 359 cnt = i; 360 cnt++; 361 size = cnt * cnt * sizeof(numa_distance[0]); 362 363 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), 364 size, PAGE_SIZE); 365 if (!phys) { 366 pr_warning("NUMA: Warning: can't allocate distance table!\n"); 367 /* don't retry until explicitly reset */ 368 numa_distance = (void *)1LU; 369 return -ENOMEM; 370 } 371 memblock_reserve(phys, size); 372 373 numa_distance = __va(phys); 374 numa_distance_cnt = cnt; 375 376 /* fill with the default distances */ 377 for (i = 0; i < cnt; i++) 378 for (j = 0; j < cnt; j++) 379 numa_distance[i * cnt + j] = i == j ? 380 LOCAL_DISTANCE : REMOTE_DISTANCE; 381 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); 382 383 return 0; 384 } 385 386 /** 387 * numa_set_distance - Set NUMA distance from one NUMA to another 388 * @from: the 'from' node to set distance 389 * @to: the 'to' node to set distance 390 * @distance: NUMA distance 391 * 392 * Set the distance from node @from to @to to @distance. If distance table 393 * doesn't exist, one which is large enough to accommodate all the currently 394 * known nodes will be created. 395 * 396 * If such table cannot be allocated, a warning is printed and further 397 * calls are ignored until the distance table is reset with 398 * numa_reset_distance(). 399 * 400 * If @from or @to is higher than the highest known node or lower than zero 401 * at the time of table creation or @distance doesn't make sense, the call 402 * is ignored. 403 * This is to allow simplification of specific NUMA config implementations. 404 */ 405 void __init numa_set_distance(int from, int to, int distance) 406 { 407 if (!numa_distance && numa_alloc_distance() < 0) 408 return; 409 410 if (from >= numa_distance_cnt || to >= numa_distance_cnt || 411 from < 0 || to < 0) { 412 pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n", 413 from, to, distance); 414 return; 415 } 416 417 if ((u8)distance != distance || 418 (from == to && distance != LOCAL_DISTANCE)) { 419 pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n", 420 from, to, distance); 421 return; 422 } 423 424 numa_distance[from * numa_distance_cnt + to] = distance; 425 } 426 427 int __node_distance(int from, int to) 428 { 429 if (from >= numa_distance_cnt || to >= numa_distance_cnt) 430 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; 431 return numa_distance[from * numa_distance_cnt + to]; 432 } 433 EXPORT_SYMBOL(__node_distance); 434 435 /* 436 * Sanity check to catch more bad NUMA configurations (they are amazingly 437 * common). Make sure the nodes cover all memory. 438 */ 439 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) 440 { 441 u64 numaram, e820ram; 442 int i; 443 444 numaram = 0; 445 for (i = 0; i < mi->nr_blks; i++) { 446 u64 s = mi->blk[i].start >> PAGE_SHIFT; 447 u64 e = mi->blk[i].end >> PAGE_SHIFT; 448 numaram += e - s; 449 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); 450 if ((s64)numaram < 0) 451 numaram = 0; 452 } 453 454 e820ram = max_pfn - absent_pages_in_range(0, max_pfn); 455 456 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ 457 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { 458 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", 459 (numaram << PAGE_SHIFT) >> 20, 460 (e820ram << PAGE_SHIFT) >> 20); 461 return false; 462 } 463 return true; 464 } 465 466 static void __init numa_clear_kernel_node_hotplug(void) 467 { 468 int i, nid; 469 nodemask_t numa_kernel_nodes = NODE_MASK_NONE; 470 unsigned long start, end; 471 struct memblock_region *r; 472 473 /* 474 * At this time, all memory regions reserved by memblock are 475 * used by the kernel. Set the nid in memblock.reserved will 476 * mark out all the nodes the kernel resides in. 477 */ 478 for (i = 0; i < numa_meminfo.nr_blks; i++) { 479 struct numa_memblk *mb = &numa_meminfo.blk[i]; 480 481 memblock_set_node(mb->start, mb->end - mb->start, 482 &memblock.reserved, mb->nid); 483 } 484 485 /* Mark all kernel nodes. */ 486 for_each_memblock(reserved, r) 487 node_set(r->nid, numa_kernel_nodes); 488 489 /* Clear MEMBLOCK_HOTPLUG flag for memory in kernel nodes. */ 490 for (i = 0; i < numa_meminfo.nr_blks; i++) { 491 nid = numa_meminfo.blk[i].nid; 492 if (!node_isset(nid, numa_kernel_nodes)) 493 continue; 494 495 start = numa_meminfo.blk[i].start; 496 end = numa_meminfo.blk[i].end; 497 498 memblock_clear_hotplug(start, end - start); 499 } 500 } 501 502 static int __init numa_register_memblks(struct numa_meminfo *mi) 503 { 504 unsigned long uninitialized_var(pfn_align); 505 int i, nid; 506 507 /* Account for nodes with cpus and no memory */ 508 node_possible_map = numa_nodes_parsed; 509 numa_nodemask_from_meminfo(&node_possible_map, mi); 510 if (WARN_ON(nodes_empty(node_possible_map))) 511 return -EINVAL; 512 513 for (i = 0; i < mi->nr_blks; i++) { 514 struct numa_memblk *mb = &mi->blk[i]; 515 memblock_set_node(mb->start, mb->end - mb->start, 516 &memblock.memory, mb->nid); 517 } 518 519 /* 520 * At very early time, the kernel have to use some memory such as 521 * loading the kernel image. We cannot prevent this anyway. So any 522 * node the kernel resides in should be un-hotpluggable. 523 * 524 * And when we come here, alloc node data won't fail. 525 */ 526 numa_clear_kernel_node_hotplug(); 527 528 /* 529 * If sections array is gonna be used for pfn -> nid mapping, check 530 * whether its granularity is fine enough. 531 */ 532 #ifdef NODE_NOT_IN_PAGE_FLAGS 533 pfn_align = node_map_pfn_alignment(); 534 if (pfn_align && pfn_align < PAGES_PER_SECTION) { 535 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", 536 PFN_PHYS(pfn_align) >> 20, 537 PFN_PHYS(PAGES_PER_SECTION) >> 20); 538 return -EINVAL; 539 } 540 #endif 541 if (!numa_meminfo_cover_memory(mi)) 542 return -EINVAL; 543 544 /* Finally register nodes. */ 545 for_each_node_mask(nid, node_possible_map) { 546 u64 start = PFN_PHYS(max_pfn); 547 u64 end = 0; 548 549 for (i = 0; i < mi->nr_blks; i++) { 550 if (nid != mi->blk[i].nid) 551 continue; 552 start = min(mi->blk[i].start, start); 553 end = max(mi->blk[i].end, end); 554 } 555 556 if (start >= end) 557 continue; 558 559 /* 560 * Don't confuse VM with a node that doesn't have the 561 * minimum amount of memory: 562 */ 563 if (end && (end - start) < NODE_MIN_SIZE) 564 continue; 565 566 alloc_node_data(nid); 567 } 568 569 /* Dump memblock with node info and return. */ 570 memblock_dump_all(); 571 return 0; 572 } 573 574 /* 575 * There are unfortunately some poorly designed mainboards around that 576 * only connect memory to a single CPU. This breaks the 1:1 cpu->node 577 * mapping. To avoid this fill in the mapping for all possible CPUs, 578 * as the number of CPUs is not known yet. We round robin the existing 579 * nodes. 580 */ 581 static void __init numa_init_array(void) 582 { 583 int rr, i; 584 585 rr = first_node(node_online_map); 586 for (i = 0; i < nr_cpu_ids; i++) { 587 if (early_cpu_to_node(i) != NUMA_NO_NODE) 588 continue; 589 numa_set_node(i, rr); 590 rr = next_node(rr, node_online_map); 591 if (rr == MAX_NUMNODES) 592 rr = first_node(node_online_map); 593 } 594 } 595 596 static int __init numa_init(int (*init_func)(void)) 597 { 598 int i; 599 int ret; 600 601 for (i = 0; i < MAX_LOCAL_APIC; i++) 602 set_apicid_to_node(i, NUMA_NO_NODE); 603 604 nodes_clear(numa_nodes_parsed); 605 nodes_clear(node_possible_map); 606 nodes_clear(node_online_map); 607 memset(&numa_meminfo, 0, sizeof(numa_meminfo)); 608 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, 609 MAX_NUMNODES)); 610 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, 611 MAX_NUMNODES)); 612 /* In case that parsing SRAT failed. */ 613 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); 614 numa_reset_distance(); 615 616 ret = init_func(); 617 if (ret < 0) 618 return ret; 619 620 /* 621 * We reset memblock back to the top-down direction 622 * here because if we configured ACPI_NUMA, we have 623 * parsed SRAT in init_func(). It is ok to have the 624 * reset here even if we did't configure ACPI_NUMA 625 * or acpi numa init fails and fallbacks to dummy 626 * numa init. 627 */ 628 memblock_set_bottom_up(false); 629 630 ret = numa_cleanup_meminfo(&numa_meminfo); 631 if (ret < 0) 632 return ret; 633 634 numa_emulation(&numa_meminfo, numa_distance_cnt); 635 636 ret = numa_register_memblks(&numa_meminfo); 637 if (ret < 0) 638 return ret; 639 640 for (i = 0; i < nr_cpu_ids; i++) { 641 int nid = early_cpu_to_node(i); 642 643 if (nid == NUMA_NO_NODE) 644 continue; 645 if (!node_online(nid)) 646 numa_clear_node(i); 647 } 648 numa_init_array(); 649 650 return 0; 651 } 652 653 /** 654 * dummy_numa_init - Fallback dummy NUMA init 655 * 656 * Used if there's no underlying NUMA architecture, NUMA initialization 657 * fails, or NUMA is disabled on the command line. 658 * 659 * Must online at least one node and add memory blocks that cover all 660 * allowed memory. This function must not fail. 661 */ 662 static int __init dummy_numa_init(void) 663 { 664 printk(KERN_INFO "%s\n", 665 numa_off ? "NUMA turned off" : "No NUMA configuration found"); 666 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", 667 0LLU, PFN_PHYS(max_pfn) - 1); 668 669 node_set(0, numa_nodes_parsed); 670 numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); 671 672 return 0; 673 } 674 675 /** 676 * x86_numa_init - Initialize NUMA 677 * 678 * Try each configured NUMA initialization method until one succeeds. The 679 * last fallback is dummy single node config encomapssing whole memory and 680 * never fails. 681 */ 682 void __init x86_numa_init(void) 683 { 684 if (!numa_off) { 685 #ifdef CONFIG_ACPI_NUMA 686 if (!numa_init(x86_acpi_numa_init)) 687 return; 688 #endif 689 #ifdef CONFIG_AMD_NUMA 690 if (!numa_init(amd_numa_init)) 691 return; 692 #endif 693 } 694 695 numa_init(dummy_numa_init); 696 } 697 698 static __init int find_near_online_node(int node) 699 { 700 int n, val; 701 int min_val = INT_MAX; 702 int best_node = -1; 703 704 for_each_online_node(n) { 705 val = node_distance(node, n); 706 707 if (val < min_val) { 708 min_val = val; 709 best_node = n; 710 } 711 } 712 713 return best_node; 714 } 715 716 /* 717 * Setup early cpu_to_node. 718 * 719 * Populate cpu_to_node[] only if x86_cpu_to_apicid[], 720 * and apicid_to_node[] tables have valid entries for a CPU. 721 * This means we skip cpu_to_node[] initialisation for NUMA 722 * emulation and faking node case (when running a kernel compiled 723 * for NUMA on a non NUMA box), which is OK as cpu_to_node[] 724 * is already initialized in a round robin manner at numa_init_array, 725 * prior to this call, and this initialization is good enough 726 * for the fake NUMA cases. 727 * 728 * Called before the per_cpu areas are setup. 729 */ 730 void __init init_cpu_to_node(void) 731 { 732 int cpu; 733 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); 734 735 BUG_ON(cpu_to_apicid == NULL); 736 737 for_each_possible_cpu(cpu) { 738 int node = numa_cpu_node(cpu); 739 740 if (node == NUMA_NO_NODE) 741 continue; 742 if (!node_online(node)) 743 node = find_near_online_node(node); 744 numa_set_node(cpu, node); 745 } 746 } 747 748 #ifndef CONFIG_DEBUG_PER_CPU_MAPS 749 750 # ifndef CONFIG_NUMA_EMU 751 void numa_add_cpu(int cpu) 752 { 753 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 754 } 755 756 void numa_remove_cpu(int cpu) 757 { 758 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); 759 } 760 # endif /* !CONFIG_NUMA_EMU */ 761 762 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ 763 764 int __cpu_to_node(int cpu) 765 { 766 if (early_per_cpu_ptr(x86_cpu_to_node_map)) { 767 printk(KERN_WARNING 768 "cpu_to_node(%d): usage too early!\n", cpu); 769 dump_stack(); 770 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 771 } 772 return per_cpu(x86_cpu_to_node_map, cpu); 773 } 774 EXPORT_SYMBOL(__cpu_to_node); 775 776 /* 777 * Same function as cpu_to_node() but used if called before the 778 * per_cpu areas are setup. 779 */ 780 int early_cpu_to_node(int cpu) 781 { 782 if (early_per_cpu_ptr(x86_cpu_to_node_map)) 783 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; 784 785 if (!cpu_possible(cpu)) { 786 printk(KERN_WARNING 787 "early_cpu_to_node(%d): no per_cpu area!\n", cpu); 788 dump_stack(); 789 return NUMA_NO_NODE; 790 } 791 return per_cpu(x86_cpu_to_node_map, cpu); 792 } 793 794 void debug_cpumask_set_cpu(int cpu, int node, bool enable) 795 { 796 struct cpumask *mask; 797 798 if (node == NUMA_NO_NODE) { 799 /* early_cpu_to_node() already emits a warning and trace */ 800 return; 801 } 802 mask = node_to_cpumask_map[node]; 803 if (!mask) { 804 pr_err("node_to_cpumask_map[%i] NULL\n", node); 805 dump_stack(); 806 return; 807 } 808 809 if (enable) 810 cpumask_set_cpu(cpu, mask); 811 else 812 cpumask_clear_cpu(cpu, mask); 813 814 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", 815 enable ? "numa_add_cpu" : "numa_remove_cpu", 816 cpu, node, cpumask_pr_args(mask)); 817 return; 818 } 819 820 # ifndef CONFIG_NUMA_EMU 821 static void numa_set_cpumask(int cpu, bool enable) 822 { 823 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); 824 } 825 826 void numa_add_cpu(int cpu) 827 { 828 numa_set_cpumask(cpu, true); 829 } 830 831 void numa_remove_cpu(int cpu) 832 { 833 numa_set_cpumask(cpu, false); 834 } 835 # endif /* !CONFIG_NUMA_EMU */ 836 837 /* 838 * Returns a pointer to the bitmask of CPUs on Node 'node'. 839 */ 840 const struct cpumask *cpumask_of_node(int node) 841 { 842 if (node >= nr_node_ids) { 843 printk(KERN_WARNING 844 "cpumask_of_node(%d): node > nr_node_ids(%d)\n", 845 node, nr_node_ids); 846 dump_stack(); 847 return cpu_none_mask; 848 } 849 if (node_to_cpumask_map[node] == NULL) { 850 printk(KERN_WARNING 851 "cpumask_of_node(%d): no node_to_cpumask_map!\n", 852 node); 853 dump_stack(); 854 return cpu_online_mask; 855 } 856 return node_to_cpumask_map[node]; 857 } 858 EXPORT_SYMBOL(cpumask_of_node); 859 860 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ 861 862 #ifdef CONFIG_MEMORY_HOTPLUG 863 int memory_add_physaddr_to_nid(u64 start) 864 { 865 struct numa_meminfo *mi = &numa_meminfo; 866 int nid = mi->blk[0].nid; 867 int i; 868 869 for (i = 0; i < mi->nr_blks; i++) 870 if (mi->blk[i].start <= start && mi->blk[i].end > start) 871 nid = mi->blk[i].nid; 872 return nid; 873 } 874 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); 875 #endif 876