xref: /linux/arch/x86/mm/numa.c (revision 2241f81c91f211b512bd2c3a26a4a74258d0e008)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Common code for 32 and 64-bit NUMA */
3 #include <linux/acpi.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/of.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/memblock.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/nodemask.h>
13 #include <linux/sched.h>
14 #include <linux/topology.h>
15 #include <linux/sort.h>
16 
17 #include <asm/e820/api.h>
18 #include <asm/proto.h>
19 #include <asm/dma.h>
20 #include <asm/amd_nb.h>
21 
22 #include "numa_internal.h"
23 
24 int numa_off;
25 nodemask_t numa_nodes_parsed __initdata;
26 
27 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
28 EXPORT_SYMBOL(node_data);
29 
30 static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
31 static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
32 
33 static int numa_distance_cnt;
34 static u8 *numa_distance;
35 
36 static __init int numa_setup(char *opt)
37 {
38 	if (!opt)
39 		return -EINVAL;
40 	if (!strncmp(opt, "off", 3))
41 		numa_off = 1;
42 	if (!strncmp(opt, "fake=", 5))
43 		return numa_emu_cmdline(opt + 5);
44 	if (!strncmp(opt, "noacpi", 6))
45 		disable_srat();
46 	if (!strncmp(opt, "nohmat", 6))
47 		disable_hmat();
48 	return 0;
49 }
50 early_param("numa", numa_setup);
51 
52 /*
53  * apicid, cpu, node mappings
54  */
55 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
56 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
57 };
58 
59 int numa_cpu_node(int cpu)
60 {
61 	u32 apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
62 
63 	if (apicid != BAD_APICID)
64 		return __apicid_to_node[apicid];
65 	return NUMA_NO_NODE;
66 }
67 
68 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
69 EXPORT_SYMBOL(node_to_cpumask_map);
70 
71 /*
72  * Map cpu index to node index
73  */
74 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
75 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
76 
77 void numa_set_node(int cpu, int node)
78 {
79 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
80 
81 	/* early setting, no percpu area yet */
82 	if (cpu_to_node_map) {
83 		cpu_to_node_map[cpu] = node;
84 		return;
85 	}
86 
87 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
88 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
89 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
90 		dump_stack();
91 		return;
92 	}
93 #endif
94 	per_cpu(x86_cpu_to_node_map, cpu) = node;
95 
96 	set_cpu_numa_node(cpu, node);
97 }
98 
99 void numa_clear_node(int cpu)
100 {
101 	numa_set_node(cpu, NUMA_NO_NODE);
102 }
103 
104 /*
105  * Allocate node_to_cpumask_map based on number of available nodes
106  * Requires node_possible_map to be valid.
107  *
108  * Note: cpumask_of_node() is not valid until after this is done.
109  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
110  */
111 void __init setup_node_to_cpumask_map(void)
112 {
113 	unsigned int node;
114 
115 	/* setup nr_node_ids if not done yet */
116 	if (nr_node_ids == MAX_NUMNODES)
117 		setup_nr_node_ids();
118 
119 	/* allocate the map */
120 	for (node = 0; node < nr_node_ids; node++)
121 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
122 
123 	/* cpumask_of_node() will now work */
124 	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
125 }
126 
127 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
128 				     struct numa_meminfo *mi)
129 {
130 	/* ignore zero length blks */
131 	if (start == end)
132 		return 0;
133 
134 	/* whine about and ignore invalid blks */
135 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
136 		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
137 			nid, start, end - 1);
138 		return 0;
139 	}
140 
141 	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
142 		pr_err("too many memblk ranges\n");
143 		return -EINVAL;
144 	}
145 
146 	mi->blk[mi->nr_blks].start = start;
147 	mi->blk[mi->nr_blks].end = end;
148 	mi->blk[mi->nr_blks].nid = nid;
149 	mi->nr_blks++;
150 	return 0;
151 }
152 
153 /**
154  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
155  * @idx: Index of memblk to remove
156  * @mi: numa_meminfo to remove memblk from
157  *
158  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
159  * decrementing @mi->nr_blks.
160  */
161 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
162 {
163 	mi->nr_blks--;
164 	memmove(&mi->blk[idx], &mi->blk[idx + 1],
165 		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
166 }
167 
168 /**
169  * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
170  * @dst: numa_meminfo to append block to
171  * @idx: Index of memblk to remove
172  * @src: numa_meminfo to remove memblk from
173  */
174 static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
175 					 struct numa_meminfo *src)
176 {
177 	dst->blk[dst->nr_blks++] = src->blk[idx];
178 	numa_remove_memblk_from(idx, src);
179 }
180 
181 /**
182  * numa_add_memblk - Add one numa_memblk to numa_meminfo
183  * @nid: NUMA node ID of the new memblk
184  * @start: Start address of the new memblk
185  * @end: End address of the new memblk
186  *
187  * Add a new memblk to the default numa_meminfo.
188  *
189  * RETURNS:
190  * 0 on success, -errno on failure.
191  */
192 int __init numa_add_memblk(int nid, u64 start, u64 end)
193 {
194 	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
195 }
196 
197 /* Allocate NODE_DATA for a node on the local memory */
198 static void __init alloc_node_data(int nid)
199 {
200 	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
201 	u64 nd_pa;
202 	void *nd;
203 	int tnid;
204 
205 	/*
206 	 * Allocate node data.  Try node-local memory and then any node.
207 	 * Never allocate in DMA zone.
208 	 */
209 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
210 	if (!nd_pa) {
211 		pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
212 		       nd_size, nid);
213 		return;
214 	}
215 	nd = __va(nd_pa);
216 
217 	/* report and initialize */
218 	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
219 	       nd_pa, nd_pa + nd_size - 1);
220 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
221 	if (tnid != nid)
222 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
223 
224 	node_data[nid] = nd;
225 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
226 
227 	node_set_online(nid);
228 }
229 
230 /**
231  * numa_cleanup_meminfo - Cleanup a numa_meminfo
232  * @mi: numa_meminfo to clean up
233  *
234  * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
235  * conflicts and clear unused memblks.
236  *
237  * RETURNS:
238  * 0 on success, -errno on failure.
239  */
240 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
241 {
242 	const u64 low = 0;
243 	const u64 high = PFN_PHYS(max_pfn);
244 	int i, j, k;
245 
246 	/* first, trim all entries */
247 	for (i = 0; i < mi->nr_blks; i++) {
248 		struct numa_memblk *bi = &mi->blk[i];
249 
250 		/* move / save reserved memory ranges */
251 		if (!memblock_overlaps_region(&memblock.memory,
252 					bi->start, bi->end - bi->start)) {
253 			numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
254 			continue;
255 		}
256 
257 		/* make sure all non-reserved blocks are inside the limits */
258 		bi->start = max(bi->start, low);
259 
260 		/* preserve info for non-RAM areas above 'max_pfn': */
261 		if (bi->end > high) {
262 			numa_add_memblk_to(bi->nid, high, bi->end,
263 					   &numa_reserved_meminfo);
264 			bi->end = high;
265 		}
266 
267 		/* and there's no empty block */
268 		if (bi->start >= bi->end)
269 			numa_remove_memblk_from(i--, mi);
270 	}
271 
272 	/* merge neighboring / overlapping entries */
273 	for (i = 0; i < mi->nr_blks; i++) {
274 		struct numa_memblk *bi = &mi->blk[i];
275 
276 		for (j = i + 1; j < mi->nr_blks; j++) {
277 			struct numa_memblk *bj = &mi->blk[j];
278 			u64 start, end;
279 
280 			/*
281 			 * See whether there are overlapping blocks.  Whine
282 			 * about but allow overlaps of the same nid.  They
283 			 * will be merged below.
284 			 */
285 			if (bi->end > bj->start && bi->start < bj->end) {
286 				if (bi->nid != bj->nid) {
287 					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
288 					       bi->nid, bi->start, bi->end - 1,
289 					       bj->nid, bj->start, bj->end - 1);
290 					return -EINVAL;
291 				}
292 				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
293 					bi->nid, bi->start, bi->end - 1,
294 					bj->start, bj->end - 1);
295 			}
296 
297 			/*
298 			 * Join together blocks on the same node, holes
299 			 * between which don't overlap with memory on other
300 			 * nodes.
301 			 */
302 			if (bi->nid != bj->nid)
303 				continue;
304 			start = min(bi->start, bj->start);
305 			end = max(bi->end, bj->end);
306 			for (k = 0; k < mi->nr_blks; k++) {
307 				struct numa_memblk *bk = &mi->blk[k];
308 
309 				if (bi->nid == bk->nid)
310 					continue;
311 				if (start < bk->end && end > bk->start)
312 					break;
313 			}
314 			if (k < mi->nr_blks)
315 				continue;
316 			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
317 			       bi->nid, bi->start, bi->end - 1, bj->start,
318 			       bj->end - 1, start, end - 1);
319 			bi->start = start;
320 			bi->end = end;
321 			numa_remove_memblk_from(j--, mi);
322 		}
323 	}
324 
325 	/* clear unused ones */
326 	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
327 		mi->blk[i].start = mi->blk[i].end = 0;
328 		mi->blk[i].nid = NUMA_NO_NODE;
329 	}
330 
331 	return 0;
332 }
333 
334 /*
335  * Set nodes, which have memory in @mi, in *@nodemask.
336  */
337 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
338 					      const struct numa_meminfo *mi)
339 {
340 	int i;
341 
342 	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
343 		if (mi->blk[i].start != mi->blk[i].end &&
344 		    mi->blk[i].nid != NUMA_NO_NODE)
345 			node_set(mi->blk[i].nid, *nodemask);
346 }
347 
348 /**
349  * numa_reset_distance - Reset NUMA distance table
350  *
351  * The current table is freed.  The next numa_set_distance() call will
352  * create a new one.
353  */
354 void __init numa_reset_distance(void)
355 {
356 	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
357 
358 	/* numa_distance could be 1LU marking allocation failure, test cnt */
359 	if (numa_distance_cnt)
360 		memblock_free(numa_distance, size);
361 	numa_distance_cnt = 0;
362 	numa_distance = NULL;	/* enable table creation */
363 }
364 
365 static int __init numa_alloc_distance(void)
366 {
367 	nodemask_t nodes_parsed;
368 	size_t size;
369 	int i, j, cnt = 0;
370 	u64 phys;
371 
372 	/* size the new table and allocate it */
373 	nodes_parsed = numa_nodes_parsed;
374 	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
375 
376 	for_each_node_mask(i, nodes_parsed)
377 		cnt = i;
378 	cnt++;
379 	size = cnt * cnt * sizeof(numa_distance[0]);
380 
381 	phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0,
382 					 PFN_PHYS(max_pfn_mapped));
383 	if (!phys) {
384 		pr_warn("Warning: can't allocate distance table!\n");
385 		/* don't retry until explicitly reset */
386 		numa_distance = (void *)1LU;
387 		return -ENOMEM;
388 	}
389 
390 	numa_distance = __va(phys);
391 	numa_distance_cnt = cnt;
392 
393 	/* fill with the default distances */
394 	for (i = 0; i < cnt; i++)
395 		for (j = 0; j < cnt; j++)
396 			numa_distance[i * cnt + j] = i == j ?
397 				LOCAL_DISTANCE : REMOTE_DISTANCE;
398 	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
399 
400 	return 0;
401 }
402 
403 /**
404  * numa_set_distance - Set NUMA distance from one NUMA to another
405  * @from: the 'from' node to set distance
406  * @to: the 'to'  node to set distance
407  * @distance: NUMA distance
408  *
409  * Set the distance from node @from to @to to @distance.  If distance table
410  * doesn't exist, one which is large enough to accommodate all the currently
411  * known nodes will be created.
412  *
413  * If such table cannot be allocated, a warning is printed and further
414  * calls are ignored until the distance table is reset with
415  * numa_reset_distance().
416  *
417  * If @from or @to is higher than the highest known node or lower than zero
418  * at the time of table creation or @distance doesn't make sense, the call
419  * is ignored.
420  * This is to allow simplification of specific NUMA config implementations.
421  */
422 void __init numa_set_distance(int from, int to, int distance)
423 {
424 	if (!numa_distance && numa_alloc_distance() < 0)
425 		return;
426 
427 	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
428 			from < 0 || to < 0) {
429 		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
430 			     from, to, distance);
431 		return;
432 	}
433 
434 	if ((u8)distance != distance ||
435 	    (from == to && distance != LOCAL_DISTANCE)) {
436 		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
437 			     from, to, distance);
438 		return;
439 	}
440 
441 	numa_distance[from * numa_distance_cnt + to] = distance;
442 }
443 
444 int __node_distance(int from, int to)
445 {
446 	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
447 		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
448 	return numa_distance[from * numa_distance_cnt + to];
449 }
450 EXPORT_SYMBOL(__node_distance);
451 
452 /*
453  * Sanity check to catch more bad NUMA configurations (they are amazingly
454  * common).  Make sure the nodes cover all memory.
455  */
456 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
457 {
458 	u64 numaram, e820ram;
459 	int i;
460 
461 	numaram = 0;
462 	for (i = 0; i < mi->nr_blks; i++) {
463 		u64 s = mi->blk[i].start >> PAGE_SHIFT;
464 		u64 e = mi->blk[i].end >> PAGE_SHIFT;
465 		numaram += e - s;
466 		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
467 		if ((s64)numaram < 0)
468 			numaram = 0;
469 	}
470 
471 	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
472 
473 	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
474 	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
475 		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
476 		       (numaram << PAGE_SHIFT) >> 20,
477 		       (e820ram << PAGE_SHIFT) >> 20);
478 		return false;
479 	}
480 	return true;
481 }
482 
483 /*
484  * Mark all currently memblock-reserved physical memory (which covers the
485  * kernel's own memory ranges) as hot-unswappable.
486  */
487 static void __init numa_clear_kernel_node_hotplug(void)
488 {
489 	nodemask_t reserved_nodemask = NODE_MASK_NONE;
490 	struct memblock_region *mb_region;
491 	int i;
492 
493 	/*
494 	 * We have to do some preprocessing of memblock regions, to
495 	 * make them suitable for reservation.
496 	 *
497 	 * At this time, all memory regions reserved by memblock are
498 	 * used by the kernel, but those regions are not split up
499 	 * along node boundaries yet, and don't necessarily have their
500 	 * node ID set yet either.
501 	 *
502 	 * So iterate over all memory known to the x86 architecture,
503 	 * and use those ranges to set the nid in memblock.reserved.
504 	 * This will split up the memblock regions along node
505 	 * boundaries and will set the node IDs as well.
506 	 */
507 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
508 		struct numa_memblk *mb = numa_meminfo.blk + i;
509 		int ret;
510 
511 		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
512 		WARN_ON_ONCE(ret);
513 	}
514 
515 	/*
516 	 * Now go over all reserved memblock regions, to construct a
517 	 * node mask of all kernel reserved memory areas.
518 	 *
519 	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
520 	 *   numa_meminfo might not include all memblock.reserved
521 	 *   memory ranges, because quirks such as trim_snb_memory()
522 	 *   reserve specific pages for Sandy Bridge graphics. ]
523 	 */
524 	for_each_reserved_mem_region(mb_region) {
525 		int nid = memblock_get_region_node(mb_region);
526 
527 		if (nid != MAX_NUMNODES)
528 			node_set(nid, reserved_nodemask);
529 	}
530 
531 	/*
532 	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
533 	 * belonging to the reserved node mask.
534 	 *
535 	 * Note that this will include memory regions that reside
536 	 * on nodes that contain kernel memory - entire nodes
537 	 * become hot-unpluggable:
538 	 */
539 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
540 		struct numa_memblk *mb = numa_meminfo.blk + i;
541 
542 		if (!node_isset(mb->nid, reserved_nodemask))
543 			continue;
544 
545 		memblock_clear_hotplug(mb->start, mb->end - mb->start);
546 	}
547 }
548 
549 static int __init numa_register_memblks(struct numa_meminfo *mi)
550 {
551 	int i, nid;
552 
553 	/* Account for nodes with cpus and no memory */
554 	node_possible_map = numa_nodes_parsed;
555 	numa_nodemask_from_meminfo(&node_possible_map, mi);
556 	if (WARN_ON(nodes_empty(node_possible_map)))
557 		return -EINVAL;
558 
559 	for (i = 0; i < mi->nr_blks; i++) {
560 		struct numa_memblk *mb = &mi->blk[i];
561 		memblock_set_node(mb->start, mb->end - mb->start,
562 				  &memblock.memory, mb->nid);
563 	}
564 
565 	/*
566 	 * At very early time, the kernel have to use some memory such as
567 	 * loading the kernel image. We cannot prevent this anyway. So any
568 	 * node the kernel resides in should be un-hotpluggable.
569 	 *
570 	 * And when we come here, alloc node data won't fail.
571 	 */
572 	numa_clear_kernel_node_hotplug();
573 
574 	/*
575 	 * If sections array is gonna be used for pfn -> nid mapping, check
576 	 * whether its granularity is fine enough.
577 	 */
578 	if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
579 		unsigned long pfn_align = node_map_pfn_alignment();
580 
581 		if (pfn_align && pfn_align < PAGES_PER_SECTION) {
582 			pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
583 				PFN_PHYS(pfn_align) >> 20,
584 				PFN_PHYS(PAGES_PER_SECTION) >> 20);
585 			return -EINVAL;
586 		}
587 	}
588 	if (!numa_meminfo_cover_memory(mi))
589 		return -EINVAL;
590 
591 	/* Finally register nodes. */
592 	for_each_node_mask(nid, node_possible_map) {
593 		u64 start = PFN_PHYS(max_pfn);
594 		u64 end = 0;
595 
596 		for (i = 0; i < mi->nr_blks; i++) {
597 			if (nid != mi->blk[i].nid)
598 				continue;
599 			start = min(mi->blk[i].start, start);
600 			end = max(mi->blk[i].end, end);
601 		}
602 
603 		if (start >= end)
604 			continue;
605 
606 		alloc_node_data(nid);
607 	}
608 
609 	/* Dump memblock with node info and return. */
610 	memblock_dump_all();
611 	return 0;
612 }
613 
614 /*
615  * There are unfortunately some poorly designed mainboards around that
616  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
617  * mapping. To avoid this fill in the mapping for all possible CPUs,
618  * as the number of CPUs is not known yet. We round robin the existing
619  * nodes.
620  */
621 static void __init numa_init_array(void)
622 {
623 	int rr, i;
624 
625 	rr = first_node(node_online_map);
626 	for (i = 0; i < nr_cpu_ids; i++) {
627 		if (early_cpu_to_node(i) != NUMA_NO_NODE)
628 			continue;
629 		numa_set_node(i, rr);
630 		rr = next_node_in(rr, node_online_map);
631 	}
632 }
633 
634 static int __init numa_init(int (*init_func)(void))
635 {
636 	int i;
637 	int ret;
638 
639 	for (i = 0; i < MAX_LOCAL_APIC; i++)
640 		set_apicid_to_node(i, NUMA_NO_NODE);
641 
642 	nodes_clear(numa_nodes_parsed);
643 	nodes_clear(node_possible_map);
644 	nodes_clear(node_online_map);
645 	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
646 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
647 				  MAX_NUMNODES));
648 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
649 				  MAX_NUMNODES));
650 	/* In case that parsing SRAT failed. */
651 	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
652 	numa_reset_distance();
653 
654 	ret = init_func();
655 	if (ret < 0)
656 		return ret;
657 
658 	/*
659 	 * We reset memblock back to the top-down direction
660 	 * here because if we configured ACPI_NUMA, we have
661 	 * parsed SRAT in init_func(). It is ok to have the
662 	 * reset here even if we did't configure ACPI_NUMA
663 	 * or acpi numa init fails and fallbacks to dummy
664 	 * numa init.
665 	 */
666 	memblock_set_bottom_up(false);
667 
668 	ret = numa_cleanup_meminfo(&numa_meminfo);
669 	if (ret < 0)
670 		return ret;
671 
672 	numa_emulation(&numa_meminfo, numa_distance_cnt);
673 
674 	ret = numa_register_memblks(&numa_meminfo);
675 	if (ret < 0)
676 		return ret;
677 
678 	for (i = 0; i < nr_cpu_ids; i++) {
679 		int nid = early_cpu_to_node(i);
680 
681 		if (nid == NUMA_NO_NODE)
682 			continue;
683 		if (!node_online(nid))
684 			numa_clear_node(i);
685 	}
686 	numa_init_array();
687 
688 	return 0;
689 }
690 
691 /**
692  * dummy_numa_init - Fallback dummy NUMA init
693  *
694  * Used if there's no underlying NUMA architecture, NUMA initialization
695  * fails, or NUMA is disabled on the command line.
696  *
697  * Must online at least one node and add memory blocks that cover all
698  * allowed memory.  This function must not fail.
699  */
700 static int __init dummy_numa_init(void)
701 {
702 	printk(KERN_INFO "%s\n",
703 	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
704 	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
705 	       0LLU, PFN_PHYS(max_pfn) - 1);
706 
707 	node_set(0, numa_nodes_parsed);
708 	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
709 
710 	return 0;
711 }
712 
713 /**
714  * x86_numa_init - Initialize NUMA
715  *
716  * Try each configured NUMA initialization method until one succeeds.  The
717  * last fallback is dummy single node config encompassing whole memory and
718  * never fails.
719  */
720 void __init x86_numa_init(void)
721 {
722 	if (!numa_off) {
723 #ifdef CONFIG_ACPI_NUMA
724 		if (!numa_init(x86_acpi_numa_init))
725 			return;
726 #endif
727 #ifdef CONFIG_AMD_NUMA
728 		if (!numa_init(amd_numa_init))
729 			return;
730 #endif
731 		if (acpi_disabled && !numa_init(of_numa_init))
732 			return;
733 	}
734 
735 	numa_init(dummy_numa_init);
736 }
737 
738 
739 /*
740  * A node may exist which has one or more Generic Initiators but no CPUs and no
741  * memory.
742  *
743  * This function must be called after init_cpu_to_node(), to ensure that any
744  * memoryless CPU nodes have already been brought online, and before the
745  * node_data[nid] is needed for zone list setup in build_all_zonelists().
746  *
747  * When this function is called, any nodes containing either memory and/or CPUs
748  * will already be online and there is no need to do anything extra, even if
749  * they also contain one or more Generic Initiators.
750  */
751 void __init init_gi_nodes(void)
752 {
753 	int nid;
754 
755 	/*
756 	 * Exclude this node from
757 	 * bringup_nonboot_cpus
758 	 *  cpu_up
759 	 *   __try_online_node
760 	 *    register_one_node
761 	 * because node_subsys is not initialized yet.
762 	 * TODO remove dependency on node_online
763 	 */
764 	for_each_node_state(nid, N_GENERIC_INITIATOR)
765 		if (!node_online(nid))
766 			node_set_online(nid);
767 }
768 
769 /*
770  * Setup early cpu_to_node.
771  *
772  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
773  * and apicid_to_node[] tables have valid entries for a CPU.
774  * This means we skip cpu_to_node[] initialisation for NUMA
775  * emulation and faking node case (when running a kernel compiled
776  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
777  * is already initialized in a round robin manner at numa_init_array,
778  * prior to this call, and this initialization is good enough
779  * for the fake NUMA cases.
780  *
781  * Called before the per_cpu areas are setup.
782  */
783 void __init init_cpu_to_node(void)
784 {
785 	int cpu;
786 	u32 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
787 
788 	BUG_ON(cpu_to_apicid == NULL);
789 
790 	for_each_possible_cpu(cpu) {
791 		int node = numa_cpu_node(cpu);
792 
793 		if (node == NUMA_NO_NODE)
794 			continue;
795 
796 		/*
797 		 * Exclude this node from
798 		 * bringup_nonboot_cpus
799 		 *  cpu_up
800 		 *   __try_online_node
801 		 *    register_one_node
802 		 * because node_subsys is not initialized yet.
803 		 * TODO remove dependency on node_online
804 		 */
805 		if (!node_online(node))
806 			node_set_online(node);
807 
808 		numa_set_node(cpu, node);
809 	}
810 }
811 
812 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
813 
814 # ifndef CONFIG_NUMA_EMU
815 void numa_add_cpu(int cpu)
816 {
817 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
818 }
819 
820 void numa_remove_cpu(int cpu)
821 {
822 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
823 }
824 # endif	/* !CONFIG_NUMA_EMU */
825 
826 #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
827 
828 int __cpu_to_node(int cpu)
829 {
830 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
831 		printk(KERN_WARNING
832 			"cpu_to_node(%d): usage too early!\n", cpu);
833 		dump_stack();
834 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
835 	}
836 	return per_cpu(x86_cpu_to_node_map, cpu);
837 }
838 EXPORT_SYMBOL(__cpu_to_node);
839 
840 /*
841  * Same function as cpu_to_node() but used if called before the
842  * per_cpu areas are setup.
843  */
844 int early_cpu_to_node(int cpu)
845 {
846 	if (early_per_cpu_ptr(x86_cpu_to_node_map))
847 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
848 
849 	if (!cpu_possible(cpu)) {
850 		printk(KERN_WARNING
851 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
852 		dump_stack();
853 		return NUMA_NO_NODE;
854 	}
855 	return per_cpu(x86_cpu_to_node_map, cpu);
856 }
857 
858 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
859 {
860 	struct cpumask *mask;
861 
862 	if (node == NUMA_NO_NODE) {
863 		/* early_cpu_to_node() already emits a warning and trace */
864 		return;
865 	}
866 	mask = node_to_cpumask_map[node];
867 	if (!cpumask_available(mask)) {
868 		pr_err("node_to_cpumask_map[%i] NULL\n", node);
869 		dump_stack();
870 		return;
871 	}
872 
873 	if (enable)
874 		cpumask_set_cpu(cpu, mask);
875 	else
876 		cpumask_clear_cpu(cpu, mask);
877 
878 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
879 		enable ? "numa_add_cpu" : "numa_remove_cpu",
880 		cpu, node, cpumask_pr_args(mask));
881 	return;
882 }
883 
884 # ifndef CONFIG_NUMA_EMU
885 static void numa_set_cpumask(int cpu, bool enable)
886 {
887 	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
888 }
889 
890 void numa_add_cpu(int cpu)
891 {
892 	numa_set_cpumask(cpu, true);
893 }
894 
895 void numa_remove_cpu(int cpu)
896 {
897 	numa_set_cpumask(cpu, false);
898 }
899 # endif	/* !CONFIG_NUMA_EMU */
900 
901 /*
902  * Returns a pointer to the bitmask of CPUs on Node 'node'.
903  */
904 const struct cpumask *cpumask_of_node(int node)
905 {
906 	if ((unsigned)node >= nr_node_ids) {
907 		printk(KERN_WARNING
908 			"cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
909 			node, nr_node_ids);
910 		dump_stack();
911 		return cpu_none_mask;
912 	}
913 	if (!cpumask_available(node_to_cpumask_map[node])) {
914 		printk(KERN_WARNING
915 			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
916 			node);
917 		dump_stack();
918 		return cpu_online_mask;
919 	}
920 	return node_to_cpumask_map[node];
921 }
922 EXPORT_SYMBOL(cpumask_of_node);
923 
924 #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
925 
926 #ifdef CONFIG_NUMA_KEEP_MEMINFO
927 static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
928 {
929 	int i;
930 
931 	for (i = 0; i < mi->nr_blks; i++)
932 		if (mi->blk[i].start <= start && mi->blk[i].end > start)
933 			return mi->blk[i].nid;
934 	return NUMA_NO_NODE;
935 }
936 
937 int phys_to_target_node(phys_addr_t start)
938 {
939 	int nid = meminfo_to_nid(&numa_meminfo, start);
940 
941 	/*
942 	 * Prefer online nodes, but if reserved memory might be
943 	 * hot-added continue the search with reserved ranges.
944 	 */
945 	if (nid != NUMA_NO_NODE)
946 		return nid;
947 
948 	return meminfo_to_nid(&numa_reserved_meminfo, start);
949 }
950 EXPORT_SYMBOL_GPL(phys_to_target_node);
951 
952 int memory_add_physaddr_to_nid(u64 start)
953 {
954 	int nid = meminfo_to_nid(&numa_meminfo, start);
955 
956 	if (nid == NUMA_NO_NODE)
957 		nid = numa_meminfo.blk[0].nid;
958 	return nid;
959 }
960 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
961 
962 static int __init cmp_memblk(const void *a, const void *b)
963 {
964 	const struct numa_memblk *ma = *(const struct numa_memblk **)a;
965 	const struct numa_memblk *mb = *(const struct numa_memblk **)b;
966 
967 	return ma->start - mb->start;
968 }
969 
970 static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata;
971 
972 /**
973  * numa_fill_memblks - Fill gaps in numa_meminfo memblks
974  * @start: address to begin fill
975  * @end: address to end fill
976  *
977  * Find and extend numa_meminfo memblks to cover the @start-@end
978  * physical address range, such that the first memblk includes
979  * @start, the last memblk includes @end, and any gaps in between
980  * are filled.
981  *
982  * RETURNS:
983  * 0		  : Success
984  * NUMA_NO_MEMBLK : No memblk exists in @start-@end range
985  */
986 
987 int __init numa_fill_memblks(u64 start, u64 end)
988 {
989 	struct numa_memblk **blk = &numa_memblk_list[0];
990 	struct numa_meminfo *mi = &numa_meminfo;
991 	int count = 0;
992 	u64 prev_end;
993 
994 	/*
995 	 * Create a list of pointers to numa_meminfo memblks that
996 	 * overlap start, end. Exclude (start == bi->end) since
997 	 * end addresses in both a CFMWS range and a memblk range
998 	 * are exclusive.
999 	 *
1000 	 * This list of pointers is used to make in-place changes
1001 	 * that fill out the numa_meminfo memblks.
1002 	 */
1003 	for (int i = 0; i < mi->nr_blks; i++) {
1004 		struct numa_memblk *bi = &mi->blk[i];
1005 
1006 		if (start < bi->end && end >= bi->start) {
1007 			blk[count] = &mi->blk[i];
1008 			count++;
1009 		}
1010 	}
1011 	if (!count)
1012 		return NUMA_NO_MEMBLK;
1013 
1014 	/* Sort the list of pointers in memblk->start order */
1015 	sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL);
1016 
1017 	/* Make sure the first/last memblks include start/end */
1018 	blk[0]->start = min(blk[0]->start, start);
1019 	blk[count - 1]->end = max(blk[count - 1]->end, end);
1020 
1021 	/*
1022 	 * Fill any gaps by tracking the previous memblks
1023 	 * end address and backfilling to it if needed.
1024 	 */
1025 	prev_end = blk[0]->end;
1026 	for (int i = 1; i < count; i++) {
1027 		struct numa_memblk *curr = blk[i];
1028 
1029 		if (prev_end >= curr->start) {
1030 			if (prev_end < curr->end)
1031 				prev_end = curr->end;
1032 		} else {
1033 			curr->start = prev_end;
1034 			prev_end = curr->end;
1035 		}
1036 	}
1037 	return 0;
1038 }
1039 
1040 #endif
1041