xref: /linux/arch/x86/mm/mem_encrypt_amd.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/cc_platform.h>
23 
24 #include <asm/tlbflush.h>
25 #include <asm/fixmap.h>
26 #include <asm/setup.h>
27 #include <asm/mem_encrypt.h>
28 #include <asm/bootparam.h>
29 #include <asm/set_memory.h>
30 #include <asm/cacheflush.h>
31 #include <asm/processor-flags.h>
32 #include <asm/msr.h>
33 #include <asm/cmdline.h>
34 #include <asm/sev.h>
35 #include <asm/ia32.h>
36 
37 #include "mm_internal.h"
38 
39 /*
40  * Since SME related variables are set early in the boot process they must
41  * reside in the .data section so as not to be zeroed out when the .bss
42  * section is later cleared.
43  */
44 u64 sme_me_mask __section(".data") = 0;
45 u64 sev_status __section(".data") = 0;
46 u64 sev_check_data __section(".data") = 0;
47 EXPORT_SYMBOL(sme_me_mask);
48 
49 /* Buffer used for early in-place encryption by BSP, no locking needed */
50 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
51 
52 /*
53  * SNP-specific routine which needs to additionally change the page state from
54  * private to shared before copying the data from the source to destination and
55  * restore after the copy.
56  */
57 static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
58 				     unsigned long paddr, bool decrypt)
59 {
60 	unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
61 
62 	if (decrypt) {
63 		/*
64 		 * @paddr needs to be accessed decrypted, mark the page shared in
65 		 * the RMP table before copying it.
66 		 */
67 		early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
68 
69 		memcpy(dst, src, sz);
70 
71 		/* Restore the page state after the memcpy. */
72 		early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
73 	} else {
74 		/*
75 		 * @paddr need to be accessed encrypted, no need for the page state
76 		 * change.
77 		 */
78 		memcpy(dst, src, sz);
79 	}
80 }
81 
82 /*
83  * This routine does not change the underlying encryption setting of the
84  * page(s) that map this memory. It assumes that eventually the memory is
85  * meant to be accessed as either encrypted or decrypted but the contents
86  * are currently not in the desired state.
87  *
88  * This routine follows the steps outlined in the AMD64 Architecture
89  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
90  */
91 static void __init __sme_early_enc_dec(resource_size_t paddr,
92 				       unsigned long size, bool enc)
93 {
94 	void *src, *dst;
95 	size_t len;
96 
97 	if (!sme_me_mask)
98 		return;
99 
100 	wbinvd();
101 
102 	/*
103 	 * There are limited number of early mapping slots, so map (at most)
104 	 * one page at time.
105 	 */
106 	while (size) {
107 		len = min_t(size_t, sizeof(sme_early_buffer), size);
108 
109 		/*
110 		 * Create mappings for the current and desired format of
111 		 * the memory. Use a write-protected mapping for the source.
112 		 */
113 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
114 			    early_memremap_encrypted_wp(paddr, len);
115 
116 		dst = enc ? early_memremap_encrypted(paddr, len) :
117 			    early_memremap_decrypted(paddr, len);
118 
119 		/*
120 		 * If a mapping can't be obtained to perform the operation,
121 		 * then eventual access of that area in the desired mode
122 		 * will cause a crash.
123 		 */
124 		BUG_ON(!src || !dst);
125 
126 		/*
127 		 * Use a temporary buffer, of cache-line multiple size, to
128 		 * avoid data corruption as documented in the APM.
129 		 */
130 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
131 			snp_memcpy(sme_early_buffer, src, len, paddr, enc);
132 			snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
133 		} else {
134 			memcpy(sme_early_buffer, src, len);
135 			memcpy(dst, sme_early_buffer, len);
136 		}
137 
138 		early_memunmap(dst, len);
139 		early_memunmap(src, len);
140 
141 		paddr += len;
142 		size -= len;
143 	}
144 }
145 
146 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
147 {
148 	__sme_early_enc_dec(paddr, size, true);
149 }
150 
151 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
152 {
153 	__sme_early_enc_dec(paddr, size, false);
154 }
155 
156 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
157 					     bool map)
158 {
159 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
160 	pmdval_t pmd_flags, pmd;
161 
162 	/* Use early_pmd_flags but remove the encryption mask */
163 	pmd_flags = __sme_clr(early_pmd_flags);
164 
165 	do {
166 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
167 		__early_make_pgtable((unsigned long)vaddr, pmd);
168 
169 		vaddr += PMD_SIZE;
170 		paddr += PMD_SIZE;
171 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
172 	} while (size);
173 
174 	flush_tlb_local();
175 }
176 
177 void __init sme_unmap_bootdata(char *real_mode_data)
178 {
179 	struct boot_params *boot_data;
180 	unsigned long cmdline_paddr;
181 
182 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
183 		return;
184 
185 	/* Get the command line address before unmapping the real_mode_data */
186 	boot_data = (struct boot_params *)real_mode_data;
187 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
188 
189 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
190 
191 	if (!cmdline_paddr)
192 		return;
193 
194 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
195 }
196 
197 void __init sme_map_bootdata(char *real_mode_data)
198 {
199 	struct boot_params *boot_data;
200 	unsigned long cmdline_paddr;
201 
202 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
203 		return;
204 
205 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
206 
207 	/* Get the command line address after mapping the real_mode_data */
208 	boot_data = (struct boot_params *)real_mode_data;
209 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
210 
211 	if (!cmdline_paddr)
212 		return;
213 
214 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
215 }
216 
217 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
218 {
219 	unsigned long pfn = 0;
220 	pgprot_t prot;
221 
222 	switch (level) {
223 	case PG_LEVEL_4K:
224 		pfn = pte_pfn(*kpte);
225 		prot = pte_pgprot(*kpte);
226 		break;
227 	case PG_LEVEL_2M:
228 		pfn = pmd_pfn(*(pmd_t *)kpte);
229 		prot = pmd_pgprot(*(pmd_t *)kpte);
230 		break;
231 	case PG_LEVEL_1G:
232 		pfn = pud_pfn(*(pud_t *)kpte);
233 		prot = pud_pgprot(*(pud_t *)kpte);
234 		break;
235 	default:
236 		WARN_ONCE(1, "Invalid level for kpte\n");
237 		return 0;
238 	}
239 
240 	if (ret_prot)
241 		*ret_prot = prot;
242 
243 	return pfn;
244 }
245 
246 static bool amd_enc_tlb_flush_required(bool enc)
247 {
248 	return true;
249 }
250 
251 static bool amd_enc_cache_flush_required(void)
252 {
253 	return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
254 }
255 
256 static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
257 {
258 #ifdef CONFIG_PARAVIRT
259 	unsigned long vaddr_end = vaddr + size;
260 
261 	while (vaddr < vaddr_end) {
262 		int psize, pmask, level;
263 		unsigned long pfn;
264 		pte_t *kpte;
265 
266 		kpte = lookup_address(vaddr, &level);
267 		if (!kpte || pte_none(*kpte)) {
268 			WARN_ONCE(1, "kpte lookup for vaddr\n");
269 			return;
270 		}
271 
272 		pfn = pg_level_to_pfn(level, kpte, NULL);
273 		if (!pfn)
274 			continue;
275 
276 		psize = page_level_size(level);
277 		pmask = page_level_mask(level);
278 
279 		notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
280 
281 		vaddr = (vaddr & pmask) + psize;
282 	}
283 #endif
284 }
285 
286 static bool amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
287 {
288 	/*
289 	 * To maintain the security guarantees of SEV-SNP guests, make sure
290 	 * to invalidate the memory before encryption attribute is cleared.
291 	 */
292 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
293 		snp_set_memory_shared(vaddr, npages);
294 
295 	return true;
296 }
297 
298 /* Return true unconditionally: return value doesn't matter for the SEV side */
299 static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
300 {
301 	/*
302 	 * After memory is mapped encrypted in the page table, validate it
303 	 * so that it is consistent with the page table updates.
304 	 */
305 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
306 		snp_set_memory_private(vaddr, npages);
307 
308 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
309 		enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc);
310 
311 	return true;
312 }
313 
314 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
315 {
316 	pgprot_t old_prot, new_prot;
317 	unsigned long pfn, pa, size;
318 	pte_t new_pte;
319 
320 	pfn = pg_level_to_pfn(level, kpte, &old_prot);
321 	if (!pfn)
322 		return;
323 
324 	new_prot = old_prot;
325 	if (enc)
326 		pgprot_val(new_prot) |= _PAGE_ENC;
327 	else
328 		pgprot_val(new_prot) &= ~_PAGE_ENC;
329 
330 	/* If prot is same then do nothing. */
331 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
332 		return;
333 
334 	pa = pfn << PAGE_SHIFT;
335 	size = page_level_size(level);
336 
337 	/*
338 	 * We are going to perform in-place en-/decryption and change the
339 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
340 	 * caches to ensure that data gets accessed with the correct C-bit.
341 	 */
342 	clflush_cache_range(__va(pa), size);
343 
344 	/* Encrypt/decrypt the contents in-place */
345 	if (enc) {
346 		sme_early_encrypt(pa, size);
347 	} else {
348 		sme_early_decrypt(pa, size);
349 
350 		/*
351 		 * ON SNP, the page state in the RMP table must happen
352 		 * before the page table updates.
353 		 */
354 		early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1);
355 	}
356 
357 	/* Change the page encryption mask. */
358 	new_pte = pfn_pte(pfn, new_prot);
359 	set_pte_atomic(kpte, new_pte);
360 
361 	/*
362 	 * If page is set encrypted in the page table, then update the RMP table to
363 	 * add this page as private.
364 	 */
365 	if (enc)
366 		early_snp_set_memory_private((unsigned long)__va(pa), pa, 1);
367 }
368 
369 static int __init early_set_memory_enc_dec(unsigned long vaddr,
370 					   unsigned long size, bool enc)
371 {
372 	unsigned long vaddr_end, vaddr_next, start;
373 	unsigned long psize, pmask;
374 	int split_page_size_mask;
375 	int level, ret;
376 	pte_t *kpte;
377 
378 	start = vaddr;
379 	vaddr_next = vaddr;
380 	vaddr_end = vaddr + size;
381 
382 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
383 		kpte = lookup_address(vaddr, &level);
384 		if (!kpte || pte_none(*kpte)) {
385 			ret = 1;
386 			goto out;
387 		}
388 
389 		if (level == PG_LEVEL_4K) {
390 			__set_clr_pte_enc(kpte, level, enc);
391 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
392 			continue;
393 		}
394 
395 		psize = page_level_size(level);
396 		pmask = page_level_mask(level);
397 
398 		/*
399 		 * Check whether we can change the large page in one go.
400 		 * We request a split when the address is not aligned and
401 		 * the number of pages to set/clear encryption bit is smaller
402 		 * than the number of pages in the large page.
403 		 */
404 		if (vaddr == (vaddr & pmask) &&
405 		    ((vaddr_end - vaddr) >= psize)) {
406 			__set_clr_pte_enc(kpte, level, enc);
407 			vaddr_next = (vaddr & pmask) + psize;
408 			continue;
409 		}
410 
411 		/*
412 		 * The virtual address is part of a larger page, create the next
413 		 * level page table mapping (4K or 2M). If it is part of a 2M
414 		 * page then we request a split of the large page into 4K
415 		 * chunks. A 1GB large page is split into 2M pages, resp.
416 		 */
417 		if (level == PG_LEVEL_2M)
418 			split_page_size_mask = 0;
419 		else
420 			split_page_size_mask = 1 << PG_LEVEL_2M;
421 
422 		/*
423 		 * kernel_physical_mapping_change() does not flush the TLBs, so
424 		 * a TLB flush is required after we exit from the for loop.
425 		 */
426 		kernel_physical_mapping_change(__pa(vaddr & pmask),
427 					       __pa((vaddr_end & pmask) + psize),
428 					       split_page_size_mask);
429 	}
430 
431 	ret = 0;
432 
433 	early_set_mem_enc_dec_hypercall(start, size, enc);
434 out:
435 	__flush_tlb_all();
436 	return ret;
437 }
438 
439 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
440 {
441 	return early_set_memory_enc_dec(vaddr, size, false);
442 }
443 
444 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
445 {
446 	return early_set_memory_enc_dec(vaddr, size, true);
447 }
448 
449 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
450 {
451 	enc_dec_hypercall(vaddr, size, enc);
452 }
453 
454 void __init sme_early_init(void)
455 {
456 	if (!sme_me_mask)
457 		return;
458 
459 	early_pmd_flags = __sme_set(early_pmd_flags);
460 
461 	__supported_pte_mask = __sme_set(__supported_pte_mask);
462 
463 	/* Update the protection map with memory encryption mask */
464 	add_encrypt_protection_map();
465 
466 	x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
467 	x86_platform.guest.enc_status_change_finish  = amd_enc_status_change_finish;
468 	x86_platform.guest.enc_tlb_flush_required    = amd_enc_tlb_flush_required;
469 	x86_platform.guest.enc_cache_flush_required  = amd_enc_cache_flush_required;
470 
471 	/*
472 	 * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the
473 	 * parallel bringup low level code. That raises #VC which cannot be
474 	 * handled there.
475 	 * It does not provide a RDMSR GHCB protocol so the early startup
476 	 * code cannot directly communicate with the secure firmware. The
477 	 * alternative solution to retrieve the APIC ID via CPUID(0xb),
478 	 * which is covered by the GHCB protocol, is not viable either
479 	 * because there is no enforcement of the CPUID(0xb) provided
480 	 * "initial" APIC ID to be the same as the real APIC ID.
481 	 * Disable parallel bootup.
482 	 */
483 	if (sev_status & MSR_AMD64_SEV_ES_ENABLED)
484 		x86_cpuinit.parallel_bringup = false;
485 
486 	/*
487 	 * The VMM is capable of injecting interrupt 0x80 and triggering the
488 	 * compatibility syscall path.
489 	 *
490 	 * By default, the 32-bit emulation is disabled in order to ensure
491 	 * the safety of the VM.
492 	 */
493 	if (sev_status & MSR_AMD64_SEV_ENABLED)
494 		ia32_disable();
495 }
496 
497 void __init mem_encrypt_free_decrypted_mem(void)
498 {
499 	unsigned long vaddr, vaddr_end, npages;
500 	int r;
501 
502 	vaddr = (unsigned long)__start_bss_decrypted_unused;
503 	vaddr_end = (unsigned long)__end_bss_decrypted;
504 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
505 
506 	/*
507 	 * If the unused memory range was mapped decrypted, change the encryption
508 	 * attribute from decrypted to encrypted before freeing it. Base the
509 	 * re-encryption on the same condition used for the decryption in
510 	 * sme_postprocess_startup(). Higher level abstractions, such as
511 	 * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM
512 	 * using vTOM, where sme_me_mask is always zero.
513 	 */
514 	if (sme_me_mask) {
515 		r = set_memory_encrypted(vaddr, npages);
516 		if (r) {
517 			pr_warn("failed to free unused decrypted pages\n");
518 			return;
519 		}
520 	}
521 
522 	free_init_pages("unused decrypted", vaddr, vaddr_end);
523 }
524