1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 #include <linux/linkage.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/dma-direct.h> 16 #include <linux/swiotlb.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 20 #include <linux/bitops.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/cc_platform.h> 23 24 #include <asm/tlbflush.h> 25 #include <asm/fixmap.h> 26 #include <asm/setup.h> 27 #include <asm/mem_encrypt.h> 28 #include <asm/bootparam.h> 29 #include <asm/set_memory.h> 30 #include <asm/cacheflush.h> 31 #include <asm/processor-flags.h> 32 #include <asm/msr.h> 33 #include <asm/cmdline.h> 34 #include <asm/sev.h> 35 #include <asm/ia32.h> 36 37 #include "mm_internal.h" 38 39 /* 40 * Since SME related variables are set early in the boot process they must 41 * reside in the .data section so as not to be zeroed out when the .bss 42 * section is later cleared. 43 */ 44 u64 sme_me_mask __section(".data") = 0; 45 u64 sev_status __section(".data") = 0; 46 u64 sev_check_data __section(".data") = 0; 47 EXPORT_SYMBOL(sme_me_mask); 48 49 /* Buffer used for early in-place encryption by BSP, no locking needed */ 50 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); 51 52 /* 53 * SNP-specific routine which needs to additionally change the page state from 54 * private to shared before copying the data from the source to destination and 55 * restore after the copy. 56 */ 57 static inline void __init snp_memcpy(void *dst, void *src, size_t sz, 58 unsigned long paddr, bool decrypt) 59 { 60 unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 61 62 if (decrypt) { 63 /* 64 * @paddr needs to be accessed decrypted, mark the page shared in 65 * the RMP table before copying it. 66 */ 67 early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages); 68 69 memcpy(dst, src, sz); 70 71 /* Restore the page state after the memcpy. */ 72 early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages); 73 } else { 74 /* 75 * @paddr need to be accessed encrypted, no need for the page state 76 * change. 77 */ 78 memcpy(dst, src, sz); 79 } 80 } 81 82 /* 83 * This routine does not change the underlying encryption setting of the 84 * page(s) that map this memory. It assumes that eventually the memory is 85 * meant to be accessed as either encrypted or decrypted but the contents 86 * are currently not in the desired state. 87 * 88 * This routine follows the steps outlined in the AMD64 Architecture 89 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 90 */ 91 static void __init __sme_early_enc_dec(resource_size_t paddr, 92 unsigned long size, bool enc) 93 { 94 void *src, *dst; 95 size_t len; 96 97 if (!sme_me_mask) 98 return; 99 100 wbinvd(); 101 102 /* 103 * There are limited number of early mapping slots, so map (at most) 104 * one page at time. 105 */ 106 while (size) { 107 len = min_t(size_t, sizeof(sme_early_buffer), size); 108 109 /* 110 * Create mappings for the current and desired format of 111 * the memory. Use a write-protected mapping for the source. 112 */ 113 src = enc ? early_memremap_decrypted_wp(paddr, len) : 114 early_memremap_encrypted_wp(paddr, len); 115 116 dst = enc ? early_memremap_encrypted(paddr, len) : 117 early_memremap_decrypted(paddr, len); 118 119 /* 120 * If a mapping can't be obtained to perform the operation, 121 * then eventual access of that area in the desired mode 122 * will cause a crash. 123 */ 124 BUG_ON(!src || !dst); 125 126 /* 127 * Use a temporary buffer, of cache-line multiple size, to 128 * avoid data corruption as documented in the APM. 129 */ 130 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) { 131 snp_memcpy(sme_early_buffer, src, len, paddr, enc); 132 snp_memcpy(dst, sme_early_buffer, len, paddr, !enc); 133 } else { 134 memcpy(sme_early_buffer, src, len); 135 memcpy(dst, sme_early_buffer, len); 136 } 137 138 early_memunmap(dst, len); 139 early_memunmap(src, len); 140 141 paddr += len; 142 size -= len; 143 } 144 } 145 146 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 147 { 148 __sme_early_enc_dec(paddr, size, true); 149 } 150 151 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 152 { 153 __sme_early_enc_dec(paddr, size, false); 154 } 155 156 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 157 bool map) 158 { 159 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 160 pmdval_t pmd_flags, pmd; 161 162 /* Use early_pmd_flags but remove the encryption mask */ 163 pmd_flags = __sme_clr(early_pmd_flags); 164 165 do { 166 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 167 __early_make_pgtable((unsigned long)vaddr, pmd); 168 169 vaddr += PMD_SIZE; 170 paddr += PMD_SIZE; 171 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 172 } while (size); 173 174 flush_tlb_local(); 175 } 176 177 void __init sme_unmap_bootdata(char *real_mode_data) 178 { 179 struct boot_params *boot_data; 180 unsigned long cmdline_paddr; 181 182 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 183 return; 184 185 /* Get the command line address before unmapping the real_mode_data */ 186 boot_data = (struct boot_params *)real_mode_data; 187 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 188 189 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 190 191 if (!cmdline_paddr) 192 return; 193 194 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 195 } 196 197 void __init sme_map_bootdata(char *real_mode_data) 198 { 199 struct boot_params *boot_data; 200 unsigned long cmdline_paddr; 201 202 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 203 return; 204 205 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 206 207 /* Get the command line address after mapping the real_mode_data */ 208 boot_data = (struct boot_params *)real_mode_data; 209 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 210 211 if (!cmdline_paddr) 212 return; 213 214 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 215 } 216 217 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot) 218 { 219 unsigned long pfn = 0; 220 pgprot_t prot; 221 222 switch (level) { 223 case PG_LEVEL_4K: 224 pfn = pte_pfn(*kpte); 225 prot = pte_pgprot(*kpte); 226 break; 227 case PG_LEVEL_2M: 228 pfn = pmd_pfn(*(pmd_t *)kpte); 229 prot = pmd_pgprot(*(pmd_t *)kpte); 230 break; 231 case PG_LEVEL_1G: 232 pfn = pud_pfn(*(pud_t *)kpte); 233 prot = pud_pgprot(*(pud_t *)kpte); 234 break; 235 default: 236 WARN_ONCE(1, "Invalid level for kpte\n"); 237 return 0; 238 } 239 240 if (ret_prot) 241 *ret_prot = prot; 242 243 return pfn; 244 } 245 246 static bool amd_enc_tlb_flush_required(bool enc) 247 { 248 return true; 249 } 250 251 static bool amd_enc_cache_flush_required(void) 252 { 253 return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT); 254 } 255 256 static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc) 257 { 258 #ifdef CONFIG_PARAVIRT 259 unsigned long vaddr_end = vaddr + size; 260 261 while (vaddr < vaddr_end) { 262 int psize, pmask, level; 263 unsigned long pfn; 264 pte_t *kpte; 265 266 kpte = lookup_address(vaddr, &level); 267 if (!kpte || pte_none(*kpte)) { 268 WARN_ONCE(1, "kpte lookup for vaddr\n"); 269 return; 270 } 271 272 pfn = pg_level_to_pfn(level, kpte, NULL); 273 if (!pfn) 274 continue; 275 276 psize = page_level_size(level); 277 pmask = page_level_mask(level); 278 279 notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc); 280 281 vaddr = (vaddr & pmask) + psize; 282 } 283 #endif 284 } 285 286 static bool amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc) 287 { 288 /* 289 * To maintain the security guarantees of SEV-SNP guests, make sure 290 * to invalidate the memory before encryption attribute is cleared. 291 */ 292 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc) 293 snp_set_memory_shared(vaddr, npages); 294 295 return true; 296 } 297 298 /* Return true unconditionally: return value doesn't matter for the SEV side */ 299 static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc) 300 { 301 /* 302 * After memory is mapped encrypted in the page table, validate it 303 * so that it is consistent with the page table updates. 304 */ 305 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc) 306 snp_set_memory_private(vaddr, npages); 307 308 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 309 enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc); 310 311 return true; 312 } 313 314 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 315 { 316 pgprot_t old_prot, new_prot; 317 unsigned long pfn, pa, size; 318 pte_t new_pte; 319 320 pfn = pg_level_to_pfn(level, kpte, &old_prot); 321 if (!pfn) 322 return; 323 324 new_prot = old_prot; 325 if (enc) 326 pgprot_val(new_prot) |= _PAGE_ENC; 327 else 328 pgprot_val(new_prot) &= ~_PAGE_ENC; 329 330 /* If prot is same then do nothing. */ 331 if (pgprot_val(old_prot) == pgprot_val(new_prot)) 332 return; 333 334 pa = pfn << PAGE_SHIFT; 335 size = page_level_size(level); 336 337 /* 338 * We are going to perform in-place en-/decryption and change the 339 * physical page attribute from C=1 to C=0 or vice versa. Flush the 340 * caches to ensure that data gets accessed with the correct C-bit. 341 */ 342 clflush_cache_range(__va(pa), size); 343 344 /* Encrypt/decrypt the contents in-place */ 345 if (enc) { 346 sme_early_encrypt(pa, size); 347 } else { 348 sme_early_decrypt(pa, size); 349 350 /* 351 * ON SNP, the page state in the RMP table must happen 352 * before the page table updates. 353 */ 354 early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1); 355 } 356 357 /* Change the page encryption mask. */ 358 new_pte = pfn_pte(pfn, new_prot); 359 set_pte_atomic(kpte, new_pte); 360 361 /* 362 * If page is set encrypted in the page table, then update the RMP table to 363 * add this page as private. 364 */ 365 if (enc) 366 early_snp_set_memory_private((unsigned long)__va(pa), pa, 1); 367 } 368 369 static int __init early_set_memory_enc_dec(unsigned long vaddr, 370 unsigned long size, bool enc) 371 { 372 unsigned long vaddr_end, vaddr_next, start; 373 unsigned long psize, pmask; 374 int split_page_size_mask; 375 int level, ret; 376 pte_t *kpte; 377 378 start = vaddr; 379 vaddr_next = vaddr; 380 vaddr_end = vaddr + size; 381 382 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 383 kpte = lookup_address(vaddr, &level); 384 if (!kpte || pte_none(*kpte)) { 385 ret = 1; 386 goto out; 387 } 388 389 if (level == PG_LEVEL_4K) { 390 __set_clr_pte_enc(kpte, level, enc); 391 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 392 continue; 393 } 394 395 psize = page_level_size(level); 396 pmask = page_level_mask(level); 397 398 /* 399 * Check whether we can change the large page in one go. 400 * We request a split when the address is not aligned and 401 * the number of pages to set/clear encryption bit is smaller 402 * than the number of pages in the large page. 403 */ 404 if (vaddr == (vaddr & pmask) && 405 ((vaddr_end - vaddr) >= psize)) { 406 __set_clr_pte_enc(kpte, level, enc); 407 vaddr_next = (vaddr & pmask) + psize; 408 continue; 409 } 410 411 /* 412 * The virtual address is part of a larger page, create the next 413 * level page table mapping (4K or 2M). If it is part of a 2M 414 * page then we request a split of the large page into 4K 415 * chunks. A 1GB large page is split into 2M pages, resp. 416 */ 417 if (level == PG_LEVEL_2M) 418 split_page_size_mask = 0; 419 else 420 split_page_size_mask = 1 << PG_LEVEL_2M; 421 422 /* 423 * kernel_physical_mapping_change() does not flush the TLBs, so 424 * a TLB flush is required after we exit from the for loop. 425 */ 426 kernel_physical_mapping_change(__pa(vaddr & pmask), 427 __pa((vaddr_end & pmask) + psize), 428 split_page_size_mask); 429 } 430 431 ret = 0; 432 433 early_set_mem_enc_dec_hypercall(start, size, enc); 434 out: 435 __flush_tlb_all(); 436 return ret; 437 } 438 439 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 440 { 441 return early_set_memory_enc_dec(vaddr, size, false); 442 } 443 444 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 445 { 446 return early_set_memory_enc_dec(vaddr, size, true); 447 } 448 449 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc) 450 { 451 enc_dec_hypercall(vaddr, size, enc); 452 } 453 454 void __init sme_early_init(void) 455 { 456 if (!sme_me_mask) 457 return; 458 459 early_pmd_flags = __sme_set(early_pmd_flags); 460 461 __supported_pte_mask = __sme_set(__supported_pte_mask); 462 463 /* Update the protection map with memory encryption mask */ 464 add_encrypt_protection_map(); 465 466 x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare; 467 x86_platform.guest.enc_status_change_finish = amd_enc_status_change_finish; 468 x86_platform.guest.enc_tlb_flush_required = amd_enc_tlb_flush_required; 469 x86_platform.guest.enc_cache_flush_required = amd_enc_cache_flush_required; 470 471 /* 472 * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the 473 * parallel bringup low level code. That raises #VC which cannot be 474 * handled there. 475 * It does not provide a RDMSR GHCB protocol so the early startup 476 * code cannot directly communicate with the secure firmware. The 477 * alternative solution to retrieve the APIC ID via CPUID(0xb), 478 * which is covered by the GHCB protocol, is not viable either 479 * because there is no enforcement of the CPUID(0xb) provided 480 * "initial" APIC ID to be the same as the real APIC ID. 481 * Disable parallel bootup. 482 */ 483 if (sev_status & MSR_AMD64_SEV_ES_ENABLED) 484 x86_cpuinit.parallel_bringup = false; 485 486 /* 487 * The VMM is capable of injecting interrupt 0x80 and triggering the 488 * compatibility syscall path. 489 * 490 * By default, the 32-bit emulation is disabled in order to ensure 491 * the safety of the VM. 492 */ 493 if (sev_status & MSR_AMD64_SEV_ENABLED) 494 ia32_disable(); 495 } 496 497 void __init mem_encrypt_free_decrypted_mem(void) 498 { 499 unsigned long vaddr, vaddr_end, npages; 500 int r; 501 502 vaddr = (unsigned long)__start_bss_decrypted_unused; 503 vaddr_end = (unsigned long)__end_bss_decrypted; 504 npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 505 506 /* 507 * If the unused memory range was mapped decrypted, change the encryption 508 * attribute from decrypted to encrypted before freeing it. Base the 509 * re-encryption on the same condition used for the decryption in 510 * sme_postprocess_startup(). Higher level abstractions, such as 511 * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM 512 * using vTOM, where sme_me_mask is always zero. 513 */ 514 if (sme_me_mask) { 515 r = set_memory_encrypted(vaddr, npages); 516 if (r) { 517 pr_warn("failed to free unused decrypted pages\n"); 518 return; 519 } 520 } 521 522 free_init_pages("unused decrypted", vaddr, vaddr_end); 523 } 524