xref: /linux/arch/x86/mm/mem_encrypt_amd.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016-2024 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/cc_platform.h>
23 
24 #include <asm/tlbflush.h>
25 #include <asm/fixmap.h>
26 #include <asm/setup.h>
27 #include <asm/mem_encrypt.h>
28 #include <asm/bootparam.h>
29 #include <asm/set_memory.h>
30 #include <asm/cacheflush.h>
31 #include <asm/processor-flags.h>
32 #include <asm/msr.h>
33 #include <asm/cmdline.h>
34 #include <asm/sev.h>
35 #include <asm/ia32.h>
36 
37 #include "mm_internal.h"
38 
39 /*
40  * Since SME related variables are set early in the boot process they must
41  * reside in the .data section so as not to be zeroed out when the .bss
42  * section is later cleared.
43  */
44 u64 sme_me_mask __section(".data") = 0;
45 u64 sev_status __section(".data") = 0;
46 u64 sev_check_data __section(".data") = 0;
47 EXPORT_SYMBOL(sme_me_mask);
48 
49 /* Buffer used for early in-place encryption by BSP, no locking needed */
50 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
51 
52 /*
53  * SNP-specific routine which needs to additionally change the page state from
54  * private to shared before copying the data from the source to destination and
55  * restore after the copy.
56  */
57 static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
58 				     unsigned long paddr, bool decrypt)
59 {
60 	unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
61 
62 	if (decrypt) {
63 		/*
64 		 * @paddr needs to be accessed decrypted, mark the page shared in
65 		 * the RMP table before copying it.
66 		 */
67 		early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
68 
69 		memcpy(dst, src, sz);
70 
71 		/* Restore the page state after the memcpy. */
72 		early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
73 	} else {
74 		/*
75 		 * @paddr need to be accessed encrypted, no need for the page state
76 		 * change.
77 		 */
78 		memcpy(dst, src, sz);
79 	}
80 }
81 
82 /*
83  * This routine does not change the underlying encryption setting of the
84  * page(s) that map this memory. It assumes that eventually the memory is
85  * meant to be accessed as either encrypted or decrypted but the contents
86  * are currently not in the desired state.
87  *
88  * This routine follows the steps outlined in the AMD64 Architecture
89  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
90  */
91 static void __init __sme_early_enc_dec(resource_size_t paddr,
92 				       unsigned long size, bool enc)
93 {
94 	void *src, *dst;
95 	size_t len;
96 
97 	if (!sme_me_mask)
98 		return;
99 
100 	wbinvd();
101 
102 	/*
103 	 * There are limited number of early mapping slots, so map (at most)
104 	 * one page at time.
105 	 */
106 	while (size) {
107 		len = min_t(size_t, sizeof(sme_early_buffer), size);
108 
109 		/*
110 		 * Create mappings for the current and desired format of
111 		 * the memory. Use a write-protected mapping for the source.
112 		 */
113 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
114 			    early_memremap_encrypted_wp(paddr, len);
115 
116 		dst = enc ? early_memremap_encrypted(paddr, len) :
117 			    early_memremap_decrypted(paddr, len);
118 
119 		/*
120 		 * If a mapping can't be obtained to perform the operation,
121 		 * then eventual access of that area in the desired mode
122 		 * will cause a crash.
123 		 */
124 		BUG_ON(!src || !dst);
125 
126 		/*
127 		 * Use a temporary buffer, of cache-line multiple size, to
128 		 * avoid data corruption as documented in the APM.
129 		 */
130 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
131 			snp_memcpy(sme_early_buffer, src, len, paddr, enc);
132 			snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
133 		} else {
134 			memcpy(sme_early_buffer, src, len);
135 			memcpy(dst, sme_early_buffer, len);
136 		}
137 
138 		early_memunmap(dst, len);
139 		early_memunmap(src, len);
140 
141 		paddr += len;
142 		size -= len;
143 	}
144 }
145 
146 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
147 {
148 	__sme_early_enc_dec(paddr, size, true);
149 }
150 
151 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
152 {
153 	__sme_early_enc_dec(paddr, size, false);
154 }
155 
156 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
157 					     bool map)
158 {
159 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
160 	pmdval_t pmd_flags, pmd;
161 
162 	/* Use early_pmd_flags but remove the encryption mask */
163 	pmd_flags = __sme_clr(early_pmd_flags);
164 
165 	do {
166 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
167 		__early_make_pgtable((unsigned long)vaddr, pmd);
168 
169 		vaddr += PMD_SIZE;
170 		paddr += PMD_SIZE;
171 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
172 	} while (size);
173 
174 	flush_tlb_local();
175 }
176 
177 void __init sme_unmap_bootdata(char *real_mode_data)
178 {
179 	struct boot_params *boot_data;
180 	unsigned long cmdline_paddr;
181 
182 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
183 		return;
184 
185 	/* Get the command line address before unmapping the real_mode_data */
186 	boot_data = (struct boot_params *)real_mode_data;
187 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
188 
189 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
190 
191 	if (!cmdline_paddr)
192 		return;
193 
194 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
195 }
196 
197 void __init sme_map_bootdata(char *real_mode_data)
198 {
199 	struct boot_params *boot_data;
200 	unsigned long cmdline_paddr;
201 
202 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
203 		return;
204 
205 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
206 
207 	/* Get the command line address after mapping the real_mode_data */
208 	boot_data = (struct boot_params *)real_mode_data;
209 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
210 
211 	if (!cmdline_paddr)
212 		return;
213 
214 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
215 }
216 
217 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
218 {
219 	unsigned long pfn = 0;
220 	pgprot_t prot;
221 
222 	switch (level) {
223 	case PG_LEVEL_4K:
224 		pfn = pte_pfn(*kpte);
225 		prot = pte_pgprot(*kpte);
226 		break;
227 	case PG_LEVEL_2M:
228 		pfn = pmd_pfn(*(pmd_t *)kpte);
229 		prot = pmd_pgprot(*(pmd_t *)kpte);
230 		break;
231 	case PG_LEVEL_1G:
232 		pfn = pud_pfn(*(pud_t *)kpte);
233 		prot = pud_pgprot(*(pud_t *)kpte);
234 		break;
235 	default:
236 		WARN_ONCE(1, "Invalid level for kpte\n");
237 		return 0;
238 	}
239 
240 	if (ret_prot)
241 		*ret_prot = prot;
242 
243 	return pfn;
244 }
245 
246 static bool amd_enc_tlb_flush_required(bool enc)
247 {
248 	return true;
249 }
250 
251 static bool amd_enc_cache_flush_required(void)
252 {
253 	return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
254 }
255 
256 static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
257 {
258 #ifdef CONFIG_PARAVIRT
259 	unsigned long vaddr_end = vaddr + size;
260 
261 	while (vaddr < vaddr_end) {
262 		int psize, pmask, level;
263 		unsigned long pfn;
264 		pte_t *kpte;
265 
266 		kpte = lookup_address(vaddr, &level);
267 		if (!kpte || pte_none(*kpte)) {
268 			WARN_ONCE(1, "kpte lookup for vaddr\n");
269 			return;
270 		}
271 
272 		pfn = pg_level_to_pfn(level, kpte, NULL);
273 		if (!pfn)
274 			continue;
275 
276 		psize = page_level_size(level);
277 		pmask = page_level_mask(level);
278 
279 		notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
280 
281 		vaddr = (vaddr & pmask) + psize;
282 	}
283 #endif
284 }
285 
286 static int amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
287 {
288 	/*
289 	 * To maintain the security guarantees of SEV-SNP guests, make sure
290 	 * to invalidate the memory before encryption attribute is cleared.
291 	 */
292 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
293 		snp_set_memory_shared(vaddr, npages);
294 
295 	return 0;
296 }
297 
298 /* Return true unconditionally: return value doesn't matter for the SEV side */
299 static int amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
300 {
301 	/*
302 	 * After memory is mapped encrypted in the page table, validate it
303 	 * so that it is consistent with the page table updates.
304 	 */
305 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
306 		snp_set_memory_private(vaddr, npages);
307 
308 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
309 		enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc);
310 
311 	return 0;
312 }
313 
314 int prepare_pte_enc(struct pte_enc_desc *d)
315 {
316 	pgprot_t old_prot;
317 
318 	d->pfn = pg_level_to_pfn(d->pte_level, d->kpte, &old_prot);
319 	if (!d->pfn)
320 		return 1;
321 
322 	d->new_pgprot = old_prot;
323 	if (d->encrypt)
324 		pgprot_val(d->new_pgprot) |= _PAGE_ENC;
325 	else
326 		pgprot_val(d->new_pgprot) &= ~_PAGE_ENC;
327 
328 	/* If prot is same then do nothing. */
329 	if (pgprot_val(old_prot) == pgprot_val(d->new_pgprot))
330 		return 1;
331 
332 	d->pa = d->pfn << PAGE_SHIFT;
333 	d->size = page_level_size(d->pte_level);
334 
335 	/*
336 	 * In-place en-/decryption and physical page attribute change
337 	 * from C=1 to C=0 or vice versa will be performed. Flush the
338 	 * caches to ensure that data gets accessed with the correct
339 	 * C-bit.
340 	 */
341 	if (d->va)
342 		clflush_cache_range(d->va, d->size);
343 	else
344 		clflush_cache_range(__va(d->pa), d->size);
345 
346 	return 0;
347 }
348 
349 void set_pte_enc_mask(pte_t *kpte, unsigned long pfn, pgprot_t new_prot)
350 {
351 	pte_t new_pte;
352 
353 	/* Change the page encryption mask. */
354 	new_pte = pfn_pte(pfn, new_prot);
355 	set_pte_atomic(kpte, new_pte);
356 }
357 
358 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
359 {
360 	struct pte_enc_desc d = {
361 		.kpte	     = kpte,
362 		.pte_level   = level,
363 		.encrypt     = enc
364 	};
365 
366 	if (prepare_pte_enc(&d))
367 		return;
368 
369 	/* Encrypt/decrypt the contents in-place */
370 	if (enc) {
371 		sme_early_encrypt(d.pa, d.size);
372 	} else {
373 		sme_early_decrypt(d.pa, d.size);
374 
375 		/*
376 		 * ON SNP, the page state in the RMP table must happen
377 		 * before the page table updates.
378 		 */
379 		early_snp_set_memory_shared((unsigned long)__va(d.pa), d.pa, 1);
380 	}
381 
382 	set_pte_enc_mask(kpte, d.pfn, d.new_pgprot);
383 
384 	/*
385 	 * If page is set encrypted in the page table, then update the RMP table to
386 	 * add this page as private.
387 	 */
388 	if (enc)
389 		early_snp_set_memory_private((unsigned long)__va(d.pa), d.pa, 1);
390 }
391 
392 static int __init early_set_memory_enc_dec(unsigned long vaddr,
393 					   unsigned long size, bool enc)
394 {
395 	unsigned long vaddr_end, vaddr_next, start;
396 	unsigned long psize, pmask;
397 	int split_page_size_mask;
398 	int level, ret;
399 	pte_t *kpte;
400 
401 	start = vaddr;
402 	vaddr_next = vaddr;
403 	vaddr_end = vaddr + size;
404 
405 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
406 		kpte = lookup_address(vaddr, &level);
407 		if (!kpte || pte_none(*kpte)) {
408 			ret = 1;
409 			goto out;
410 		}
411 
412 		if (level == PG_LEVEL_4K) {
413 			__set_clr_pte_enc(kpte, level, enc);
414 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
415 			continue;
416 		}
417 
418 		psize = page_level_size(level);
419 		pmask = page_level_mask(level);
420 
421 		/*
422 		 * Check whether we can change the large page in one go.
423 		 * We request a split when the address is not aligned and
424 		 * the number of pages to set/clear encryption bit is smaller
425 		 * than the number of pages in the large page.
426 		 */
427 		if (vaddr == (vaddr & pmask) &&
428 		    ((vaddr_end - vaddr) >= psize)) {
429 			__set_clr_pte_enc(kpte, level, enc);
430 			vaddr_next = (vaddr & pmask) + psize;
431 			continue;
432 		}
433 
434 		/*
435 		 * The virtual address is part of a larger page, create the next
436 		 * level page table mapping (4K or 2M). If it is part of a 2M
437 		 * page then we request a split of the large page into 4K
438 		 * chunks. A 1GB large page is split into 2M pages, resp.
439 		 */
440 		if (level == PG_LEVEL_2M)
441 			split_page_size_mask = 0;
442 		else
443 			split_page_size_mask = 1 << PG_LEVEL_2M;
444 
445 		/*
446 		 * kernel_physical_mapping_change() does not flush the TLBs, so
447 		 * a TLB flush is required after we exit from the for loop.
448 		 */
449 		kernel_physical_mapping_change(__pa(vaddr & pmask),
450 					       __pa((vaddr_end & pmask) + psize),
451 					       split_page_size_mask);
452 	}
453 
454 	ret = 0;
455 
456 	early_set_mem_enc_dec_hypercall(start, size, enc);
457 out:
458 	__flush_tlb_all();
459 	return ret;
460 }
461 
462 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
463 {
464 	return early_set_memory_enc_dec(vaddr, size, false);
465 }
466 
467 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
468 {
469 	return early_set_memory_enc_dec(vaddr, size, true);
470 }
471 
472 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
473 {
474 	enc_dec_hypercall(vaddr, size, enc);
475 }
476 
477 void __init sme_early_init(void)
478 {
479 	if (!sme_me_mask)
480 		return;
481 
482 	early_pmd_flags = __sme_set(early_pmd_flags);
483 
484 	__supported_pte_mask = __sme_set(__supported_pte_mask);
485 
486 	/* Update the protection map with memory encryption mask */
487 	add_encrypt_protection_map();
488 
489 	x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
490 	x86_platform.guest.enc_status_change_finish  = amd_enc_status_change_finish;
491 	x86_platform.guest.enc_tlb_flush_required    = amd_enc_tlb_flush_required;
492 	x86_platform.guest.enc_cache_flush_required  = amd_enc_cache_flush_required;
493 	x86_platform.guest.enc_kexec_begin	     = snp_kexec_begin;
494 	x86_platform.guest.enc_kexec_finish	     = snp_kexec_finish;
495 
496 	/*
497 	 * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the
498 	 * parallel bringup low level code. That raises #VC which cannot be
499 	 * handled there.
500 	 * It does not provide a RDMSR GHCB protocol so the early startup
501 	 * code cannot directly communicate with the secure firmware. The
502 	 * alternative solution to retrieve the APIC ID via CPUID(0xb),
503 	 * which is covered by the GHCB protocol, is not viable either
504 	 * because there is no enforcement of the CPUID(0xb) provided
505 	 * "initial" APIC ID to be the same as the real APIC ID.
506 	 * Disable parallel bootup.
507 	 */
508 	if (sev_status & MSR_AMD64_SEV_ES_ENABLED)
509 		x86_cpuinit.parallel_bringup = false;
510 
511 	/*
512 	 * The VMM is capable of injecting interrupt 0x80 and triggering the
513 	 * compatibility syscall path.
514 	 *
515 	 * By default, the 32-bit emulation is disabled in order to ensure
516 	 * the safety of the VM.
517 	 */
518 	if (sev_status & MSR_AMD64_SEV_ENABLED)
519 		ia32_disable();
520 
521 	/*
522 	 * Override init functions that scan the ROM region in SEV-SNP guests,
523 	 * as this memory is not pre-validated and would thus cause a crash.
524 	 */
525 	if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
526 		x86_init.mpparse.find_mptable = x86_init_noop;
527 		x86_init.pci.init_irq = x86_init_noop;
528 		x86_init.resources.probe_roms = x86_init_noop;
529 
530 		/*
531 		 * DMI setup behavior for SEV-SNP guests depends on
532 		 * efi_enabled(EFI_CONFIG_TABLES), which hasn't been
533 		 * parsed yet. snp_dmi_setup() will run after that
534 		 * parsing has happened.
535 		 */
536 		x86_init.resources.dmi_setup = snp_dmi_setup;
537 	}
538 
539 	/*
540 	 * Switch the SVSM CA mapping (if active) from identity mapped to
541 	 * kernel mapped.
542 	 */
543 	snp_update_svsm_ca();
544 }
545 
546 void __init mem_encrypt_free_decrypted_mem(void)
547 {
548 	unsigned long vaddr, vaddr_end, npages;
549 	int r;
550 
551 	vaddr = (unsigned long)__start_bss_decrypted_unused;
552 	vaddr_end = (unsigned long)__end_bss_decrypted;
553 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
554 
555 	/*
556 	 * If the unused memory range was mapped decrypted, change the encryption
557 	 * attribute from decrypted to encrypted before freeing it. Base the
558 	 * re-encryption on the same condition used for the decryption in
559 	 * sme_postprocess_startup(). Higher level abstractions, such as
560 	 * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM
561 	 * using vTOM, where sme_me_mask is always zero.
562 	 */
563 	if (sme_me_mask) {
564 		r = set_memory_encrypted(vaddr, npages);
565 		if (r) {
566 			pr_warn("failed to free unused decrypted pages\n");
567 			return;
568 		}
569 	}
570 
571 	free_init_pages("unused decrypted", vaddr, vaddr_end);
572 }
573