xref: /linux/arch/x86/mm/mem_encrypt_amd.c (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/cc_platform.h>
23 
24 #include <asm/tlbflush.h>
25 #include <asm/fixmap.h>
26 #include <asm/setup.h>
27 #include <asm/mem_encrypt.h>
28 #include <asm/bootparam.h>
29 #include <asm/set_memory.h>
30 #include <asm/cacheflush.h>
31 #include <asm/processor-flags.h>
32 #include <asm/msr.h>
33 #include <asm/cmdline.h>
34 #include <asm/sev.h>
35 
36 #include "mm_internal.h"
37 
38 /*
39  * Since SME related variables are set early in the boot process they must
40  * reside in the .data section so as not to be zeroed out when the .bss
41  * section is later cleared.
42  */
43 u64 sme_me_mask __section(".data") = 0;
44 u64 sev_status __section(".data") = 0;
45 u64 sev_check_data __section(".data") = 0;
46 EXPORT_SYMBOL(sme_me_mask);
47 
48 /* Buffer used for early in-place encryption by BSP, no locking needed */
49 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
50 
51 /*
52  * SNP-specific routine which needs to additionally change the page state from
53  * private to shared before copying the data from the source to destination and
54  * restore after the copy.
55  */
56 static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
57 				     unsigned long paddr, bool decrypt)
58 {
59 	unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
60 
61 	if (decrypt) {
62 		/*
63 		 * @paddr needs to be accessed decrypted, mark the page shared in
64 		 * the RMP table before copying it.
65 		 */
66 		early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
67 
68 		memcpy(dst, src, sz);
69 
70 		/* Restore the page state after the memcpy. */
71 		early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
72 	} else {
73 		/*
74 		 * @paddr need to be accessed encrypted, no need for the page state
75 		 * change.
76 		 */
77 		memcpy(dst, src, sz);
78 	}
79 }
80 
81 /*
82  * This routine does not change the underlying encryption setting of the
83  * page(s) that map this memory. It assumes that eventually the memory is
84  * meant to be accessed as either encrypted or decrypted but the contents
85  * are currently not in the desired state.
86  *
87  * This routine follows the steps outlined in the AMD64 Architecture
88  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
89  */
90 static void __init __sme_early_enc_dec(resource_size_t paddr,
91 				       unsigned long size, bool enc)
92 {
93 	void *src, *dst;
94 	size_t len;
95 
96 	if (!sme_me_mask)
97 		return;
98 
99 	wbinvd();
100 
101 	/*
102 	 * There are limited number of early mapping slots, so map (at most)
103 	 * one page at time.
104 	 */
105 	while (size) {
106 		len = min_t(size_t, sizeof(sme_early_buffer), size);
107 
108 		/*
109 		 * Create mappings for the current and desired format of
110 		 * the memory. Use a write-protected mapping for the source.
111 		 */
112 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
113 			    early_memremap_encrypted_wp(paddr, len);
114 
115 		dst = enc ? early_memremap_encrypted(paddr, len) :
116 			    early_memremap_decrypted(paddr, len);
117 
118 		/*
119 		 * If a mapping can't be obtained to perform the operation,
120 		 * then eventual access of that area in the desired mode
121 		 * will cause a crash.
122 		 */
123 		BUG_ON(!src || !dst);
124 
125 		/*
126 		 * Use a temporary buffer, of cache-line multiple size, to
127 		 * avoid data corruption as documented in the APM.
128 		 */
129 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
130 			snp_memcpy(sme_early_buffer, src, len, paddr, enc);
131 			snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
132 		} else {
133 			memcpy(sme_early_buffer, src, len);
134 			memcpy(dst, sme_early_buffer, len);
135 		}
136 
137 		early_memunmap(dst, len);
138 		early_memunmap(src, len);
139 
140 		paddr += len;
141 		size -= len;
142 	}
143 }
144 
145 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
146 {
147 	__sme_early_enc_dec(paddr, size, true);
148 }
149 
150 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
151 {
152 	__sme_early_enc_dec(paddr, size, false);
153 }
154 
155 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
156 					     bool map)
157 {
158 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
159 	pmdval_t pmd_flags, pmd;
160 
161 	/* Use early_pmd_flags but remove the encryption mask */
162 	pmd_flags = __sme_clr(early_pmd_flags);
163 
164 	do {
165 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
166 		__early_make_pgtable((unsigned long)vaddr, pmd);
167 
168 		vaddr += PMD_SIZE;
169 		paddr += PMD_SIZE;
170 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
171 	} while (size);
172 
173 	flush_tlb_local();
174 }
175 
176 void __init sme_unmap_bootdata(char *real_mode_data)
177 {
178 	struct boot_params *boot_data;
179 	unsigned long cmdline_paddr;
180 
181 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
182 		return;
183 
184 	/* Get the command line address before unmapping the real_mode_data */
185 	boot_data = (struct boot_params *)real_mode_data;
186 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
187 
188 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
189 
190 	if (!cmdline_paddr)
191 		return;
192 
193 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
194 }
195 
196 void __init sme_map_bootdata(char *real_mode_data)
197 {
198 	struct boot_params *boot_data;
199 	unsigned long cmdline_paddr;
200 
201 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
202 		return;
203 
204 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
205 
206 	/* Get the command line address after mapping the real_mode_data */
207 	boot_data = (struct boot_params *)real_mode_data;
208 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
209 
210 	if (!cmdline_paddr)
211 		return;
212 
213 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
214 }
215 
216 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
217 {
218 	unsigned long pfn = 0;
219 	pgprot_t prot;
220 
221 	switch (level) {
222 	case PG_LEVEL_4K:
223 		pfn = pte_pfn(*kpte);
224 		prot = pte_pgprot(*kpte);
225 		break;
226 	case PG_LEVEL_2M:
227 		pfn = pmd_pfn(*(pmd_t *)kpte);
228 		prot = pmd_pgprot(*(pmd_t *)kpte);
229 		break;
230 	case PG_LEVEL_1G:
231 		pfn = pud_pfn(*(pud_t *)kpte);
232 		prot = pud_pgprot(*(pud_t *)kpte);
233 		break;
234 	default:
235 		WARN_ONCE(1, "Invalid level for kpte\n");
236 		return 0;
237 	}
238 
239 	if (ret_prot)
240 		*ret_prot = prot;
241 
242 	return pfn;
243 }
244 
245 static bool amd_enc_tlb_flush_required(bool enc)
246 {
247 	return true;
248 }
249 
250 static bool amd_enc_cache_flush_required(void)
251 {
252 	return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
253 }
254 
255 static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
256 {
257 #ifdef CONFIG_PARAVIRT
258 	unsigned long vaddr_end = vaddr + size;
259 
260 	while (vaddr < vaddr_end) {
261 		int psize, pmask, level;
262 		unsigned long pfn;
263 		pte_t *kpte;
264 
265 		kpte = lookup_address(vaddr, &level);
266 		if (!kpte || pte_none(*kpte)) {
267 			WARN_ONCE(1, "kpte lookup for vaddr\n");
268 			return;
269 		}
270 
271 		pfn = pg_level_to_pfn(level, kpte, NULL);
272 		if (!pfn)
273 			continue;
274 
275 		psize = page_level_size(level);
276 		pmask = page_level_mask(level);
277 
278 		notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
279 
280 		vaddr = (vaddr & pmask) + psize;
281 	}
282 #endif
283 }
284 
285 static bool amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
286 {
287 	/*
288 	 * To maintain the security guarantees of SEV-SNP guests, make sure
289 	 * to invalidate the memory before encryption attribute is cleared.
290 	 */
291 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
292 		snp_set_memory_shared(vaddr, npages);
293 
294 	return true;
295 }
296 
297 /* Return true unconditionally: return value doesn't matter for the SEV side */
298 static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
299 {
300 	/*
301 	 * After memory is mapped encrypted in the page table, validate it
302 	 * so that it is consistent with the page table updates.
303 	 */
304 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
305 		snp_set_memory_private(vaddr, npages);
306 
307 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
308 		enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc);
309 
310 	return true;
311 }
312 
313 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
314 {
315 	pgprot_t old_prot, new_prot;
316 	unsigned long pfn, pa, size;
317 	pte_t new_pte;
318 
319 	pfn = pg_level_to_pfn(level, kpte, &old_prot);
320 	if (!pfn)
321 		return;
322 
323 	new_prot = old_prot;
324 	if (enc)
325 		pgprot_val(new_prot) |= _PAGE_ENC;
326 	else
327 		pgprot_val(new_prot) &= ~_PAGE_ENC;
328 
329 	/* If prot is same then do nothing. */
330 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
331 		return;
332 
333 	pa = pfn << PAGE_SHIFT;
334 	size = page_level_size(level);
335 
336 	/*
337 	 * We are going to perform in-place en-/decryption and change the
338 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
339 	 * caches to ensure that data gets accessed with the correct C-bit.
340 	 */
341 	clflush_cache_range(__va(pa), size);
342 
343 	/* Encrypt/decrypt the contents in-place */
344 	if (enc) {
345 		sme_early_encrypt(pa, size);
346 	} else {
347 		sme_early_decrypt(pa, size);
348 
349 		/*
350 		 * ON SNP, the page state in the RMP table must happen
351 		 * before the page table updates.
352 		 */
353 		early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1);
354 	}
355 
356 	/* Change the page encryption mask. */
357 	new_pte = pfn_pte(pfn, new_prot);
358 	set_pte_atomic(kpte, new_pte);
359 
360 	/*
361 	 * If page is set encrypted in the page table, then update the RMP table to
362 	 * add this page as private.
363 	 */
364 	if (enc)
365 		early_snp_set_memory_private((unsigned long)__va(pa), pa, 1);
366 }
367 
368 static int __init early_set_memory_enc_dec(unsigned long vaddr,
369 					   unsigned long size, bool enc)
370 {
371 	unsigned long vaddr_end, vaddr_next, start;
372 	unsigned long psize, pmask;
373 	int split_page_size_mask;
374 	int level, ret;
375 	pte_t *kpte;
376 
377 	start = vaddr;
378 	vaddr_next = vaddr;
379 	vaddr_end = vaddr + size;
380 
381 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
382 		kpte = lookup_address(vaddr, &level);
383 		if (!kpte || pte_none(*kpte)) {
384 			ret = 1;
385 			goto out;
386 		}
387 
388 		if (level == PG_LEVEL_4K) {
389 			__set_clr_pte_enc(kpte, level, enc);
390 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
391 			continue;
392 		}
393 
394 		psize = page_level_size(level);
395 		pmask = page_level_mask(level);
396 
397 		/*
398 		 * Check whether we can change the large page in one go.
399 		 * We request a split when the address is not aligned and
400 		 * the number of pages to set/clear encryption bit is smaller
401 		 * than the number of pages in the large page.
402 		 */
403 		if (vaddr == (vaddr & pmask) &&
404 		    ((vaddr_end - vaddr) >= psize)) {
405 			__set_clr_pte_enc(kpte, level, enc);
406 			vaddr_next = (vaddr & pmask) + psize;
407 			continue;
408 		}
409 
410 		/*
411 		 * The virtual address is part of a larger page, create the next
412 		 * level page table mapping (4K or 2M). If it is part of a 2M
413 		 * page then we request a split of the large page into 4K
414 		 * chunks. A 1GB large page is split into 2M pages, resp.
415 		 */
416 		if (level == PG_LEVEL_2M)
417 			split_page_size_mask = 0;
418 		else
419 			split_page_size_mask = 1 << PG_LEVEL_2M;
420 
421 		/*
422 		 * kernel_physical_mapping_change() does not flush the TLBs, so
423 		 * a TLB flush is required after we exit from the for loop.
424 		 */
425 		kernel_physical_mapping_change(__pa(vaddr & pmask),
426 					       __pa((vaddr_end & pmask) + psize),
427 					       split_page_size_mask);
428 	}
429 
430 	ret = 0;
431 
432 	early_set_mem_enc_dec_hypercall(start, size, enc);
433 out:
434 	__flush_tlb_all();
435 	return ret;
436 }
437 
438 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
439 {
440 	return early_set_memory_enc_dec(vaddr, size, false);
441 }
442 
443 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
444 {
445 	return early_set_memory_enc_dec(vaddr, size, true);
446 }
447 
448 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
449 {
450 	enc_dec_hypercall(vaddr, size, enc);
451 }
452 
453 void __init sme_early_init(void)
454 {
455 	if (!sme_me_mask)
456 		return;
457 
458 	early_pmd_flags = __sme_set(early_pmd_flags);
459 
460 	__supported_pte_mask = __sme_set(__supported_pte_mask);
461 
462 	/* Update the protection map with memory encryption mask */
463 	add_encrypt_protection_map();
464 
465 	x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
466 	x86_platform.guest.enc_status_change_finish  = amd_enc_status_change_finish;
467 	x86_platform.guest.enc_tlb_flush_required    = amd_enc_tlb_flush_required;
468 	x86_platform.guest.enc_cache_flush_required  = amd_enc_cache_flush_required;
469 
470 	/*
471 	 * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the
472 	 * parallel bringup low level code. That raises #VC which cannot be
473 	 * handled there.
474 	 * It does not provide a RDMSR GHCB protocol so the early startup
475 	 * code cannot directly communicate with the secure firmware. The
476 	 * alternative solution to retrieve the APIC ID via CPUID(0xb),
477 	 * which is covered by the GHCB protocol, is not viable either
478 	 * because there is no enforcement of the CPUID(0xb) provided
479 	 * "initial" APIC ID to be the same as the real APIC ID.
480 	 * Disable parallel bootup.
481 	 */
482 	if (sev_status & MSR_AMD64_SEV_ES_ENABLED)
483 		x86_cpuinit.parallel_bringup = false;
484 }
485 
486 void __init mem_encrypt_free_decrypted_mem(void)
487 {
488 	unsigned long vaddr, vaddr_end, npages;
489 	int r;
490 
491 	vaddr = (unsigned long)__start_bss_decrypted_unused;
492 	vaddr_end = (unsigned long)__end_bss_decrypted;
493 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
494 
495 	/*
496 	 * If the unused memory range was mapped decrypted, change the encryption
497 	 * attribute from decrypted to encrypted before freeing it. Base the
498 	 * re-encryption on the same condition used for the decryption in
499 	 * sme_postprocess_startup(). Higher level abstractions, such as
500 	 * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM
501 	 * using vTOM, where sme_me_mask is always zero.
502 	 */
503 	if (sme_me_mask) {
504 		r = set_memory_encrypted(vaddr, npages);
505 		if (r) {
506 			pr_warn("failed to free unused decrypted pages\n");
507 			return;
508 		}
509 	}
510 
511 	free_init_pages("unused decrypted", vaddr, vaddr_end);
512 }
513