xref: /linux/arch/x86/mm/mem_encrypt.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * AMD Memory Encryption Support
3  *
4  * Copyright (C) 2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define DISABLE_BRANCH_PROFILING
14 
15 #include <linux/linkage.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/dma-direct.h>
19 #include <linux/swiotlb.h>
20 #include <linux/mem_encrypt.h>
21 
22 #include <asm/tlbflush.h>
23 #include <asm/fixmap.h>
24 #include <asm/setup.h>
25 #include <asm/bootparam.h>
26 #include <asm/set_memory.h>
27 #include <asm/cacheflush.h>
28 #include <asm/processor-flags.h>
29 #include <asm/msr.h>
30 #include <asm/cmdline.h>
31 
32 #include "mm_internal.h"
33 
34 /*
35  * Since SME related variables are set early in the boot process they must
36  * reside in the .data section so as not to be zeroed out when the .bss
37  * section is later cleared.
38  */
39 u64 sme_me_mask __section(.data) = 0;
40 EXPORT_SYMBOL(sme_me_mask);
41 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
42 EXPORT_SYMBOL_GPL(sev_enable_key);
43 
44 bool sev_enabled __section(.data);
45 
46 /* Buffer used for early in-place encryption by BSP, no locking needed */
47 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
48 
49 /*
50  * This routine does not change the underlying encryption setting of the
51  * page(s) that map this memory. It assumes that eventually the memory is
52  * meant to be accessed as either encrypted or decrypted but the contents
53  * are currently not in the desired state.
54  *
55  * This routine follows the steps outlined in the AMD64 Architecture
56  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
57  */
58 static void __init __sme_early_enc_dec(resource_size_t paddr,
59 				       unsigned long size, bool enc)
60 {
61 	void *src, *dst;
62 	size_t len;
63 
64 	if (!sme_me_mask)
65 		return;
66 
67 	wbinvd();
68 
69 	/*
70 	 * There are limited number of early mapping slots, so map (at most)
71 	 * one page at time.
72 	 */
73 	while (size) {
74 		len = min_t(size_t, sizeof(sme_early_buffer), size);
75 
76 		/*
77 		 * Create mappings for the current and desired format of
78 		 * the memory. Use a write-protected mapping for the source.
79 		 */
80 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
81 			    early_memremap_encrypted_wp(paddr, len);
82 
83 		dst = enc ? early_memremap_encrypted(paddr, len) :
84 			    early_memremap_decrypted(paddr, len);
85 
86 		/*
87 		 * If a mapping can't be obtained to perform the operation,
88 		 * then eventual access of that area in the desired mode
89 		 * will cause a crash.
90 		 */
91 		BUG_ON(!src || !dst);
92 
93 		/*
94 		 * Use a temporary buffer, of cache-line multiple size, to
95 		 * avoid data corruption as documented in the APM.
96 		 */
97 		memcpy(sme_early_buffer, src, len);
98 		memcpy(dst, sme_early_buffer, len);
99 
100 		early_memunmap(dst, len);
101 		early_memunmap(src, len);
102 
103 		paddr += len;
104 		size -= len;
105 	}
106 }
107 
108 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
109 {
110 	__sme_early_enc_dec(paddr, size, true);
111 }
112 
113 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
114 {
115 	__sme_early_enc_dec(paddr, size, false);
116 }
117 
118 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
119 					     bool map)
120 {
121 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
122 	pmdval_t pmd_flags, pmd;
123 
124 	/* Use early_pmd_flags but remove the encryption mask */
125 	pmd_flags = __sme_clr(early_pmd_flags);
126 
127 	do {
128 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
129 		__early_make_pgtable((unsigned long)vaddr, pmd);
130 
131 		vaddr += PMD_SIZE;
132 		paddr += PMD_SIZE;
133 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
134 	} while (size);
135 
136 	__native_flush_tlb();
137 }
138 
139 void __init sme_unmap_bootdata(char *real_mode_data)
140 {
141 	struct boot_params *boot_data;
142 	unsigned long cmdline_paddr;
143 
144 	if (!sme_active())
145 		return;
146 
147 	/* Get the command line address before unmapping the real_mode_data */
148 	boot_data = (struct boot_params *)real_mode_data;
149 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
150 
151 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
152 
153 	if (!cmdline_paddr)
154 		return;
155 
156 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
157 }
158 
159 void __init sme_map_bootdata(char *real_mode_data)
160 {
161 	struct boot_params *boot_data;
162 	unsigned long cmdline_paddr;
163 
164 	if (!sme_active())
165 		return;
166 
167 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
168 
169 	/* Get the command line address after mapping the real_mode_data */
170 	boot_data = (struct boot_params *)real_mode_data;
171 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
172 
173 	if (!cmdline_paddr)
174 		return;
175 
176 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
177 }
178 
179 void __init sme_early_init(void)
180 {
181 	unsigned int i;
182 
183 	if (!sme_me_mask)
184 		return;
185 
186 	early_pmd_flags = __sme_set(early_pmd_flags);
187 
188 	__supported_pte_mask = __sme_set(__supported_pte_mask);
189 
190 	/* Update the protection map with memory encryption mask */
191 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
192 		protection_map[i] = pgprot_encrypted(protection_map[i]);
193 
194 	if (sev_active())
195 		swiotlb_force = SWIOTLB_FORCE;
196 }
197 
198 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
199 {
200 	pgprot_t old_prot, new_prot;
201 	unsigned long pfn, pa, size;
202 	pte_t new_pte;
203 
204 	switch (level) {
205 	case PG_LEVEL_4K:
206 		pfn = pte_pfn(*kpte);
207 		old_prot = pte_pgprot(*kpte);
208 		break;
209 	case PG_LEVEL_2M:
210 		pfn = pmd_pfn(*(pmd_t *)kpte);
211 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
212 		break;
213 	case PG_LEVEL_1G:
214 		pfn = pud_pfn(*(pud_t *)kpte);
215 		old_prot = pud_pgprot(*(pud_t *)kpte);
216 		break;
217 	default:
218 		return;
219 	}
220 
221 	new_prot = old_prot;
222 	if (enc)
223 		pgprot_val(new_prot) |= _PAGE_ENC;
224 	else
225 		pgprot_val(new_prot) &= ~_PAGE_ENC;
226 
227 	/* If prot is same then do nothing. */
228 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
229 		return;
230 
231 	pa = pfn << page_level_shift(level);
232 	size = page_level_size(level);
233 
234 	/*
235 	 * We are going to perform in-place en-/decryption and change the
236 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
237 	 * caches to ensure that data gets accessed with the correct C-bit.
238 	 */
239 	clflush_cache_range(__va(pa), size);
240 
241 	/* Encrypt/decrypt the contents in-place */
242 	if (enc)
243 		sme_early_encrypt(pa, size);
244 	else
245 		sme_early_decrypt(pa, size);
246 
247 	/* Change the page encryption mask. */
248 	new_pte = pfn_pte(pfn, new_prot);
249 	set_pte_atomic(kpte, new_pte);
250 }
251 
252 static int __init early_set_memory_enc_dec(unsigned long vaddr,
253 					   unsigned long size, bool enc)
254 {
255 	unsigned long vaddr_end, vaddr_next;
256 	unsigned long psize, pmask;
257 	int split_page_size_mask;
258 	int level, ret;
259 	pte_t *kpte;
260 
261 	vaddr_next = vaddr;
262 	vaddr_end = vaddr + size;
263 
264 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
265 		kpte = lookup_address(vaddr, &level);
266 		if (!kpte || pte_none(*kpte)) {
267 			ret = 1;
268 			goto out;
269 		}
270 
271 		if (level == PG_LEVEL_4K) {
272 			__set_clr_pte_enc(kpte, level, enc);
273 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
274 			continue;
275 		}
276 
277 		psize = page_level_size(level);
278 		pmask = page_level_mask(level);
279 
280 		/*
281 		 * Check whether we can change the large page in one go.
282 		 * We request a split when the address is not aligned and
283 		 * the number of pages to set/clear encryption bit is smaller
284 		 * than the number of pages in the large page.
285 		 */
286 		if (vaddr == (vaddr & pmask) &&
287 		    ((vaddr_end - vaddr) >= psize)) {
288 			__set_clr_pte_enc(kpte, level, enc);
289 			vaddr_next = (vaddr & pmask) + psize;
290 			continue;
291 		}
292 
293 		/*
294 		 * The virtual address is part of a larger page, create the next
295 		 * level page table mapping (4K or 2M). If it is part of a 2M
296 		 * page then we request a split of the large page into 4K
297 		 * chunks. A 1GB large page is split into 2M pages, resp.
298 		 */
299 		if (level == PG_LEVEL_2M)
300 			split_page_size_mask = 0;
301 		else
302 			split_page_size_mask = 1 << PG_LEVEL_2M;
303 
304 		kernel_physical_mapping_init(__pa(vaddr & pmask),
305 					     __pa((vaddr_end & pmask) + psize),
306 					     split_page_size_mask);
307 	}
308 
309 	ret = 0;
310 
311 out:
312 	__flush_tlb_all();
313 	return ret;
314 }
315 
316 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
317 {
318 	return early_set_memory_enc_dec(vaddr, size, false);
319 }
320 
321 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
322 {
323 	return early_set_memory_enc_dec(vaddr, size, true);
324 }
325 
326 /*
327  * SME and SEV are very similar but they are not the same, so there are
328  * times that the kernel will need to distinguish between SME and SEV. The
329  * sme_active() and sev_active() functions are used for this.  When a
330  * distinction isn't needed, the mem_encrypt_active() function can be used.
331  *
332  * The trampoline code is a good example for this requirement.  Before
333  * paging is activated, SME will access all memory as decrypted, but SEV
334  * will access all memory as encrypted.  So, when APs are being brought
335  * up under SME the trampoline area cannot be encrypted, whereas under SEV
336  * the trampoline area must be encrypted.
337  */
338 bool sme_active(void)
339 {
340 	return sme_me_mask && !sev_enabled;
341 }
342 EXPORT_SYMBOL(sme_active);
343 
344 bool sev_active(void)
345 {
346 	return sme_me_mask && sev_enabled;
347 }
348 EXPORT_SYMBOL(sev_active);
349 
350 /* Architecture __weak replacement functions */
351 void __init mem_encrypt_init(void)
352 {
353 	if (!sme_me_mask)
354 		return;
355 
356 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
357 	swiotlb_update_mem_attributes();
358 
359 	/*
360 	 * With SEV, DMA operations cannot use encryption, we need to use
361 	 * SWIOTLB to bounce buffer DMA operation.
362 	 */
363 	if (sev_active())
364 		dma_ops = &swiotlb_dma_ops;
365 
366 	/*
367 	 * With SEV, we need to unroll the rep string I/O instructions.
368 	 */
369 	if (sev_active())
370 		static_branch_enable(&sev_enable_key);
371 
372 	pr_info("AMD %s active\n",
373 		sev_active() ? "Secure Encrypted Virtualization (SEV)"
374 			     : "Secure Memory Encryption (SME)");
375 }
376 
377