xref: /linux/arch/x86/mm/mem_encrypt.c (revision a9cb09b7be84a7adc9e6f4aaf8d770933d65f953)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/virtio_config.h>
23 
24 #include <asm/tlbflush.h>
25 #include <asm/fixmap.h>
26 #include <asm/setup.h>
27 #include <asm/bootparam.h>
28 #include <asm/set_memory.h>
29 #include <asm/cacheflush.h>
30 #include <asm/processor-flags.h>
31 #include <asm/msr.h>
32 #include <asm/cmdline.h>
33 
34 #include "mm_internal.h"
35 
36 /*
37  * Since SME related variables are set early in the boot process they must
38  * reside in the .data section so as not to be zeroed out when the .bss
39  * section is later cleared.
40  */
41 u64 sme_me_mask __section(".data") = 0;
42 u64 sev_status __section(".data") = 0;
43 u64 sev_check_data __section(".data") = 0;
44 EXPORT_SYMBOL(sme_me_mask);
45 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
46 EXPORT_SYMBOL_GPL(sev_enable_key);
47 
48 /* Buffer used for early in-place encryption by BSP, no locking needed */
49 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
50 
51 /*
52  * This routine does not change the underlying encryption setting of the
53  * page(s) that map this memory. It assumes that eventually the memory is
54  * meant to be accessed as either encrypted or decrypted but the contents
55  * are currently not in the desired state.
56  *
57  * This routine follows the steps outlined in the AMD64 Architecture
58  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
59  */
60 static void __init __sme_early_enc_dec(resource_size_t paddr,
61 				       unsigned long size, bool enc)
62 {
63 	void *src, *dst;
64 	size_t len;
65 
66 	if (!sme_me_mask)
67 		return;
68 
69 	wbinvd();
70 
71 	/*
72 	 * There are limited number of early mapping slots, so map (at most)
73 	 * one page at time.
74 	 */
75 	while (size) {
76 		len = min_t(size_t, sizeof(sme_early_buffer), size);
77 
78 		/*
79 		 * Create mappings for the current and desired format of
80 		 * the memory. Use a write-protected mapping for the source.
81 		 */
82 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
83 			    early_memremap_encrypted_wp(paddr, len);
84 
85 		dst = enc ? early_memremap_encrypted(paddr, len) :
86 			    early_memremap_decrypted(paddr, len);
87 
88 		/*
89 		 * If a mapping can't be obtained to perform the operation,
90 		 * then eventual access of that area in the desired mode
91 		 * will cause a crash.
92 		 */
93 		BUG_ON(!src || !dst);
94 
95 		/*
96 		 * Use a temporary buffer, of cache-line multiple size, to
97 		 * avoid data corruption as documented in the APM.
98 		 */
99 		memcpy(sme_early_buffer, src, len);
100 		memcpy(dst, sme_early_buffer, len);
101 
102 		early_memunmap(dst, len);
103 		early_memunmap(src, len);
104 
105 		paddr += len;
106 		size -= len;
107 	}
108 }
109 
110 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
111 {
112 	__sme_early_enc_dec(paddr, size, true);
113 }
114 
115 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
116 {
117 	__sme_early_enc_dec(paddr, size, false);
118 }
119 
120 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
121 					     bool map)
122 {
123 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
124 	pmdval_t pmd_flags, pmd;
125 
126 	/* Use early_pmd_flags but remove the encryption mask */
127 	pmd_flags = __sme_clr(early_pmd_flags);
128 
129 	do {
130 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
131 		__early_make_pgtable((unsigned long)vaddr, pmd);
132 
133 		vaddr += PMD_SIZE;
134 		paddr += PMD_SIZE;
135 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
136 	} while (size);
137 
138 	flush_tlb_local();
139 }
140 
141 void __init sme_unmap_bootdata(char *real_mode_data)
142 {
143 	struct boot_params *boot_data;
144 	unsigned long cmdline_paddr;
145 
146 	if (!sme_active())
147 		return;
148 
149 	/* Get the command line address before unmapping the real_mode_data */
150 	boot_data = (struct boot_params *)real_mode_data;
151 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
152 
153 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
154 
155 	if (!cmdline_paddr)
156 		return;
157 
158 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
159 }
160 
161 void __init sme_map_bootdata(char *real_mode_data)
162 {
163 	struct boot_params *boot_data;
164 	unsigned long cmdline_paddr;
165 
166 	if (!sme_active())
167 		return;
168 
169 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
170 
171 	/* Get the command line address after mapping the real_mode_data */
172 	boot_data = (struct boot_params *)real_mode_data;
173 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
174 
175 	if (!cmdline_paddr)
176 		return;
177 
178 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
179 }
180 
181 void __init sme_early_init(void)
182 {
183 	unsigned int i;
184 
185 	if (!sme_me_mask)
186 		return;
187 
188 	early_pmd_flags = __sme_set(early_pmd_flags);
189 
190 	__supported_pte_mask = __sme_set(__supported_pte_mask);
191 
192 	/* Update the protection map with memory encryption mask */
193 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
194 		protection_map[i] = pgprot_encrypted(protection_map[i]);
195 
196 	if (sev_active())
197 		swiotlb_force = SWIOTLB_FORCE;
198 }
199 
200 void __init sev_setup_arch(void)
201 {
202 	phys_addr_t total_mem = memblock_phys_mem_size();
203 	unsigned long size;
204 
205 	if (!sev_active())
206 		return;
207 
208 	/*
209 	 * For SEV, all DMA has to occur via shared/unencrypted pages.
210 	 * SEV uses SWIOTLB to make this happen without changing device
211 	 * drivers. However, depending on the workload being run, the
212 	 * default 64MB of SWIOTLB may not be enough and SWIOTLB may
213 	 * run out of buffers for DMA, resulting in I/O errors and/or
214 	 * performance degradation especially with high I/O workloads.
215 	 *
216 	 * Adjust the default size of SWIOTLB for SEV guests using
217 	 * a percentage of guest memory for SWIOTLB buffers.
218 	 * Also, as the SWIOTLB bounce buffer memory is allocated
219 	 * from low memory, ensure that the adjusted size is within
220 	 * the limits of low available memory.
221 	 *
222 	 * The percentage of guest memory used here for SWIOTLB buffers
223 	 * is more of an approximation of the static adjustment which
224 	 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
225 	 */
226 	size = total_mem * 6 / 100;
227 	size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
228 	swiotlb_adjust_size(size);
229 }
230 
231 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
232 {
233 	pgprot_t old_prot, new_prot;
234 	unsigned long pfn, pa, size;
235 	pte_t new_pte;
236 
237 	switch (level) {
238 	case PG_LEVEL_4K:
239 		pfn = pte_pfn(*kpte);
240 		old_prot = pte_pgprot(*kpte);
241 		break;
242 	case PG_LEVEL_2M:
243 		pfn = pmd_pfn(*(pmd_t *)kpte);
244 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
245 		break;
246 	case PG_LEVEL_1G:
247 		pfn = pud_pfn(*(pud_t *)kpte);
248 		old_prot = pud_pgprot(*(pud_t *)kpte);
249 		break;
250 	default:
251 		return;
252 	}
253 
254 	new_prot = old_prot;
255 	if (enc)
256 		pgprot_val(new_prot) |= _PAGE_ENC;
257 	else
258 		pgprot_val(new_prot) &= ~_PAGE_ENC;
259 
260 	/* If prot is same then do nothing. */
261 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
262 		return;
263 
264 	pa = pfn << PAGE_SHIFT;
265 	size = page_level_size(level);
266 
267 	/*
268 	 * We are going to perform in-place en-/decryption and change the
269 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
270 	 * caches to ensure that data gets accessed with the correct C-bit.
271 	 */
272 	clflush_cache_range(__va(pa), size);
273 
274 	/* Encrypt/decrypt the contents in-place */
275 	if (enc)
276 		sme_early_encrypt(pa, size);
277 	else
278 		sme_early_decrypt(pa, size);
279 
280 	/* Change the page encryption mask. */
281 	new_pte = pfn_pte(pfn, new_prot);
282 	set_pte_atomic(kpte, new_pte);
283 }
284 
285 static int __init early_set_memory_enc_dec(unsigned long vaddr,
286 					   unsigned long size, bool enc)
287 {
288 	unsigned long vaddr_end, vaddr_next;
289 	unsigned long psize, pmask;
290 	int split_page_size_mask;
291 	int level, ret;
292 	pte_t *kpte;
293 
294 	vaddr_next = vaddr;
295 	vaddr_end = vaddr + size;
296 
297 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
298 		kpte = lookup_address(vaddr, &level);
299 		if (!kpte || pte_none(*kpte)) {
300 			ret = 1;
301 			goto out;
302 		}
303 
304 		if (level == PG_LEVEL_4K) {
305 			__set_clr_pte_enc(kpte, level, enc);
306 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
307 			continue;
308 		}
309 
310 		psize = page_level_size(level);
311 		pmask = page_level_mask(level);
312 
313 		/*
314 		 * Check whether we can change the large page in one go.
315 		 * We request a split when the address is not aligned and
316 		 * the number of pages to set/clear encryption bit is smaller
317 		 * than the number of pages in the large page.
318 		 */
319 		if (vaddr == (vaddr & pmask) &&
320 		    ((vaddr_end - vaddr) >= psize)) {
321 			__set_clr_pte_enc(kpte, level, enc);
322 			vaddr_next = (vaddr & pmask) + psize;
323 			continue;
324 		}
325 
326 		/*
327 		 * The virtual address is part of a larger page, create the next
328 		 * level page table mapping (4K or 2M). If it is part of a 2M
329 		 * page then we request a split of the large page into 4K
330 		 * chunks. A 1GB large page is split into 2M pages, resp.
331 		 */
332 		if (level == PG_LEVEL_2M)
333 			split_page_size_mask = 0;
334 		else
335 			split_page_size_mask = 1 << PG_LEVEL_2M;
336 
337 		/*
338 		 * kernel_physical_mapping_change() does not flush the TLBs, so
339 		 * a TLB flush is required after we exit from the for loop.
340 		 */
341 		kernel_physical_mapping_change(__pa(vaddr & pmask),
342 					       __pa((vaddr_end & pmask) + psize),
343 					       split_page_size_mask);
344 	}
345 
346 	ret = 0;
347 
348 out:
349 	__flush_tlb_all();
350 	return ret;
351 }
352 
353 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
354 {
355 	return early_set_memory_enc_dec(vaddr, size, false);
356 }
357 
358 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
359 {
360 	return early_set_memory_enc_dec(vaddr, size, true);
361 }
362 
363 /*
364  * SME and SEV are very similar but they are not the same, so there are
365  * times that the kernel will need to distinguish between SME and SEV. The
366  * sme_active() and sev_active() functions are used for this.  When a
367  * distinction isn't needed, the mem_encrypt_active() function can be used.
368  *
369  * The trampoline code is a good example for this requirement.  Before
370  * paging is activated, SME will access all memory as decrypted, but SEV
371  * will access all memory as encrypted.  So, when APs are being brought
372  * up under SME the trampoline area cannot be encrypted, whereas under SEV
373  * the trampoline area must be encrypted.
374  */
375 bool sev_active(void)
376 {
377 	return sev_status & MSR_AMD64_SEV_ENABLED;
378 }
379 
380 bool sme_active(void)
381 {
382 	return sme_me_mask && !sev_active();
383 }
384 EXPORT_SYMBOL_GPL(sev_active);
385 
386 /* Needs to be called from non-instrumentable code */
387 bool noinstr sev_es_active(void)
388 {
389 	return sev_status & MSR_AMD64_SEV_ES_ENABLED;
390 }
391 
392 /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
393 bool force_dma_unencrypted(struct device *dev)
394 {
395 	/*
396 	 * For SEV, all DMA must be to unencrypted addresses.
397 	 */
398 	if (sev_active())
399 		return true;
400 
401 	/*
402 	 * For SME, all DMA must be to unencrypted addresses if the
403 	 * device does not support DMA to addresses that include the
404 	 * encryption mask.
405 	 */
406 	if (sme_active()) {
407 		u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
408 		u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
409 						dev->bus_dma_limit);
410 
411 		if (dma_dev_mask <= dma_enc_mask)
412 			return true;
413 	}
414 
415 	return false;
416 }
417 
418 void __init mem_encrypt_free_decrypted_mem(void)
419 {
420 	unsigned long vaddr, vaddr_end, npages;
421 	int r;
422 
423 	vaddr = (unsigned long)__start_bss_decrypted_unused;
424 	vaddr_end = (unsigned long)__end_bss_decrypted;
425 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
426 
427 	/*
428 	 * The unused memory range was mapped decrypted, change the encryption
429 	 * attribute from decrypted to encrypted before freeing it.
430 	 */
431 	if (mem_encrypt_active()) {
432 		r = set_memory_encrypted(vaddr, npages);
433 		if (r) {
434 			pr_warn("failed to free unused decrypted pages\n");
435 			return;
436 		}
437 	}
438 
439 	free_init_pages("unused decrypted", vaddr, vaddr_end);
440 }
441 
442 static void print_mem_encrypt_feature_info(void)
443 {
444 	pr_info("AMD Memory Encryption Features active:");
445 
446 	/* Secure Memory Encryption */
447 	if (sme_active()) {
448 		/*
449 		 * SME is mutually exclusive with any of the SEV
450 		 * features below.
451 		 */
452 		pr_cont(" SME\n");
453 		return;
454 	}
455 
456 	/* Secure Encrypted Virtualization */
457 	if (sev_active())
458 		pr_cont(" SEV");
459 
460 	/* Encrypted Register State */
461 	if (sev_es_active())
462 		pr_cont(" SEV-ES");
463 
464 	pr_cont("\n");
465 }
466 
467 /* Architecture __weak replacement functions */
468 void __init mem_encrypt_init(void)
469 {
470 	if (!sme_me_mask)
471 		return;
472 
473 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
474 	swiotlb_update_mem_attributes();
475 
476 	/*
477 	 * With SEV, we need to unroll the rep string I/O instructions,
478 	 * but SEV-ES supports them through the #VC handler.
479 	 */
480 	if (sev_active() && !sev_es_active())
481 		static_branch_enable(&sev_enable_key);
482 
483 	print_mem_encrypt_feature_info();
484 }
485 
486 int arch_has_restricted_virtio_memory_access(void)
487 {
488 	return sev_active();
489 }
490 EXPORT_SYMBOL_GPL(arch_has_restricted_virtio_memory_access);
491