1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 #include <linux/linkage.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/dma-direct.h> 16 #include <linux/swiotlb.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 20 #include <linux/bitops.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/virtio_config.h> 23 24 #include <asm/tlbflush.h> 25 #include <asm/fixmap.h> 26 #include <asm/setup.h> 27 #include <asm/bootparam.h> 28 #include <asm/set_memory.h> 29 #include <asm/cacheflush.h> 30 #include <asm/processor-flags.h> 31 #include <asm/msr.h> 32 #include <asm/cmdline.h> 33 34 #include "mm_internal.h" 35 36 /* 37 * Since SME related variables are set early in the boot process they must 38 * reside in the .data section so as not to be zeroed out when the .bss 39 * section is later cleared. 40 */ 41 u64 sme_me_mask __section(".data") = 0; 42 u64 sev_status __section(".data") = 0; 43 u64 sev_check_data __section(".data") = 0; 44 EXPORT_SYMBOL(sme_me_mask); 45 DEFINE_STATIC_KEY_FALSE(sev_enable_key); 46 EXPORT_SYMBOL_GPL(sev_enable_key); 47 48 bool sev_enabled __section(".data"); 49 50 /* Buffer used for early in-place encryption by BSP, no locking needed */ 51 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); 52 53 /* 54 * This routine does not change the underlying encryption setting of the 55 * page(s) that map this memory. It assumes that eventually the memory is 56 * meant to be accessed as either encrypted or decrypted but the contents 57 * are currently not in the desired state. 58 * 59 * This routine follows the steps outlined in the AMD64 Architecture 60 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 61 */ 62 static void __init __sme_early_enc_dec(resource_size_t paddr, 63 unsigned long size, bool enc) 64 { 65 void *src, *dst; 66 size_t len; 67 68 if (!sme_me_mask) 69 return; 70 71 wbinvd(); 72 73 /* 74 * There are limited number of early mapping slots, so map (at most) 75 * one page at time. 76 */ 77 while (size) { 78 len = min_t(size_t, sizeof(sme_early_buffer), size); 79 80 /* 81 * Create mappings for the current and desired format of 82 * the memory. Use a write-protected mapping for the source. 83 */ 84 src = enc ? early_memremap_decrypted_wp(paddr, len) : 85 early_memremap_encrypted_wp(paddr, len); 86 87 dst = enc ? early_memremap_encrypted(paddr, len) : 88 early_memremap_decrypted(paddr, len); 89 90 /* 91 * If a mapping can't be obtained to perform the operation, 92 * then eventual access of that area in the desired mode 93 * will cause a crash. 94 */ 95 BUG_ON(!src || !dst); 96 97 /* 98 * Use a temporary buffer, of cache-line multiple size, to 99 * avoid data corruption as documented in the APM. 100 */ 101 memcpy(sme_early_buffer, src, len); 102 memcpy(dst, sme_early_buffer, len); 103 104 early_memunmap(dst, len); 105 early_memunmap(src, len); 106 107 paddr += len; 108 size -= len; 109 } 110 } 111 112 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 113 { 114 __sme_early_enc_dec(paddr, size, true); 115 } 116 117 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 118 { 119 __sme_early_enc_dec(paddr, size, false); 120 } 121 122 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 123 bool map) 124 { 125 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 126 pmdval_t pmd_flags, pmd; 127 128 /* Use early_pmd_flags but remove the encryption mask */ 129 pmd_flags = __sme_clr(early_pmd_flags); 130 131 do { 132 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 133 __early_make_pgtable((unsigned long)vaddr, pmd); 134 135 vaddr += PMD_SIZE; 136 paddr += PMD_SIZE; 137 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 138 } while (size); 139 140 flush_tlb_local(); 141 } 142 143 void __init sme_unmap_bootdata(char *real_mode_data) 144 { 145 struct boot_params *boot_data; 146 unsigned long cmdline_paddr; 147 148 if (!sme_active()) 149 return; 150 151 /* Get the command line address before unmapping the real_mode_data */ 152 boot_data = (struct boot_params *)real_mode_data; 153 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 154 155 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 156 157 if (!cmdline_paddr) 158 return; 159 160 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 161 } 162 163 void __init sme_map_bootdata(char *real_mode_data) 164 { 165 struct boot_params *boot_data; 166 unsigned long cmdline_paddr; 167 168 if (!sme_active()) 169 return; 170 171 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 172 173 /* Get the command line address after mapping the real_mode_data */ 174 boot_data = (struct boot_params *)real_mode_data; 175 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 176 177 if (!cmdline_paddr) 178 return; 179 180 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 181 } 182 183 void __init sme_early_init(void) 184 { 185 unsigned int i; 186 187 if (!sme_me_mask) 188 return; 189 190 early_pmd_flags = __sme_set(early_pmd_flags); 191 192 __supported_pte_mask = __sme_set(__supported_pte_mask); 193 194 /* Update the protection map with memory encryption mask */ 195 for (i = 0; i < ARRAY_SIZE(protection_map); i++) 196 protection_map[i] = pgprot_encrypted(protection_map[i]); 197 198 if (sev_active()) 199 swiotlb_force = SWIOTLB_FORCE; 200 } 201 202 void __init sev_setup_arch(void) 203 { 204 phys_addr_t total_mem = memblock_phys_mem_size(); 205 unsigned long size; 206 207 if (!sev_active()) 208 return; 209 210 /* 211 * For SEV, all DMA has to occur via shared/unencrypted pages. 212 * SEV uses SWIOTLB to make this happen without changing device 213 * drivers. However, depending on the workload being run, the 214 * default 64MB of SWIOTLB may not be enough and SWIOTLB may 215 * run out of buffers for DMA, resulting in I/O errors and/or 216 * performance degradation especially with high I/O workloads. 217 * 218 * Adjust the default size of SWIOTLB for SEV guests using 219 * a percentage of guest memory for SWIOTLB buffers. 220 * Also, as the SWIOTLB bounce buffer memory is allocated 221 * from low memory, ensure that the adjusted size is within 222 * the limits of low available memory. 223 * 224 * The percentage of guest memory used here for SWIOTLB buffers 225 * is more of an approximation of the static adjustment which 226 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6% 227 */ 228 size = total_mem * 6 / 100; 229 size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G); 230 swiotlb_adjust_size(size); 231 } 232 233 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 234 { 235 pgprot_t old_prot, new_prot; 236 unsigned long pfn, pa, size; 237 pte_t new_pte; 238 239 switch (level) { 240 case PG_LEVEL_4K: 241 pfn = pte_pfn(*kpte); 242 old_prot = pte_pgprot(*kpte); 243 break; 244 case PG_LEVEL_2M: 245 pfn = pmd_pfn(*(pmd_t *)kpte); 246 old_prot = pmd_pgprot(*(pmd_t *)kpte); 247 break; 248 case PG_LEVEL_1G: 249 pfn = pud_pfn(*(pud_t *)kpte); 250 old_prot = pud_pgprot(*(pud_t *)kpte); 251 break; 252 default: 253 return; 254 } 255 256 new_prot = old_prot; 257 if (enc) 258 pgprot_val(new_prot) |= _PAGE_ENC; 259 else 260 pgprot_val(new_prot) &= ~_PAGE_ENC; 261 262 /* If prot is same then do nothing. */ 263 if (pgprot_val(old_prot) == pgprot_val(new_prot)) 264 return; 265 266 pa = pfn << PAGE_SHIFT; 267 size = page_level_size(level); 268 269 /* 270 * We are going to perform in-place en-/decryption and change the 271 * physical page attribute from C=1 to C=0 or vice versa. Flush the 272 * caches to ensure that data gets accessed with the correct C-bit. 273 */ 274 clflush_cache_range(__va(pa), size); 275 276 /* Encrypt/decrypt the contents in-place */ 277 if (enc) 278 sme_early_encrypt(pa, size); 279 else 280 sme_early_decrypt(pa, size); 281 282 /* Change the page encryption mask. */ 283 new_pte = pfn_pte(pfn, new_prot); 284 set_pte_atomic(kpte, new_pte); 285 } 286 287 static int __init early_set_memory_enc_dec(unsigned long vaddr, 288 unsigned long size, bool enc) 289 { 290 unsigned long vaddr_end, vaddr_next; 291 unsigned long psize, pmask; 292 int split_page_size_mask; 293 int level, ret; 294 pte_t *kpte; 295 296 vaddr_next = vaddr; 297 vaddr_end = vaddr + size; 298 299 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 300 kpte = lookup_address(vaddr, &level); 301 if (!kpte || pte_none(*kpte)) { 302 ret = 1; 303 goto out; 304 } 305 306 if (level == PG_LEVEL_4K) { 307 __set_clr_pte_enc(kpte, level, enc); 308 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 309 continue; 310 } 311 312 psize = page_level_size(level); 313 pmask = page_level_mask(level); 314 315 /* 316 * Check whether we can change the large page in one go. 317 * We request a split when the address is not aligned and 318 * the number of pages to set/clear encryption bit is smaller 319 * than the number of pages in the large page. 320 */ 321 if (vaddr == (vaddr & pmask) && 322 ((vaddr_end - vaddr) >= psize)) { 323 __set_clr_pte_enc(kpte, level, enc); 324 vaddr_next = (vaddr & pmask) + psize; 325 continue; 326 } 327 328 /* 329 * The virtual address is part of a larger page, create the next 330 * level page table mapping (4K or 2M). If it is part of a 2M 331 * page then we request a split of the large page into 4K 332 * chunks. A 1GB large page is split into 2M pages, resp. 333 */ 334 if (level == PG_LEVEL_2M) 335 split_page_size_mask = 0; 336 else 337 split_page_size_mask = 1 << PG_LEVEL_2M; 338 339 /* 340 * kernel_physical_mapping_change() does not flush the TLBs, so 341 * a TLB flush is required after we exit from the for loop. 342 */ 343 kernel_physical_mapping_change(__pa(vaddr & pmask), 344 __pa((vaddr_end & pmask) + psize), 345 split_page_size_mask); 346 } 347 348 ret = 0; 349 350 out: 351 __flush_tlb_all(); 352 return ret; 353 } 354 355 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 356 { 357 return early_set_memory_enc_dec(vaddr, size, false); 358 } 359 360 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 361 { 362 return early_set_memory_enc_dec(vaddr, size, true); 363 } 364 365 /* 366 * SME and SEV are very similar but they are not the same, so there are 367 * times that the kernel will need to distinguish between SME and SEV. The 368 * sme_active() and sev_active() functions are used for this. When a 369 * distinction isn't needed, the mem_encrypt_active() function can be used. 370 * 371 * The trampoline code is a good example for this requirement. Before 372 * paging is activated, SME will access all memory as decrypted, but SEV 373 * will access all memory as encrypted. So, when APs are being brought 374 * up under SME the trampoline area cannot be encrypted, whereas under SEV 375 * the trampoline area must be encrypted. 376 */ 377 bool sme_active(void) 378 { 379 return sme_me_mask && !sev_enabled; 380 } 381 382 bool sev_active(void) 383 { 384 return sev_status & MSR_AMD64_SEV_ENABLED; 385 } 386 EXPORT_SYMBOL_GPL(sev_active); 387 388 /* Needs to be called from non-instrumentable code */ 389 bool noinstr sev_es_active(void) 390 { 391 return sev_status & MSR_AMD64_SEV_ES_ENABLED; 392 } 393 394 /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ 395 bool force_dma_unencrypted(struct device *dev) 396 { 397 /* 398 * For SEV, all DMA must be to unencrypted addresses. 399 */ 400 if (sev_active()) 401 return true; 402 403 /* 404 * For SME, all DMA must be to unencrypted addresses if the 405 * device does not support DMA to addresses that include the 406 * encryption mask. 407 */ 408 if (sme_active()) { 409 u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask)); 410 u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask, 411 dev->bus_dma_limit); 412 413 if (dma_dev_mask <= dma_enc_mask) 414 return true; 415 } 416 417 return false; 418 } 419 420 void __init mem_encrypt_free_decrypted_mem(void) 421 { 422 unsigned long vaddr, vaddr_end, npages; 423 int r; 424 425 vaddr = (unsigned long)__start_bss_decrypted_unused; 426 vaddr_end = (unsigned long)__end_bss_decrypted; 427 npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 428 429 /* 430 * The unused memory range was mapped decrypted, change the encryption 431 * attribute from decrypted to encrypted before freeing it. 432 */ 433 if (mem_encrypt_active()) { 434 r = set_memory_encrypted(vaddr, npages); 435 if (r) { 436 pr_warn("failed to free unused decrypted pages\n"); 437 return; 438 } 439 } 440 441 free_init_pages("unused decrypted", vaddr, vaddr_end); 442 } 443 444 static void print_mem_encrypt_feature_info(void) 445 { 446 pr_info("AMD Memory Encryption Features active:"); 447 448 /* Secure Memory Encryption */ 449 if (sme_active()) { 450 /* 451 * SME is mutually exclusive with any of the SEV 452 * features below. 453 */ 454 pr_cont(" SME\n"); 455 return; 456 } 457 458 /* Secure Encrypted Virtualization */ 459 if (sev_active()) 460 pr_cont(" SEV"); 461 462 /* Encrypted Register State */ 463 if (sev_es_active()) 464 pr_cont(" SEV-ES"); 465 466 pr_cont("\n"); 467 } 468 469 /* Architecture __weak replacement functions */ 470 void __init mem_encrypt_init(void) 471 { 472 if (!sme_me_mask) 473 return; 474 475 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ 476 swiotlb_update_mem_attributes(); 477 478 /* 479 * With SEV, we need to unroll the rep string I/O instructions, 480 * but SEV-ES supports them through the #VC handler. 481 */ 482 if (sev_active() && !sev_es_active()) 483 static_branch_enable(&sev_enable_key); 484 485 print_mem_encrypt_feature_info(); 486 } 487 488 int arch_has_restricted_virtio_memory_access(void) 489 { 490 return sev_active(); 491 } 492 EXPORT_SYMBOL_GPL(arch_has_restricted_virtio_memory_access); 493