xref: /linux/arch/x86/mm/mem_encrypt.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 
19 #include <asm/tlbflush.h>
20 #include <asm/fixmap.h>
21 #include <asm/setup.h>
22 #include <asm/bootparam.h>
23 #include <asm/set_memory.h>
24 #include <asm/cacheflush.h>
25 #include <asm/processor-flags.h>
26 #include <asm/msr.h>
27 #include <asm/cmdline.h>
28 
29 #include "mm_internal.h"
30 
31 /*
32  * Since SME related variables are set early in the boot process they must
33  * reside in the .data section so as not to be zeroed out when the .bss
34  * section is later cleared.
35  */
36 u64 sme_me_mask __section(.data) = 0;
37 EXPORT_SYMBOL(sme_me_mask);
38 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
39 EXPORT_SYMBOL_GPL(sev_enable_key);
40 
41 bool sev_enabled __section(.data);
42 
43 /* Buffer used for early in-place encryption by BSP, no locking needed */
44 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
45 
46 /*
47  * This routine does not change the underlying encryption setting of the
48  * page(s) that map this memory. It assumes that eventually the memory is
49  * meant to be accessed as either encrypted or decrypted but the contents
50  * are currently not in the desired state.
51  *
52  * This routine follows the steps outlined in the AMD64 Architecture
53  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
54  */
55 static void __init __sme_early_enc_dec(resource_size_t paddr,
56 				       unsigned long size, bool enc)
57 {
58 	void *src, *dst;
59 	size_t len;
60 
61 	if (!sme_me_mask)
62 		return;
63 
64 	wbinvd();
65 
66 	/*
67 	 * There are limited number of early mapping slots, so map (at most)
68 	 * one page at time.
69 	 */
70 	while (size) {
71 		len = min_t(size_t, sizeof(sme_early_buffer), size);
72 
73 		/*
74 		 * Create mappings for the current and desired format of
75 		 * the memory. Use a write-protected mapping for the source.
76 		 */
77 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
78 			    early_memremap_encrypted_wp(paddr, len);
79 
80 		dst = enc ? early_memremap_encrypted(paddr, len) :
81 			    early_memremap_decrypted(paddr, len);
82 
83 		/*
84 		 * If a mapping can't be obtained to perform the operation,
85 		 * then eventual access of that area in the desired mode
86 		 * will cause a crash.
87 		 */
88 		BUG_ON(!src || !dst);
89 
90 		/*
91 		 * Use a temporary buffer, of cache-line multiple size, to
92 		 * avoid data corruption as documented in the APM.
93 		 */
94 		memcpy(sme_early_buffer, src, len);
95 		memcpy(dst, sme_early_buffer, len);
96 
97 		early_memunmap(dst, len);
98 		early_memunmap(src, len);
99 
100 		paddr += len;
101 		size -= len;
102 	}
103 }
104 
105 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
106 {
107 	__sme_early_enc_dec(paddr, size, true);
108 }
109 
110 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
111 {
112 	__sme_early_enc_dec(paddr, size, false);
113 }
114 
115 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
116 					     bool map)
117 {
118 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
119 	pmdval_t pmd_flags, pmd;
120 
121 	/* Use early_pmd_flags but remove the encryption mask */
122 	pmd_flags = __sme_clr(early_pmd_flags);
123 
124 	do {
125 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
126 		__early_make_pgtable((unsigned long)vaddr, pmd);
127 
128 		vaddr += PMD_SIZE;
129 		paddr += PMD_SIZE;
130 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
131 	} while (size);
132 
133 	__native_flush_tlb();
134 }
135 
136 void __init sme_unmap_bootdata(char *real_mode_data)
137 {
138 	struct boot_params *boot_data;
139 	unsigned long cmdline_paddr;
140 
141 	if (!sme_active())
142 		return;
143 
144 	/* Get the command line address before unmapping the real_mode_data */
145 	boot_data = (struct boot_params *)real_mode_data;
146 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
147 
148 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
149 
150 	if (!cmdline_paddr)
151 		return;
152 
153 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
154 }
155 
156 void __init sme_map_bootdata(char *real_mode_data)
157 {
158 	struct boot_params *boot_data;
159 	unsigned long cmdline_paddr;
160 
161 	if (!sme_active())
162 		return;
163 
164 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
165 
166 	/* Get the command line address after mapping the real_mode_data */
167 	boot_data = (struct boot_params *)real_mode_data;
168 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
169 
170 	if (!cmdline_paddr)
171 		return;
172 
173 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
174 }
175 
176 void __init sme_early_init(void)
177 {
178 	unsigned int i;
179 
180 	if (!sme_me_mask)
181 		return;
182 
183 	early_pmd_flags = __sme_set(early_pmd_flags);
184 
185 	__supported_pte_mask = __sme_set(__supported_pte_mask);
186 
187 	/* Update the protection map with memory encryption mask */
188 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
189 		protection_map[i] = pgprot_encrypted(protection_map[i]);
190 
191 	if (sev_active())
192 		swiotlb_force = SWIOTLB_FORCE;
193 }
194 
195 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
196 {
197 	pgprot_t old_prot, new_prot;
198 	unsigned long pfn, pa, size;
199 	pte_t new_pte;
200 
201 	switch (level) {
202 	case PG_LEVEL_4K:
203 		pfn = pte_pfn(*kpte);
204 		old_prot = pte_pgprot(*kpte);
205 		break;
206 	case PG_LEVEL_2M:
207 		pfn = pmd_pfn(*(pmd_t *)kpte);
208 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
209 		break;
210 	case PG_LEVEL_1G:
211 		pfn = pud_pfn(*(pud_t *)kpte);
212 		old_prot = pud_pgprot(*(pud_t *)kpte);
213 		break;
214 	default:
215 		return;
216 	}
217 
218 	new_prot = old_prot;
219 	if (enc)
220 		pgprot_val(new_prot) |= _PAGE_ENC;
221 	else
222 		pgprot_val(new_prot) &= ~_PAGE_ENC;
223 
224 	/* If prot is same then do nothing. */
225 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
226 		return;
227 
228 	pa = pfn << page_level_shift(level);
229 	size = page_level_size(level);
230 
231 	/*
232 	 * We are going to perform in-place en-/decryption and change the
233 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
234 	 * caches to ensure that data gets accessed with the correct C-bit.
235 	 */
236 	clflush_cache_range(__va(pa), size);
237 
238 	/* Encrypt/decrypt the contents in-place */
239 	if (enc)
240 		sme_early_encrypt(pa, size);
241 	else
242 		sme_early_decrypt(pa, size);
243 
244 	/* Change the page encryption mask. */
245 	new_pte = pfn_pte(pfn, new_prot);
246 	set_pte_atomic(kpte, new_pte);
247 }
248 
249 static int __init early_set_memory_enc_dec(unsigned long vaddr,
250 					   unsigned long size, bool enc)
251 {
252 	unsigned long vaddr_end, vaddr_next;
253 	unsigned long psize, pmask;
254 	int split_page_size_mask;
255 	int level, ret;
256 	pte_t *kpte;
257 
258 	vaddr_next = vaddr;
259 	vaddr_end = vaddr + size;
260 
261 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
262 		kpte = lookup_address(vaddr, &level);
263 		if (!kpte || pte_none(*kpte)) {
264 			ret = 1;
265 			goto out;
266 		}
267 
268 		if (level == PG_LEVEL_4K) {
269 			__set_clr_pte_enc(kpte, level, enc);
270 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
271 			continue;
272 		}
273 
274 		psize = page_level_size(level);
275 		pmask = page_level_mask(level);
276 
277 		/*
278 		 * Check whether we can change the large page in one go.
279 		 * We request a split when the address is not aligned and
280 		 * the number of pages to set/clear encryption bit is smaller
281 		 * than the number of pages in the large page.
282 		 */
283 		if (vaddr == (vaddr & pmask) &&
284 		    ((vaddr_end - vaddr) >= psize)) {
285 			__set_clr_pte_enc(kpte, level, enc);
286 			vaddr_next = (vaddr & pmask) + psize;
287 			continue;
288 		}
289 
290 		/*
291 		 * The virtual address is part of a larger page, create the next
292 		 * level page table mapping (4K or 2M). If it is part of a 2M
293 		 * page then we request a split of the large page into 4K
294 		 * chunks. A 1GB large page is split into 2M pages, resp.
295 		 */
296 		if (level == PG_LEVEL_2M)
297 			split_page_size_mask = 0;
298 		else
299 			split_page_size_mask = 1 << PG_LEVEL_2M;
300 
301 		/*
302 		 * kernel_physical_mapping_change() does not flush the TLBs, so
303 		 * a TLB flush is required after we exit from the for loop.
304 		 */
305 		kernel_physical_mapping_change(__pa(vaddr & pmask),
306 					       __pa((vaddr_end & pmask) + psize),
307 					       split_page_size_mask);
308 	}
309 
310 	ret = 0;
311 
312 out:
313 	__flush_tlb_all();
314 	return ret;
315 }
316 
317 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
318 {
319 	return early_set_memory_enc_dec(vaddr, size, false);
320 }
321 
322 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
323 {
324 	return early_set_memory_enc_dec(vaddr, size, true);
325 }
326 
327 /*
328  * SME and SEV are very similar but they are not the same, so there are
329  * times that the kernel will need to distinguish between SME and SEV. The
330  * sme_active() and sev_active() functions are used for this.  When a
331  * distinction isn't needed, the mem_encrypt_active() function can be used.
332  *
333  * The trampoline code is a good example for this requirement.  Before
334  * paging is activated, SME will access all memory as decrypted, but SEV
335  * will access all memory as encrypted.  So, when APs are being brought
336  * up under SME the trampoline area cannot be encrypted, whereas under SEV
337  * the trampoline area must be encrypted.
338  */
339 bool sme_active(void)
340 {
341 	return sme_me_mask && !sev_enabled;
342 }
343 EXPORT_SYMBOL(sme_active);
344 
345 bool sev_active(void)
346 {
347 	return sme_me_mask && sev_enabled;
348 }
349 EXPORT_SYMBOL(sev_active);
350 
351 /* Architecture __weak replacement functions */
352 void __init mem_encrypt_free_decrypted_mem(void)
353 {
354 	unsigned long vaddr, vaddr_end, npages;
355 	int r;
356 
357 	vaddr = (unsigned long)__start_bss_decrypted_unused;
358 	vaddr_end = (unsigned long)__end_bss_decrypted;
359 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
360 
361 	/*
362 	 * The unused memory range was mapped decrypted, change the encryption
363 	 * attribute from decrypted to encrypted before freeing it.
364 	 */
365 	if (mem_encrypt_active()) {
366 		r = set_memory_encrypted(vaddr, npages);
367 		if (r) {
368 			pr_warn("failed to free unused decrypted pages\n");
369 			return;
370 		}
371 	}
372 
373 	free_init_pages("unused decrypted", vaddr, vaddr_end);
374 }
375 
376 void __init mem_encrypt_init(void)
377 {
378 	if (!sme_me_mask)
379 		return;
380 
381 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
382 	swiotlb_update_mem_attributes();
383 
384 	/*
385 	 * With SEV, we need to unroll the rep string I/O instructions.
386 	 */
387 	if (sev_active())
388 		static_branch_enable(&sev_enable_key);
389 
390 	pr_info("AMD %s active\n",
391 		sev_active() ? "Secure Encrypted Virtualization (SEV)"
392 			     : "Secure Memory Encryption (SME)");
393 }
394 
395