1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 #include <linux/linkage.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/dma-direct.h> 16 #include <linux/swiotlb.h> 17 #include <linux/mem_encrypt.h> 18 19 #include <asm/tlbflush.h> 20 #include <asm/fixmap.h> 21 #include <asm/setup.h> 22 #include <asm/bootparam.h> 23 #include <asm/set_memory.h> 24 #include <asm/cacheflush.h> 25 #include <asm/processor-flags.h> 26 #include <asm/msr.h> 27 #include <asm/cmdline.h> 28 29 #include "mm_internal.h" 30 31 /* 32 * Since SME related variables are set early in the boot process they must 33 * reside in the .data section so as not to be zeroed out when the .bss 34 * section is later cleared. 35 */ 36 u64 sme_me_mask __section(.data) = 0; 37 EXPORT_SYMBOL(sme_me_mask); 38 DEFINE_STATIC_KEY_FALSE(sev_enable_key); 39 EXPORT_SYMBOL_GPL(sev_enable_key); 40 41 bool sev_enabled __section(.data); 42 43 /* Buffer used for early in-place encryption by BSP, no locking needed */ 44 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE); 45 46 /* 47 * This routine does not change the underlying encryption setting of the 48 * page(s) that map this memory. It assumes that eventually the memory is 49 * meant to be accessed as either encrypted or decrypted but the contents 50 * are currently not in the desired state. 51 * 52 * This routine follows the steps outlined in the AMD64 Architecture 53 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 54 */ 55 static void __init __sme_early_enc_dec(resource_size_t paddr, 56 unsigned long size, bool enc) 57 { 58 void *src, *dst; 59 size_t len; 60 61 if (!sme_me_mask) 62 return; 63 64 wbinvd(); 65 66 /* 67 * There are limited number of early mapping slots, so map (at most) 68 * one page at time. 69 */ 70 while (size) { 71 len = min_t(size_t, sizeof(sme_early_buffer), size); 72 73 /* 74 * Create mappings for the current and desired format of 75 * the memory. Use a write-protected mapping for the source. 76 */ 77 src = enc ? early_memremap_decrypted_wp(paddr, len) : 78 early_memremap_encrypted_wp(paddr, len); 79 80 dst = enc ? early_memremap_encrypted(paddr, len) : 81 early_memremap_decrypted(paddr, len); 82 83 /* 84 * If a mapping can't be obtained to perform the operation, 85 * then eventual access of that area in the desired mode 86 * will cause a crash. 87 */ 88 BUG_ON(!src || !dst); 89 90 /* 91 * Use a temporary buffer, of cache-line multiple size, to 92 * avoid data corruption as documented in the APM. 93 */ 94 memcpy(sme_early_buffer, src, len); 95 memcpy(dst, sme_early_buffer, len); 96 97 early_memunmap(dst, len); 98 early_memunmap(src, len); 99 100 paddr += len; 101 size -= len; 102 } 103 } 104 105 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 106 { 107 __sme_early_enc_dec(paddr, size, true); 108 } 109 110 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 111 { 112 __sme_early_enc_dec(paddr, size, false); 113 } 114 115 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 116 bool map) 117 { 118 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 119 pmdval_t pmd_flags, pmd; 120 121 /* Use early_pmd_flags but remove the encryption mask */ 122 pmd_flags = __sme_clr(early_pmd_flags); 123 124 do { 125 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 126 __early_make_pgtable((unsigned long)vaddr, pmd); 127 128 vaddr += PMD_SIZE; 129 paddr += PMD_SIZE; 130 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 131 } while (size); 132 133 __native_flush_tlb(); 134 } 135 136 void __init sme_unmap_bootdata(char *real_mode_data) 137 { 138 struct boot_params *boot_data; 139 unsigned long cmdline_paddr; 140 141 if (!sme_active()) 142 return; 143 144 /* Get the command line address before unmapping the real_mode_data */ 145 boot_data = (struct boot_params *)real_mode_data; 146 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 147 148 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 149 150 if (!cmdline_paddr) 151 return; 152 153 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 154 } 155 156 void __init sme_map_bootdata(char *real_mode_data) 157 { 158 struct boot_params *boot_data; 159 unsigned long cmdline_paddr; 160 161 if (!sme_active()) 162 return; 163 164 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 165 166 /* Get the command line address after mapping the real_mode_data */ 167 boot_data = (struct boot_params *)real_mode_data; 168 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 169 170 if (!cmdline_paddr) 171 return; 172 173 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 174 } 175 176 void __init sme_early_init(void) 177 { 178 unsigned int i; 179 180 if (!sme_me_mask) 181 return; 182 183 early_pmd_flags = __sme_set(early_pmd_flags); 184 185 __supported_pte_mask = __sme_set(__supported_pte_mask); 186 187 /* Update the protection map with memory encryption mask */ 188 for (i = 0; i < ARRAY_SIZE(protection_map); i++) 189 protection_map[i] = pgprot_encrypted(protection_map[i]); 190 191 if (sev_active()) 192 swiotlb_force = SWIOTLB_FORCE; 193 } 194 195 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 196 { 197 pgprot_t old_prot, new_prot; 198 unsigned long pfn, pa, size; 199 pte_t new_pte; 200 201 switch (level) { 202 case PG_LEVEL_4K: 203 pfn = pte_pfn(*kpte); 204 old_prot = pte_pgprot(*kpte); 205 break; 206 case PG_LEVEL_2M: 207 pfn = pmd_pfn(*(pmd_t *)kpte); 208 old_prot = pmd_pgprot(*(pmd_t *)kpte); 209 break; 210 case PG_LEVEL_1G: 211 pfn = pud_pfn(*(pud_t *)kpte); 212 old_prot = pud_pgprot(*(pud_t *)kpte); 213 break; 214 default: 215 return; 216 } 217 218 new_prot = old_prot; 219 if (enc) 220 pgprot_val(new_prot) |= _PAGE_ENC; 221 else 222 pgprot_val(new_prot) &= ~_PAGE_ENC; 223 224 /* If prot is same then do nothing. */ 225 if (pgprot_val(old_prot) == pgprot_val(new_prot)) 226 return; 227 228 pa = pfn << page_level_shift(level); 229 size = page_level_size(level); 230 231 /* 232 * We are going to perform in-place en-/decryption and change the 233 * physical page attribute from C=1 to C=0 or vice versa. Flush the 234 * caches to ensure that data gets accessed with the correct C-bit. 235 */ 236 clflush_cache_range(__va(pa), size); 237 238 /* Encrypt/decrypt the contents in-place */ 239 if (enc) 240 sme_early_encrypt(pa, size); 241 else 242 sme_early_decrypt(pa, size); 243 244 /* Change the page encryption mask. */ 245 new_pte = pfn_pte(pfn, new_prot); 246 set_pte_atomic(kpte, new_pte); 247 } 248 249 static int __init early_set_memory_enc_dec(unsigned long vaddr, 250 unsigned long size, bool enc) 251 { 252 unsigned long vaddr_end, vaddr_next; 253 unsigned long psize, pmask; 254 int split_page_size_mask; 255 int level, ret; 256 pte_t *kpte; 257 258 vaddr_next = vaddr; 259 vaddr_end = vaddr + size; 260 261 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 262 kpte = lookup_address(vaddr, &level); 263 if (!kpte || pte_none(*kpte)) { 264 ret = 1; 265 goto out; 266 } 267 268 if (level == PG_LEVEL_4K) { 269 __set_clr_pte_enc(kpte, level, enc); 270 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 271 continue; 272 } 273 274 psize = page_level_size(level); 275 pmask = page_level_mask(level); 276 277 /* 278 * Check whether we can change the large page in one go. 279 * We request a split when the address is not aligned and 280 * the number of pages to set/clear encryption bit is smaller 281 * than the number of pages in the large page. 282 */ 283 if (vaddr == (vaddr & pmask) && 284 ((vaddr_end - vaddr) >= psize)) { 285 __set_clr_pte_enc(kpte, level, enc); 286 vaddr_next = (vaddr & pmask) + psize; 287 continue; 288 } 289 290 /* 291 * The virtual address is part of a larger page, create the next 292 * level page table mapping (4K or 2M). If it is part of a 2M 293 * page then we request a split of the large page into 4K 294 * chunks. A 1GB large page is split into 2M pages, resp. 295 */ 296 if (level == PG_LEVEL_2M) 297 split_page_size_mask = 0; 298 else 299 split_page_size_mask = 1 << PG_LEVEL_2M; 300 301 /* 302 * kernel_physical_mapping_change() does not flush the TLBs, so 303 * a TLB flush is required after we exit from the for loop. 304 */ 305 kernel_physical_mapping_change(__pa(vaddr & pmask), 306 __pa((vaddr_end & pmask) + psize), 307 split_page_size_mask); 308 } 309 310 ret = 0; 311 312 out: 313 __flush_tlb_all(); 314 return ret; 315 } 316 317 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 318 { 319 return early_set_memory_enc_dec(vaddr, size, false); 320 } 321 322 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 323 { 324 return early_set_memory_enc_dec(vaddr, size, true); 325 } 326 327 /* 328 * SME and SEV are very similar but they are not the same, so there are 329 * times that the kernel will need to distinguish between SME and SEV. The 330 * sme_active() and sev_active() functions are used for this. When a 331 * distinction isn't needed, the mem_encrypt_active() function can be used. 332 * 333 * The trampoline code is a good example for this requirement. Before 334 * paging is activated, SME will access all memory as decrypted, but SEV 335 * will access all memory as encrypted. So, when APs are being brought 336 * up under SME the trampoline area cannot be encrypted, whereas under SEV 337 * the trampoline area must be encrypted. 338 */ 339 bool sme_active(void) 340 { 341 return sme_me_mask && !sev_enabled; 342 } 343 EXPORT_SYMBOL(sme_active); 344 345 bool sev_active(void) 346 { 347 return sme_me_mask && sev_enabled; 348 } 349 EXPORT_SYMBOL(sev_active); 350 351 /* Architecture __weak replacement functions */ 352 void __init mem_encrypt_free_decrypted_mem(void) 353 { 354 unsigned long vaddr, vaddr_end, npages; 355 int r; 356 357 vaddr = (unsigned long)__start_bss_decrypted_unused; 358 vaddr_end = (unsigned long)__end_bss_decrypted; 359 npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 360 361 /* 362 * The unused memory range was mapped decrypted, change the encryption 363 * attribute from decrypted to encrypted before freeing it. 364 */ 365 if (mem_encrypt_active()) { 366 r = set_memory_encrypted(vaddr, npages); 367 if (r) { 368 pr_warn("failed to free unused decrypted pages\n"); 369 return; 370 } 371 } 372 373 free_init_pages("unused decrypted", vaddr, vaddr_end); 374 } 375 376 void __init mem_encrypt_init(void) 377 { 378 if (!sme_me_mask) 379 return; 380 381 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ 382 swiotlb_update_mem_attributes(); 383 384 /* 385 * With SEV, we need to unroll the rep string I/O instructions. 386 */ 387 if (sev_active()) 388 static_branch_enable(&sev_enable_key); 389 390 pr_info("AMD %s active\n", 391 sev_active() ? "Secure Encrypted Virtualization (SEV)" 392 : "Secure Memory Encryption (SME)"); 393 } 394 395