xref: /linux/arch/x86/mm/kmmio.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Support for MMIO probes.
3  * Benefit many code from kprobes
4  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
5  *     2007 Alexander Eichner
6  *     2008 Pekka Paalanen <pq@iki.fi>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/list.h>
12 #include <linux/rculist.h>
13 #include <linux/spinlock.h>
14 #include <linux/hash.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/uaccess.h>
18 #include <linux/ptrace.h>
19 #include <linux/preempt.h>
20 #include <linux/percpu.h>
21 #include <linux/kdebug.h>
22 #include <linux/mutex.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <linux/errno.h>
28 #include <asm/debugreg.h>
29 #include <linux/mmiotrace.h>
30 
31 #define KMMIO_PAGE_HASH_BITS 4
32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
33 
34 struct kmmio_fault_page {
35 	struct list_head list;
36 	struct kmmio_fault_page *release_next;
37 	unsigned long addr; /* the requested address */
38 	pteval_t old_presence; /* page presence prior to arming */
39 	bool armed;
40 
41 	/*
42 	 * Number of times this page has been registered as a part
43 	 * of a probe. If zero, page is disarmed and this may be freed.
44 	 * Used only by writers (RCU) and post_kmmio_handler().
45 	 * Protected by kmmio_lock, when linked into kmmio_page_table.
46 	 */
47 	int count;
48 
49 	bool scheduled_for_release;
50 };
51 
52 struct kmmio_delayed_release {
53 	struct rcu_head rcu;
54 	struct kmmio_fault_page *release_list;
55 };
56 
57 struct kmmio_context {
58 	struct kmmio_fault_page *fpage;
59 	struct kmmio_probe *probe;
60 	unsigned long saved_flags;
61 	unsigned long addr;
62 	int active;
63 };
64 
65 /*
66  * The kmmio_lock is taken in int3 context, which is treated as NMI context.
67  * This causes lockdep to complain about it bein in both NMI and normal
68  * context. Hide it from lockdep, as it should not have any other locks
69  * taken under it, and this is only enabled for debugging mmio anyway.
70  */
71 static arch_spinlock_t kmmio_lock = __ARCH_SPIN_LOCK_UNLOCKED;
72 
73 /* Protected by kmmio_lock */
74 unsigned int kmmio_count;
75 
76 /* Read-protected by RCU, write-protected by kmmio_lock. */
77 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
78 static LIST_HEAD(kmmio_probes);
79 
80 static struct list_head *kmmio_page_list(unsigned long addr)
81 {
82 	unsigned int l;
83 	pte_t *pte = lookup_address(addr, &l);
84 
85 	if (!pte)
86 		return NULL;
87 	addr &= page_level_mask(l);
88 
89 	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
90 }
91 
92 /* Accessed per-cpu */
93 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
94 
95 /*
96  * this is basically a dynamic stabbing problem:
97  * Could use the existing prio tree code or
98  * Possible better implementations:
99  * The Interval Skip List: A Data Structure for Finding All Intervals That
100  * Overlap a Point (might be simple)
101  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
102  */
103 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
104 static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
105 {
106 	struct kmmio_probe *p;
107 	list_for_each_entry_rcu(p, &kmmio_probes, list) {
108 		if (addr >= p->addr && addr < (p->addr + p->len))
109 			return p;
110 	}
111 	return NULL;
112 }
113 
114 /* You must be holding RCU read lock. */
115 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
116 {
117 	struct list_head *head;
118 	struct kmmio_fault_page *f;
119 	unsigned int l;
120 	pte_t *pte = lookup_address(addr, &l);
121 
122 	if (!pte)
123 		return NULL;
124 	addr &= page_level_mask(l);
125 	head = kmmio_page_list(addr);
126 	list_for_each_entry_rcu(f, head, list) {
127 		if (f->addr == addr)
128 			return f;
129 	}
130 	return NULL;
131 }
132 
133 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
134 {
135 	pmd_t new_pmd;
136 	pmdval_t v = pmd_val(*pmd);
137 	if (clear) {
138 		*old = v;
139 		new_pmd = pmd_mkinvalid(*pmd);
140 	} else {
141 		/* Presume this has been called with clear==true previously */
142 		new_pmd = __pmd(*old);
143 	}
144 	set_pmd(pmd, new_pmd);
145 }
146 
147 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
148 {
149 	pteval_t v = pte_val(*pte);
150 	if (clear) {
151 		*old = v;
152 		/* Nothing should care about address */
153 		pte_clear(&init_mm, 0, pte);
154 	} else {
155 		/* Presume this has been called with clear==true previously */
156 		set_pte_atomic(pte, __pte(*old));
157 	}
158 }
159 
160 static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
161 {
162 	unsigned int level;
163 	pte_t *pte = lookup_address(f->addr, &level);
164 
165 	if (!pte) {
166 		pr_err("no pte for addr 0x%08lx\n", f->addr);
167 		return -1;
168 	}
169 
170 	switch (level) {
171 	case PG_LEVEL_2M:
172 		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
173 		break;
174 	case PG_LEVEL_4K:
175 		clear_pte_presence(pte, clear, &f->old_presence);
176 		break;
177 	default:
178 		pr_err("unexpected page level 0x%x.\n", level);
179 		return -1;
180 	}
181 
182 	flush_tlb_one_kernel(f->addr);
183 	return 0;
184 }
185 
186 /*
187  * Mark the given page as not present. Access to it will trigger a fault.
188  *
189  * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
190  * protection is ignored here. RCU read lock is assumed held, so the struct
191  * will not disappear unexpectedly. Furthermore, the caller must guarantee,
192  * that double arming the same virtual address (page) cannot occur.
193  *
194  * Double disarming on the other hand is allowed, and may occur when a fault
195  * and mmiotrace shutdown happen simultaneously.
196  */
197 static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
198 {
199 	int ret;
200 	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
201 	if (f->armed) {
202 		pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n",
203 			f->addr, f->count, !!f->old_presence);
204 	}
205 	ret = clear_page_presence(f, true);
206 	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
207 		  f->addr);
208 	f->armed = true;
209 	return ret;
210 }
211 
212 /** Restore the given page to saved presence state. */
213 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
214 {
215 	int ret = clear_page_presence(f, false);
216 	WARN_ONCE(ret < 0,
217 			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
218 	f->armed = false;
219 }
220 
221 /*
222  * This is being called from do_page_fault().
223  *
224  * We may be in an interrupt or a critical section. Also prefecthing may
225  * trigger a page fault. We may be in the middle of process switch.
226  * We cannot take any locks, because we could be executing especially
227  * within a kmmio critical section.
228  *
229  * Local interrupts are disabled, so preemption cannot happen.
230  * Do not enable interrupts, do not sleep, and watch out for other CPUs.
231  */
232 /*
233  * Interrupts are disabled on entry as trap3 is an interrupt gate
234  * and they remain disabled throughout this function.
235  */
236 int kmmio_handler(struct pt_regs *regs, unsigned long addr)
237 {
238 	struct kmmio_context *ctx;
239 	struct kmmio_fault_page *faultpage;
240 	int ret = 0; /* default to fault not handled */
241 	unsigned long page_base = addr;
242 	unsigned int l;
243 	pte_t *pte = lookup_address(addr, &l);
244 	if (!pte)
245 		return -EINVAL;
246 	page_base &= page_level_mask(l);
247 
248 	/*
249 	 * Hold the RCU read lock over single stepping to avoid looking
250 	 * up the probe and kmmio_fault_page again. The rcu_read_lock_sched()
251 	 * also disables preemption and prevents process switch during
252 	 * the single stepping. We can only handle one active kmmio trace
253 	 * per cpu, so ensure that we finish it before something else
254 	 * gets to run.
255 	 */
256 	rcu_read_lock_sched_notrace();
257 
258 	faultpage = get_kmmio_fault_page(page_base);
259 	if (!faultpage) {
260 		/*
261 		 * Either this page fault is not caused by kmmio, or
262 		 * another CPU just pulled the kmmio probe from under
263 		 * our feet. The latter case should not be possible.
264 		 */
265 		goto no_kmmio;
266 	}
267 
268 	ctx = this_cpu_ptr(&kmmio_ctx);
269 	if (ctx->active) {
270 		if (page_base == ctx->addr) {
271 			/*
272 			 * A second fault on the same page means some other
273 			 * condition needs handling by do_page_fault(), the
274 			 * page really not being present is the most common.
275 			 */
276 			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
277 				 addr, smp_processor_id());
278 
279 			if (!faultpage->old_presence)
280 				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
281 					addr, smp_processor_id());
282 		} else {
283 			/*
284 			 * Prevent overwriting already in-flight context.
285 			 * This should not happen, let's hope disarming at
286 			 * least prevents a panic.
287 			 */
288 			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
289 				 smp_processor_id(), addr);
290 			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
291 			disarm_kmmio_fault_page(faultpage);
292 		}
293 		goto no_kmmio;
294 	}
295 	ctx->active++;
296 
297 	ctx->fpage = faultpage;
298 	ctx->probe = get_kmmio_probe(page_base);
299 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
300 	ctx->addr = page_base;
301 
302 	if (ctx->probe && ctx->probe->pre_handler)
303 		ctx->probe->pre_handler(ctx->probe, regs, addr);
304 
305 	/*
306 	 * Enable single-stepping and disable interrupts for the faulting
307 	 * context. Local interrupts must not get enabled during stepping.
308 	 */
309 	regs->flags |= X86_EFLAGS_TF;
310 	regs->flags &= ~X86_EFLAGS_IF;
311 
312 	/* Now we set present bit in PTE and single step. */
313 	disarm_kmmio_fault_page(ctx->fpage);
314 
315 	/*
316 	 * If another cpu accesses the same page while we are stepping,
317 	 * the access will not be caught. It will simply succeed and the
318 	 * only downside is we lose the event. If this becomes a problem,
319 	 * the user should drop to single cpu before tracing.
320 	 */
321 
322 	return 1; /* fault handled */
323 
324 no_kmmio:
325 	rcu_read_unlock_sched_notrace();
326 	return ret;
327 }
328 
329 /*
330  * Interrupts are disabled on entry as trap1 is an interrupt gate
331  * and they remain disabled throughout this function.
332  * This must always get called as the pair to kmmio_handler().
333  */
334 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
335 {
336 	int ret = 0;
337 	struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx);
338 
339 	if (!ctx->active) {
340 		/*
341 		 * debug traps without an active context are due to either
342 		 * something external causing them (f.e. using a debugger while
343 		 * mmio tracing enabled), or erroneous behaviour
344 		 */
345 		pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id());
346 		goto out;
347 	}
348 
349 	if (ctx->probe && ctx->probe->post_handler)
350 		ctx->probe->post_handler(ctx->probe, condition, regs);
351 
352 	/* Prevent racing against release_kmmio_fault_page(). */
353 	arch_spin_lock(&kmmio_lock);
354 	if (ctx->fpage->count)
355 		arm_kmmio_fault_page(ctx->fpage);
356 	arch_spin_unlock(&kmmio_lock);
357 
358 	regs->flags &= ~X86_EFLAGS_TF;
359 	regs->flags |= ctx->saved_flags;
360 
361 	/* These were acquired in kmmio_handler(). */
362 	ctx->active--;
363 	BUG_ON(ctx->active);
364 	rcu_read_unlock_sched_notrace();
365 
366 	/*
367 	 * if somebody else is singlestepping across a probe point, flags
368 	 * will have TF set, in which case, continue the remaining processing
369 	 * of do_debug, as if this is not a probe hit.
370 	 */
371 	if (!(regs->flags & X86_EFLAGS_TF))
372 		ret = 1;
373 out:
374 	return ret;
375 }
376 
377 /* You must be holding kmmio_lock. */
378 static int add_kmmio_fault_page(unsigned long addr)
379 {
380 	struct kmmio_fault_page *f;
381 
382 	f = get_kmmio_fault_page(addr);
383 	if (f) {
384 		if (!f->count)
385 			arm_kmmio_fault_page(f);
386 		f->count++;
387 		return 0;
388 	}
389 
390 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
391 	if (!f)
392 		return -1;
393 
394 	f->count = 1;
395 	f->addr = addr;
396 
397 	if (arm_kmmio_fault_page(f)) {
398 		kfree(f);
399 		return -1;
400 	}
401 
402 	list_add_rcu(&f->list, kmmio_page_list(f->addr));
403 
404 	return 0;
405 }
406 
407 /* You must be holding kmmio_lock. */
408 static void release_kmmio_fault_page(unsigned long addr,
409 				struct kmmio_fault_page **release_list)
410 {
411 	struct kmmio_fault_page *f;
412 
413 	f = get_kmmio_fault_page(addr);
414 	if (!f)
415 		return;
416 
417 	f->count--;
418 	BUG_ON(f->count < 0);
419 	if (!f->count) {
420 		disarm_kmmio_fault_page(f);
421 		if (!f->scheduled_for_release) {
422 			f->release_next = *release_list;
423 			*release_list = f;
424 			f->scheduled_for_release = true;
425 		}
426 	}
427 }
428 
429 /*
430  * With page-unaligned ioremaps, one or two armed pages may contain
431  * addresses from outside the intended mapping. Events for these addresses
432  * are currently silently dropped. The events may result only from programming
433  * mistakes by accessing addresses before the beginning or past the end of a
434  * mapping.
435  */
436 int register_kmmio_probe(struct kmmio_probe *p)
437 {
438 	unsigned long flags;
439 	int ret = 0;
440 	unsigned long size = 0;
441 	unsigned long addr = p->addr & PAGE_MASK;
442 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
443 	unsigned int l;
444 	pte_t *pte;
445 
446 	local_irq_save(flags);
447 	arch_spin_lock(&kmmio_lock);
448 	if (get_kmmio_probe(addr)) {
449 		ret = -EEXIST;
450 		goto out;
451 	}
452 
453 	pte = lookup_address(addr, &l);
454 	if (!pte) {
455 		ret = -EINVAL;
456 		goto out;
457 	}
458 
459 	kmmio_count++;
460 	list_add_rcu(&p->list, &kmmio_probes);
461 	while (size < size_lim) {
462 		if (add_kmmio_fault_page(addr + size))
463 			pr_err("Unable to set page fault.\n");
464 		size += page_level_size(l);
465 	}
466 out:
467 	arch_spin_unlock(&kmmio_lock);
468 	local_irq_restore(flags);
469 
470 	/*
471 	 * XXX: What should I do here?
472 	 * Here was a call to global_flush_tlb(), but it does not exist
473 	 * anymore. It seems it's not needed after all.
474 	 */
475 	return ret;
476 }
477 EXPORT_SYMBOL(register_kmmio_probe);
478 
479 static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
480 {
481 	struct kmmio_delayed_release *dr = container_of(
482 						head,
483 						struct kmmio_delayed_release,
484 						rcu);
485 	struct kmmio_fault_page *f = dr->release_list;
486 	while (f) {
487 		struct kmmio_fault_page *next = f->release_next;
488 		BUG_ON(f->count);
489 		kfree(f);
490 		f = next;
491 	}
492 	kfree(dr);
493 }
494 
495 static void remove_kmmio_fault_pages(struct rcu_head *head)
496 {
497 	struct kmmio_delayed_release *dr =
498 		container_of(head, struct kmmio_delayed_release, rcu);
499 	struct kmmio_fault_page *f = dr->release_list;
500 	struct kmmio_fault_page **prevp = &dr->release_list;
501 	unsigned long flags;
502 
503 	local_irq_save(flags);
504 	arch_spin_lock(&kmmio_lock);
505 	while (f) {
506 		if (!f->count) {
507 			list_del_rcu(&f->list);
508 			prevp = &f->release_next;
509 		} else {
510 			*prevp = f->release_next;
511 			f->release_next = NULL;
512 			f->scheduled_for_release = false;
513 		}
514 		f = *prevp;
515 	}
516 	arch_spin_unlock(&kmmio_lock);
517 	local_irq_restore(flags);
518 
519 	/* This is the real RCU destroy call. */
520 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
521 }
522 
523 /*
524  * Remove a kmmio probe. You have to synchronize_rcu() before you can be
525  * sure that the callbacks will not be called anymore. Only after that
526  * you may actually release your struct kmmio_probe.
527  *
528  * Unregistering a kmmio fault page has three steps:
529  * 1. release_kmmio_fault_page()
530  *    Disarm the page, wait a grace period to let all faults finish.
531  * 2. remove_kmmio_fault_pages()
532  *    Remove the pages from kmmio_page_table.
533  * 3. rcu_free_kmmio_fault_pages()
534  *    Actually free the kmmio_fault_page structs as with RCU.
535  */
536 void unregister_kmmio_probe(struct kmmio_probe *p)
537 {
538 	unsigned long flags;
539 	unsigned long size = 0;
540 	unsigned long addr = p->addr & PAGE_MASK;
541 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
542 	struct kmmio_fault_page *release_list = NULL;
543 	struct kmmio_delayed_release *drelease;
544 	unsigned int l;
545 	pte_t *pte;
546 
547 	pte = lookup_address(addr, &l);
548 	if (!pte)
549 		return;
550 
551 	local_irq_save(flags);
552 	arch_spin_lock(&kmmio_lock);
553 	while (size < size_lim) {
554 		release_kmmio_fault_page(addr + size, &release_list);
555 		size += page_level_size(l);
556 	}
557 	list_del_rcu(&p->list);
558 	kmmio_count--;
559 	arch_spin_unlock(&kmmio_lock);
560 	local_irq_restore(flags);
561 
562 	if (!release_list)
563 		return;
564 
565 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
566 	if (!drelease) {
567 		pr_crit("leaking kmmio_fault_page objects.\n");
568 		return;
569 	}
570 	drelease->release_list = release_list;
571 
572 	/*
573 	 * This is not really RCU here. We have just disarmed a set of
574 	 * pages so that they cannot trigger page faults anymore. However,
575 	 * we cannot remove the pages from kmmio_page_table,
576 	 * because a probe hit might be in flight on another CPU. The
577 	 * pages are collected into a list, and they will be removed from
578 	 * kmmio_page_table when it is certain that no probe hit related to
579 	 * these pages can be in flight. RCU grace period sounds like a
580 	 * good choice.
581 	 *
582 	 * If we removed the pages too early, kmmio page fault handler might
583 	 * not find the respective kmmio_fault_page and determine it's not
584 	 * a kmmio fault, when it actually is. This would lead to madness.
585 	 */
586 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
587 }
588 EXPORT_SYMBOL(unregister_kmmio_probe);
589 
590 static int
591 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
592 {
593 	struct die_args *arg = args;
594 	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
595 
596 	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
597 		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
598 			/*
599 			 * Reset the BS bit in dr6 (pointed by args->err) to
600 			 * denote completion of processing
601 			 */
602 			*dr6_p &= ~DR_STEP;
603 			return NOTIFY_STOP;
604 		}
605 
606 	return NOTIFY_DONE;
607 }
608 
609 static struct notifier_block nb_die = {
610 	.notifier_call = kmmio_die_notifier
611 };
612 
613 int kmmio_init(void)
614 {
615 	int i;
616 
617 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
618 		INIT_LIST_HEAD(&kmmio_page_table[i]);
619 
620 	return register_die_notifier(&nb_die);
621 }
622 
623 void kmmio_cleanup(void)
624 {
625 	int i;
626 
627 	unregister_die_notifier(&nb_die);
628 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
629 		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
630 			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
631 	}
632 }
633